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Abstract

In 2004, M.Ru established a defect relation for algebraically non-
degenerate holomorphic maps. Recently, T.T.H. An and H.T. Phuong
proved an inequality of the second main theorem type, with ramification
for holomorphic curves. In this paper we will establish a truncated defect
relation for holomorphic curves into linear subspaces.

1 Introduction

Let f : C → Pn(C) be an algebraically non-degenerate holomorphic map and
Dj , 1 � j � q be hypersurfaces in Pn(C) of degree dj in general position. In
1933 Cartan [3] and in 1983 Nochka [5] established a truncated defect relation
for a linearly non-degenerate holomorphic map f intersecting hyperplanes. In
2004, M.Ru [6] established a defect relation for algebraically non-degenerate
holomorphic map f intersecting hypersurfaces Dj , 1 � j � q. In this pa-
per we will give a truncated defect relation for holomorphic curves into linear
subspaces. To state our result, we first introduce some standard notations in
Nevanlinna theory.
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Let f : C → Pn(C) be a holomorphic map. Let f = (f0 : · · · : fn) be a
reduced representative of f , where f0, . . . , fn are entire functions on C without
common zeros. The Nevanlinna-Cartan characteristic function Tf (r) is defined
by

Tf (r) =
1
2π

∫ 2π

0

log ‖f(reiθ)‖dθ,

where ‖f(z)‖ = max{|f0(z)|, . . . , |fn(z)|}. Let D be a hypersurface in Pn(C) of
degree d. Let P be the homogeneous polynomial of degree d defining D. The
proximity function of f is defined by

mf (r, D) =
1
2π

∫ 2π

0

log
‖f(reiθ)‖d

|P (f)(reiθ)|dθ.

The above definitions are independent, up to an additive constant, of the choice
of the reduced representation of f and the choice of the defining polynomial
P . Let nf (r, D) be the number of zeros of P ◦ f in the disk |z| < r, counting
multiplicity, and nΔ

f (r, D) be the number of zeros of P ◦ f in the disk |z| < r,
truncated multiplicity by a positive integer Δ. The counting function and
truncated counting function are defined by

Nf (r, D) =
∫ r

0

nf(t, D) − nf (0, D)
t

dt + nf(0, D) log r;

NΔ
f (r, D) =

∫ r

0

nΔ
f (t, D) − nΔ

f (0, D)
t

dt + nΔ
f (0, D) log r.

In this paper, we write Nf (r, D) as Nf(r, P ) and NΔ
f (r, D) as NΔ

f (r, P ) some-
times.

Since Poisson-Jensen’s formula, we have
First Main Theorem. Let f : C → Pn(C) be a holomorphic map and

D be a hypersurface in Pn(C) of degree d. If f(C) �⊂ D, then for every real
number r with 0 < r < ∞

mf (r, D) + Nf (r, D) = dTf(r) + O(1),

where O(1) is a constant independent of r.
For a hypersurface D we define the defect

δf (D) = 1 − lim sup
r→+∞

Nf (r, D)
(deg D)Tf (r)

,

and the truncated defect

δΔ
f (D) = 1 − lim sup

r→+∞

NΔ
f (r, D)

(deg D)Tf (r)
,
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where Δ is a positive integer. It is easy to see that

0 � δf (D) � δΔ
f (D) � 1

for any positive integer Δ and hypersurface D.
Let X be a k-dimensional projective subvariety of Pn(C), 1 � k � n. A

collection of hypersurfaces D1, . . . , Dq (q ≥ k + 1) in Pn(C), which are defined
by homogeneous polynomials Pj , 1 � j � q, is said to be in general position
with X if for any subset {i0, . . . , ik} of {1, . . . , q} of cardinality k + 1,

{x ∈ X : Pij(x) = 0, j = 0, . . . , k} = ∅.

In [3], H. Cartan showed the following
Theorem A. Let f : C → Pn(C) be an linearly non-degenerate holomorphic

map, and let Hj, 1 � j � q, be hyperplanes in Pn(C) in general position. Then
we have

q∑
j=1

δn
f (Hj) � n + 1.

And in [6], M.Ru showed the following theorem
Theorem B. Let f : C → Pn(C) be an algebraically non-degenerate holo-

morphic map, and let Dj , 1 � j � q, be hypersurfaces in Pn(C) of degree dj in
general position. Then we have

q∑
j=1

δf (Dj) � n + 1.

The following results are obtained in this paper.
Theorem 1. Let X be a k-dimension linear subspace of Pn(C) and let

f : C → X be an algebraically non-degenerate holomorphic map. Let Dj , 1 �
j � q, be hypersurfaces in Pn(C) of degree dj in general position with X, and
let d be the least common multiple of dj’s. Then for any 0 < ε < 1, there exists
a positive integer Δ = 2d[2k(k + 1)k(d + 1)ε−1]k such that

q∑
j=1

δΔ
f (Dj) � k + 1 + ε. (1.1)

Furthermore,

q∑
j=1

δf (Dj) � k + 1. (1.2)
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Note that, when k = n then X = Pn(C) and f : C → Pn(C) is an alge-
braically non-degenerate holomorphic map and hypersurfaces Dj , j = 1, . . . , q
are in general position in Pn(C). Hence Theorem B is a special case of Theo-
rem 2 when k = n. Our proofs of Theorem 1 and Theorem 2 base on results of
An-Phuong [2] and Ru[6].

Obviously, we can choose Δ for any ε > 0 in Theorem 1, but it is large and
depends on ε. It would be interesting if one can find a Δ term independing on
ε. It is very important, because we can obmit term ε in the right side in (1.1)
in that case.

Notice, our results are also true for curves from a complete non-Archimedean
field of characteristic zero. And by the standard process of averaging over the
complex lines in the complex space Cm, one can easily extend these results to
holomorphic map f : Cm → X.

2 Proof of Theorem 1.

To prove Theorem 1 we first recall the following Second Main Theorem for
holomorphic curves intersecting hypersurfaces with ramification. The theorem
is stated and proved by An and Phuong in [2].
Theorem 2.1. Let f : C → Pn(C) be an algebraically non-degenerate holo-
morphic map, and let Dj , 1 � j � q, be hypersurfaces in Pn(C) of degree dj in
general position. Let d be the least common multiple of dj. Let 0 < ε < 1 and

Δ � 2d[2n(n + 1)n(d + 1)ε−1]n.

Then

(q − (n + 1) − ε)Tf (r) �
q∑

j=1

d−1
j NΔ

f (r, Dj)

where the inequality holds for all large r outside a set of finite Lebesgue measure.

Proof of Theorem 1. Now let X be a k-dimension linear subspace of P
n(C)

and let f : C → X be an algebraically non-degenerate holomorphic map. Let
f = (f0 : · · · : fn) be a reduced representative of f . Since f maps into a
k−dimension linear subspace, there are (k + 1) functions fs0 , . . . , fsk , which
are algebraically independent, and fs, s /∈ {s0, . . . , sk}, can be written as a
linear form of fs0 , . . . , fsk .

Without loss of generality, we may assume (by rearranging the indices
{0,. . . ,n}) that f0, . . . , fk are algebraically independent, and

fs =
k∑

i=0

bs,ifi, s = k + 1, . . . , n.
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Set f∗ = (f0 : · · · : fk) : C → Pk(C). Since f is an algebraically
non-degenerate holomorphic map on X we have f∗ is an algebraically non-
degenerate holomorphic map on Pk(C).

For z ∈ C and for any s = k + 1, . . . , n we have

|fs(z)| = |
k∑

i=0

bs,ifi(z)| �
k∑

i=0

|bs,ifi(z)| �
k∑

i=0

|bs,i|.|fi(z)|

� max{|f0(z)|, . . . , |fk(z)|}.
k∑

i=0

|bs,i| = cs. max{|f0(z)|, . . . , |fk(z)|}.

where cs is a positive constant, depends only on the bs,i and not on z and f∗.
Set

c = max{1, ck+1, . . . , cn},
then we have, for any z ∈ C,

|fs(z)| � c. max{|f0(z)|, . . . , |fk(z)|} for any s = (k + 1), . . . , n.

Hence

‖f(z)‖ = max{|f0(z)|, . . . , |fn(z)|} � c max{|f0(z)|, . . . , |fk(z)|} = c‖f∗(z)‖,

where c is a positive constant, depends only on the bs,i and not on z and f∗.
This implies

Tf (r) =
1
2π

∫ 2π

0

log ‖f(reiθ)‖dθ (2.1)

=
1
2π

∫ 2π

0

log ‖f∗(reiθ)‖dθ + O(1)

= Tf∗(r) + O(1).

Now let Dj, 1 � j � q, be hypersurfaces in Pn(C) of degree dj in general
position with X. Let Qj , j = 1, . . . , q be the homogeneous polynomials of
degree dj in C[z0, . . . , zn] defining Dj . For any j = 1, . . . , q, we set

Q∗
j = Q∗

j (z0, . . . , zk) = Qj

(
z0, . . . , zk,

k∑
i=0

bk+1,izi, . . . ,

k∑
i=0

bn,izi

)
.

Then Q∗
j is a homogeneous polynomial of degree dj in C[z0, . . . , zk]. Obviously,

by the construction of f∗ and homogeneous polynomials Q∗
j , we have

Qj ◦ f(z) = Q∗
j ◦ f∗(z)
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for any z ∈ C. Hence if z ∈ C is a zero of Qj ◦ f with multiplicity α, then z
will be a zero of Q∗

j ◦ f∗ with multiplicity α. This implies

Nf (r, Dj) = Nf∗(r, D∗
j ); (2.2)

NΔ
f (r, Dj) = NΔ

f∗ (r, D∗
j ) for any positive integer Δ.

For any j = 1, . . . , q, let D∗
j be the hypersurface in Pk(C) which is defined

by the homogeneous polynomial Q∗
j . Next we will prove that the hypersurfaces

D∗
j , j = 1, . . . , q are in general position with Pk(C). Assume for the sake

contradiction that there are (k +1) hypersurfaces D∗
i0 , . . . , D

∗
ik

∈ {D∗
1 , . . . , D

∗
q}

and a∗ = (a0, . . . , ak) ∈ Pk(C) such that

Q∗
i0(a

∗) = · · · = Q∗
ik

(a∗) = 0.

Set

a =
(

a0, . . . , ak,

k∑
i=0

bk+1,iai, . . . ,

k∑
i=0

bn,iai

)
,

then a ∈ X and
Qi0(a) = · · · = Qik(a) = 0.

This is a contradiction with the assumption “in general position with X“ of
hypersurfaces Dj , j = 1, . . . , q.

For ε and Δ as in Theorem 1, applying Theorem 2.1 to the algebraically
non-degenerate holomorphic map f∗ : C → P

k(C) and hypersurfaces D∗
j , j =

1, . . . , q we have

(q − (k + 1) − ε)Tf∗(r) �
q∑

j=1

1
dj

NΔ
f∗(r, D∗

j ), (2.3)

where inequality (2.3) holds for all large positive real number r. Combining
formulas (2.1), (2.2), and (2.3) together, we have

(q − (k + 1) − ε)Tf (r) �
q∑

j=1

1
dj

NΔ
f (r, Dj) + O(1),

so
q∑

j=1

(
1 − NΔ

f (r, Dj)
djTf(r)

)
� (k + 1 + ε) +

O(1)
Tf (r)

.

This implies
q∑

j=1

δΔ
f (Dj) � (k + 1 + ε).
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This completes the inequality (1.1) of Theorem 1.
To prove the inequality (1.2) we need the following Second Main Theorem

for holomorphic curve intersecting hypersurfaces, without ramification (see [6]).
Theorem 2.2. Let f : C → Pk(C) be an algebraically non-degenerate holo-
morphic map. Let Dj , 1 � j � q, be hypersurfaces in Pk(C) in general position
with degree dj. Then for every ε > 0,

q∑
j=1

d−1
j mf (r, Dj) � (k + 1 + ε)Tf (r). (2.4)

where the inequality holds for all r ∈ (0, +∞) except for a possible set E with
finite Lebesgue measure.

By First Main Theorem, (2.4) can be reformuled as follow

(q − (k + 1) − ε)Tf (r) �
q∑

j=1

d−1
j Nf (r, Dj). (2.5)

For every ε > 0, applying Theorem 2.2 with formula (2.5) to the holomor-
phic map f∗ : C → Pk(C) and hypersurfaces D∗

j , j = 1, . . . , q, we have

(q − (k + 1) − ε)Tf∗(r) �
q∑

j=1

1
dj

Nf∗(r, D∗
j ). (2.6)

Combining formulas (2.1), (2.2) and (2.6) together, we have

(q − (k + 1) − ε)Tf (r) �
q∑

j=1

1
dj

Nf (r, Dj) + O(1),

so
q∑

j=1

(
1 − Nf(r, Dj)

djTf(r)

)
� (k + 1 + ε) +

O(1)
Tf (r)

.

This implies
q∑

j=1

δf (Dj) � (k + 1 + ε)

for every ε > 0. Hence
q∑

j=1

δf (Dj) � (k + 1).

This finishes the proof of Theorem 1.
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