MULTIPLICATIVE GENERALIZED DERIVATIONS WHICH ARE ADDITIVE

M.N. Daif* and M.S.Tammam El-Sayiad ${ }^{\dagger}$
* Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
e-mail: nagydaif@yahoo.com
\dagger Department of Mathematics, Carver Hall, Iowa State University, - 50011-2064, IA, USA.
e-mail: mohammad@iastate.edu

Abstract

The purpose of this note is to prove the following. Suppose R is a ring having an idempotent element $e(\mathrm{e} \neq 0, \mathrm{e} \neq 1)$ which satisfies some conditions. If g is any multiplicative generalized derivation of R, i.e. $g(x y)=g(x) y+x d(y)$, for all x, y in R and some derivation d of R, then g is additive.

1 Introduction

In [5] Martindale has asked the following question: When is a multiplicative mapping additive? He answered his question for a multiplicative isomorphism of a ring R under the existence of a family of idempotent elements in R which satisfies some conditions. In [2], Daif has given an answer to that question when the mapping is a multiplicative derivation on R.

In [3], Hvala has defined the notion of generalized derivation as follows: An additive mapping $g: R \rightarrow R$ is said to be a generalized derivation if there exists a derivation $d: R \rightarrow R$ such that

$$
g(x y)=g(x) y+x d(y) \text { for all } x, y \in R .
$$

Also, he calls the maps of the form $x \rightarrow a x+x b$ where a, b are fixed elements in R by the inner generalized derivations. Hence the concept of a generalized
derivation covers both the concepts of a derivation and a left centralizer (i.e., an additive map f satisfying $f(x y)=f(x) y$ for all $x, y \in R$). In [1, Remark 1] Bres̆ar proved that: for a semiprime ring R, if g is a function from R to R and $d: R \rightarrow R$ is an additive mapping such that $g(x y)=g(x) y+x d(y)$ for all $x, y \in R$, then g is uniquely determined by d and moreover d must be a derivation.

In this note, We introduce the notion of the multiplicative generalized derivation of a ring R to be a mapping g of R into R such that $g(x y)=$ $g(x) y+x d(y)$, for all $x, y \in R$, where d is a derivation from R into R. Parallel to the works of Martindale [5] and Daif [2], we ask the following question for a multiplicative generalized derivation, that is, when is a multiplicative generalized derivation additive? Under some conditions, we give an answer for this question.

As in [4], let e in R be an idempotent element so that $e \neq 1, e \neq 0$ (R need not have an identity). We will formally set $e_{1}=e$ and $e_{2}=1-e$. The twosided Peirce decomposition of R relative to the idempotent e takes the form $R=e_{1} R e_{1} \oplus e_{1} R e_{2} \oplus e_{2} R e_{1} \oplus e_{2} R e_{2}$. So letting $R_{m n}=e_{m} R e_{n}: m, n=1,2$, we may write $R=R_{11} \oplus R_{12} \oplus R_{21} \oplus R_{22}$. An element of the subring $R_{m n}$ will be denoted by $x_{m n}$.

From the definition of g we note that $g(0)=g(00)=g(0) 0+0 d(0)=0$, and also, $d(0)=0$. Moreover, $d(e)=d\left(e^{2}\right)=d(e) e+e d(e)$. So we can express $d(e)=a_{11}+a_{12}+a_{21}+a_{22}$ and use the value of $d(e)$ to get that $a_{11}=a_{22}$, that is $a_{11}=0=a_{22}$. Consequently, we have

$$
d(e)=a_{12}+a_{21}
$$

By the same manner $g(e)=g\left(e^{2}\right)=g(e) e+e d(e)$ and we can write $g(e)=$ $b_{11}+b_{12}+b_{21}+b_{22}$ and using the value of $g(e)$ and $d(e)$ we get $b_{11}+b_{12}+$ $b_{21}+b_{22}=b_{11}+b_{21}+a_{12}$, from this equality and since any element in a direct sum is written uniquely, we conclude that $b_{22}=0$ and so,

$$
g(e)=b_{11}+a_{12}+b_{21}
$$

In the sequel, and for simplifications, let f be the inner derivation of R determined by the element $a_{12}-a_{21}$, that is $f(x)=\left[x, a_{12}-a_{21}\right]$ for all x in R. Therefore,

$$
f(e)=\left[e, a_{12}-a_{21}\right]=a_{12}+a_{21}
$$

Let $F(x)=\left(b_{11}+b_{21}\right) x+x\left(a_{12}-a_{21}\right)$ be the generalized inner derivation determined by the two elements $b_{11}+b_{21}$ and $a_{12}-a_{21}$, so we have,

$$
F(e)=b_{11}+b_{21}+a_{12}
$$

In the sequel, we will replace, without loss of generality, the derivation d by the derivation $D=d-f$ and the multiplicative generalized derivation g by the multiplicative generalized derivation $G=g-F$. This yields

$$
D(e)=0 \text { and } G(e)=0
$$

In our next proofs we will need the following lemma,
Lemma 1.1. [2, Lemma 1] With the above notations, we have

$$
\begin{equation*}
D\left(R_{m n}\right) \subset R_{m n}, m, n=1,2 \tag{1}
\end{equation*}
$$

2 The main result.

We intend to prove the following
Theorem 2.1. Let R be a ring containing an idempotent e which satisfies the following conditions,

$$
\begin{aligned}
& \left(T_{1}\right) x R e=0 \text { implies } x=0 .(\text { and hence } x R=0 \text { implies } x=0 .) \\
& \left(T_{2}\right) \text { exe } R(1-e)=0 \text { implies exe }=0 . \\
& \left(T_{3}\right)(1-e) x e R(1-e)=0 \text { implies }(1-e) x e=0
\end{aligned}
$$

If g is any multiplicative generalized derivation of R, i.e. $g(x y)=g(x) y+x d(y)$, for all x, y in R and some derivation d of R, then g is additive.

Now we need several lemmas.
Lemma 2.2. $G\left(R_{1 n}\right) \subset R_{1 n}, n=1,2 ; G\left(R_{21}\right) \subset R_{11}+R_{21}, G\left(R_{11}+R_{21}\right) \subset$ $R_{11}+R_{21}$ and $G\left(R_{22}\right) \subset R_{22}+R_{12}$. Moreover, G is additive on $R_{1 n}$ and $G\left(x_{11}+x_{12}\right)=G\left(x_{11}\right)+G\left(x_{12}\right)$, for every $x_{11} \in R_{11}$ and $x_{12} \in R_{12}$.

Proof. Since $G(x y)=G(x) y+x D(y)$, for every $x, y \in R$, and it follows that for every $x_{1 n} \in R_{1 n}, n=1,2$, we have $G\left(x_{1 n}\right)=G\left(e x_{1 n}\right)=G(e) x_{1 n}+$ $e D\left(x_{1 n}\right)=D\left(x_{1 n}\right)$, because $G(e)=0$ and $D\left(R_{1 n}\right) \subset R_{1 n}$. So we have that $\left.G\right|_{R_{1 n}}=\left.D\right|_{R_{1 n}}, n=1,2$, and it follows that $G\left(R_{1 n}\right) \subset R_{1 n}, n=1,2$ and that G is additive on $R_{1 n}, n=1,2$, since D is. Moreover, as a consequence, the same kind of arguments implies that if $x_{11} \in R_{11}$ and $x_{12} \in R_{12}$, then we have $G\left(x_{11}+x_{12}\right)=G\left(e\left(x_{11}+x_{12}\right)\right)=G(e)\left(x_{11}+x_{12}\right)+e D\left(x_{11}+x_{12}\right)=e\left[D\left(x_{11}\right)+\right.$ $\left.D\left(x_{12}\right)\right]=D\left(x_{11}\right)+D\left(x_{12}\right)=G\left(x_{11}\right)+G\left(x_{12}\right)$, by the above argument and Lemma 1.1, so we have $G\left(x_{11}+x_{12}\right)=G\left(x_{11}\right)+G\left(x_{12}\right)$. Now let $x_{21} \in R_{21}$ and write $G\left(x_{21}\right)=a_{11}+a_{12}+a_{21}+a_{22}$, then $G\left(x_{21}\right)=G\left(x_{21} e\right)=G\left(x_{21}\right) e=$ $a_{11}+a_{21} \in R_{11}+R_{21}$, so $G\left(x_{21}\right) \in R_{11}+R_{21}$. If $y_{11} \in R_{11}$ and $y_{21} \in R_{21}$ then $G\left(y_{11}+y_{21}\right)=G\left[\left(y_{11}+y_{21}\right) e\right]=G\left(y_{11}+y_{21}\right) e+\left(y_{11}+y_{21}\right) D(e)=G\left(y_{11}+y_{21}\right) e \in$ $R_{11}+R_{21}$. So, we get $G\left(R_{11}+R_{21}\right) \subset R_{11}+R_{21}$. Finally, let $x_{22} \in R_{22}$, write $G\left(x_{22}\right)=b_{11}+b_{12}+b_{21}+b_{22}$, then $0=G\left(x_{22} e\right)=G\left(x_{22}\right) e=b_{11}+b_{21}$, so $G\left(x_{22}\right)=b_{12}+b_{22} \in R_{12}+R_{22}$, so $G\left(x_{22}\right) \in R_{12}+R_{22}$ and the proof of the lemma is complete.

Lemma 2.3. For any $x_{11} \in R_{11}, z_{12} \in R_{12}$ and $x_{21} \in R_{21}$, we have

$$
\begin{equation*}
G\left(x_{21}+x_{11} z_{12}\right)=G\left(x_{21}\right)+G\left(x_{11} z_{12}\right) \tag{2}
\end{equation*}
$$

Proof. For any $u_{1 n} \in R_{1 n}$, where $n=1,2$, we have

$$
\begin{gathered}
{\left[G\left(x_{21}\right)+G\left(x_{11} z_{12}\right)\right] u_{1 n}=G\left(x_{21}\right) u_{1 n}+G\left(x_{11} z_{12}\right) u_{1 n}=G\left(x_{21}\right) u_{1 n}=} \\
G\left(x_{21} u_{1 n}\right)-x_{21} D\left(u_{1 n}\right)=G\left(\left(x_{21}+x_{11} z_{12}\right) u_{1 n}\right)-x_{21} D\left(u_{1 n}\right)= \\
G\left(x_{21}+x_{11} z_{12}\right) u_{1 n}+\left(x_{21}+x_{11} z_{12}\right) D\left(u_{1 n}\right)-x_{21} D\left(u_{1 n}\right)=G\left(x_{21}+x_{11} z_{12}\right) u_{1 n} .
\end{gathered}
$$

So we have

$$
\begin{equation*}
\left\{G\left(x_{21}+x_{11} z_{12}\right)-G\left(x_{21}\right)-G\left(x_{11} z_{12}\right)\right\} R_{1 n}=(0) \tag{3}
\end{equation*}
$$

Now, for any $u_{2 n} \in R_{2 n}$, where $n=1,2$, we have

$$
\begin{gathered}
{\left[G\left(x_{21}\right)+G\left(x_{11} z_{12}\right)\right] u_{2 n}=G\left(x_{21}\right) u_{2 n}+G\left(x_{11} z_{12}\right) u_{2 n}=G\left(x_{11} z_{12}\right) u_{2 n}=} \\
G\left(x_{11} z_{12} u_{2 n}\right)-x_{11} z_{12} D\left(u_{2 n}\right)=G\left(\left(x_{21}+x_{11} z_{12}\right) u_{2 n}\right)-x_{11} z_{12} D\left(u_{2 n}\right)= \\
G\left(x_{21}+x_{11} z_{12}\right) u_{2 n}+\left(x_{21}+x_{11} z_{12}\right) D\left(u_{2 n}\right)-x_{11} z_{12} D\left(u_{2 n}\right)=G\left(x_{21}+x_{11} z_{12}\right) u_{2 n}
\end{gathered}
$$

So we have

$$
\begin{equation*}
\left\{G\left(x_{21}+x_{11} z_{12}\right)-G\left(x_{21}\right)-G\left(x_{11} z_{12}\right)\right\} R_{2 n}=(0) . \tag{4}
\end{equation*}
$$

From equations (3) and (4) we get

$$
\begin{equation*}
\left\{G\left(x_{21}+x_{11} z_{12}\right)-G\left(x_{21}\right)-G\left(x_{11} z_{12}\right)\right\} R=(0) \tag{5}
\end{equation*}
$$

Using condition $\left(T_{1}\right)$ in the above equation we get

$$
\begin{equation*}
G\left(x_{21}+x_{11} z_{12}\right)=G\left(x_{21}\right)+G\left(x_{11} z_{12}\right) \tag{6}
\end{equation*}
$$

Lemma 2.4. For any $x_{11} \in R_{11}$ and $x_{21} \in R_{21}$, we have

$$
\begin{equation*}
G\left(x_{11}+x_{21}\right)=G\left(x_{11}\right)+G\left(x_{21}\right) . \tag{7}
\end{equation*}
$$

Proof. For any $u_{1 n} \in R_{1 n}$ and $z_{12} \in R_{12}$, where $n=1,2$, we have

$$
\left\{G\left(x_{11}+x_{21}\right)-G\left(x_{11}\right)-G\left(x_{21}\right)\right\} z_{12} u_{1 n}=(0)
$$

Which means

$$
\begin{equation*}
\left\{G\left(x_{11}+x_{21}\right)-G\left(x_{11}\right)-G\left(x_{21}\right)\right\} z_{12} R_{1 n}=(0) \tag{8}
\end{equation*}
$$

Now, for any $u_{2 n} \in R_{2 n}$ and $z_{12} \in R_{12}$, where $n=1,2$, we have

$$
\begin{gathered}
G\left(x_{11}+x_{21}\right) z_{12} u_{2 n}=G\left(\left(x_{11}+x_{21}\right) z_{12} u_{2 n}\right)-\left(x_{11}+x_{21}\right) D\left(z_{12} u_{2 n}\right)= \\
G\left[\left(x_{11} z_{12}+x_{21}\right)\left(u_{2 n}+z_{12} u_{2 n}\right)\right]-\left(x_{11}+x_{21}\right) D\left(z_{12} u_{2 n}\right)=G\left(x_{11} z_{12}+\right. \\
\left.x_{21}\right)\left(u_{2 n}+z_{12} u_{2 n}\right)+\left(x_{11} z_{12}+x_{21}\right) D\left(u_{2 n}+z_{12} u_{2 n}\right)-\left(x_{11}+x_{21}\right) D\left(z_{12} u_{2 n}\right)= \\
G\left(x_{11} z_{12}+x_{21}\right)\left(u_{2 n}+z_{12} u_{2 n}\right)-x_{11} D\left(z_{12}\right) u_{2 n}= \\
G\left(x_{11} z_{12}\right)\left(u_{2 n}+z_{12} u_{2 n}\right)+G\left(x_{21}\right)\left(u_{2 n}+z_{12} u_{2 n}\right)-x_{11} D\left(z_{12}\right) u_{2 n}= \\
G\left(x_{11} z_{12}\right) u_{2 n}+G\left(x_{21}\right) z_{12} u_{2 n}-x_{11} D\left(z_{12}\right) u_{2 n}=G\left(x_{11}\right) z_{12} u_{2 n}+G\left(x_{21}\right) z_{12} u_{2 n} .
\end{gathered}
$$

So we have

$$
\left\{G\left(x_{11}+x_{21}\right)-G\left(x_{11}\right)-G\left(x_{21}\right)\right\} z_{12} u_{2 n}=(0)
$$

And so we get

$$
\begin{equation*}
\left\{G\left(x_{11}+x_{21}\right)-G\left(x_{11}\right)-G\left(x_{21}\right)\right\} z_{12} R_{2 n}=(0) \tag{9}
\end{equation*}
$$

From equations (8) and (9) we get

$$
\begin{equation*}
\left\{G\left(x_{11}+x_{21}\right)-G\left(x_{11}\right)-G\left(x_{21}\right)\right\} z_{12} R=(0) \tag{10}
\end{equation*}
$$

Using condition (T_{1}) we have

$$
\begin{equation*}
\left\{G\left(x_{11}+x_{21}\right)-G\left(x_{11}\right)-G\left(x_{21}\right)\right\} R_{12}=(0) \tag{11}
\end{equation*}
$$

Using conditions $\left(T_{2}\right),\left(T_{3}\right)$ and Lemma 2.2 we obtain

$$
\begin{equation*}
G\left(x_{11}+x_{21}\right)=G\left(x_{11}\right)+G\left(x_{21}\right) \tag{12}
\end{equation*}
$$

Lemma 2.5. For any $z_{12} \in R_{12}$ and $x_{21}, y_{21} \in R_{21}$, we have

$$
\begin{equation*}
G\left(y_{21}+x_{21} z_{12}\right)=G\left(y_{21}\right)+G\left(x_{21} z_{12}\right) \tag{13}
\end{equation*}
$$

Proof. For any $u_{1 n} \in R_{1 n}$, where $n=1,2$, we have

$$
\begin{gathered}
{\left[G\left(y_{21}\right)+G\left(x_{21} z_{12}\right)\right] u_{1 n}=G\left(y_{21}\right) u_{1 n}+G\left(x_{21} z_{12}\right) u_{1 n}=G\left(y_{21}\right) u_{1 n}=} \\
G\left(y_{21} u_{1 n}\right)-y_{21} D\left(u_{1 n}\right)=G\left(\left(y_{21}+x_{21} z_{12}\right) u_{1 n}\right)-y_{21} D\left(u_{1 n}\right)= \\
G\left(y_{21}+x_{21} z_{12}\right) u_{1 n}+\left(y_{21}+x_{21} z_{12}\right) D\left(u_{1 n}\right)-y_{21} D\left(u_{1 n}\right)=G\left(y_{21}+x_{21} z_{12}\right) u_{1 n} .
\end{gathered}
$$

So we have

$$
\begin{equation*}
\left\{G\left(y_{21}+x_{21} z_{12}\right)-G\left(y_{21}\right)-G\left(x_{21} z_{12}\right)\right\} R_{1 n}=(0) \tag{14}
\end{equation*}
$$

Now, for any $u_{2 n} \in R_{2 n}$, where $n=1,2$, we have

$$
\begin{gathered}
{\left[G\left(y_{21}\right)+G\left(x_{21} z_{12}\right)\right] u_{2 n}=G\left(y_{21}\right) u_{2 n}+G\left(x_{21} z_{12}\right) u_{2 n}=G\left(x_{21} z_{12}\right) u_{2 n}=} \\
G\left(x_{21} z_{12} u_{2 n}\right)-x_{21} z_{12} D\left(u_{2 n}\right)=G\left(\left(y_{21}+x_{21} z_{12}\right) u_{2 n}\right)-x_{21} z_{12} D\left(u_{2 n}\right)= \\
G\left(y_{21}+x_{21} z_{12}\right) u_{2 n}+\left(y_{21}+x_{21} z_{12}\right) D\left(u_{2 n}\right)-x_{21} z_{12} D\left(u_{2 n}\right)=G\left(y_{21}+x_{21} z_{12}\right) u_{2 n}
\end{gathered}
$$

So we have

$$
\begin{equation*}
\left\{G\left(y_{21}+x_{21} z_{12}\right)-G\left(y_{21}\right)-G\left(x_{21} z_{12}\right)\right\} R_{2 n}=(0) . \tag{15}
\end{equation*}
$$

From equations (14) and (15) we get

$$
\begin{equation*}
\left\{G\left(y_{21}+x_{21} z_{12}\right)-G\left(y_{21}\right)-G\left(x_{21} z_{12}\right)\right\} R=(0) . \tag{16}
\end{equation*}
$$

Using condition $\left(T_{1}\right)$ in the above equation we get

$$
\begin{equation*}
G\left(y_{21}+x_{21} z_{12}\right)=G\left(y_{21}\right)+G\left(x_{21} z_{12}\right) . \tag{17}
\end{equation*}
$$

Lemma 2.6. G is additive on R_{21}.
Proof. For any $x_{21}, y_{21} \in R_{21}, z_{12} \in R_{12}$ and $z_{2 n} \in R_{2 n}$ we have

$$
\begin{gathered}
G\left(x_{21}+y_{21}\right) z_{12} z_{2 n}=G\left(\left(x_{21}+y_{21}\right) z_{12} z_{2 n}\right)-\left(x_{21}+y_{21}\right) D\left(z_{12} z_{2 n}\right)= \\
G\left(x_{21} z_{12} z_{2 n}+y_{21} z_{12} z_{2 n}\right)-\left(x_{21}+y_{21}\right) D\left(z_{12} z_{2 n}\right)= \\
G\left(\left(x_{21} z_{12}+y_{21}\right)\left(z_{2 n}+z_{12} z_{2 n}\right)\right)-\left(x_{21}+y_{21}\right) D\left(z_{12} z_{2 n}\right)=G\left(x_{21} z_{12}+\right. \\
\left.y_{21}\right)\left(z_{2 n}+z_{12} z_{2 n}\right)+\left(x_{21} z_{12}+y_{21}\right) D\left(z_{2 n}+z_{12} z_{2 n}\right)-\left(x_{21}+y_{21}\right) D\left(z_{12} z_{2 n}\right)= \\
G\left(x_{21} z_{12}+y_{21}\right)\left(z_{2 n}+z_{12} z_{2 n}\right)-x_{21} D\left(z_{12}\right) z_{2 n}= \\
G\left(x_{21} z_{12}\right) z_{2 n}+G\left(y_{21}\right) z_{2 n}+G\left(x_{21} z_{12}\right) z_{12} z_{2 n}+G\left(y_{21}\right) z_{12} z_{2 n}-x_{21} D\left(z_{12}\right) z_{2 n}= \\
G\left(x_{21} z_{12}\right) z_{2 n}+G\left(y_{21}\right) z_{12} z_{2 n}-x_{21} D\left(z_{12}\right) z_{2 n}=\left(G\left(x_{21}\right)+G\left(y_{21}\right)\right) z_{12} z_{2 n} .
\end{gathered}
$$

So we have,

$$
\begin{equation*}
\left[G\left(x_{21}+y_{21}\right)-G\left(x_{21}\right)-G\left(y_{21}\right)\right] R_{12} R_{2 n}=(0) \tag{18}
\end{equation*}
$$

Also, it is clear that

$$
\begin{equation*}
\left[G\left(x_{21}+y_{21}\right)-G\left(x_{21}\right)-G\left(y_{21}\right)\right] R_{12} R_{1 n}=(0) \tag{19}
\end{equation*}
$$

where $n=1,2$. From (18) and (19) we get

$$
\begin{equation*}
\left[G\left(x_{21}+y_{21}\right)-G\left(x_{21}\right)-G\left(y_{21}\right)\right] R_{12} R=(0) \tag{20}
\end{equation*}
$$

By condition $\left(T_{1}\right)$ we have

$$
\begin{equation*}
\left[G\left(x_{21}+y_{21}\right)-G\left(x_{21}\right)-G\left(y_{21}\right)\right] R_{12}=(0) \tag{21}
\end{equation*}
$$

Using conditions $\left(T_{2}\right),\left(T_{3}\right)$ and Lemma 2.2 we get

$$
\begin{equation*}
G\left(x_{21}+y_{21}\right)=G\left(x_{21}\right)+G\left(y_{21}\right) . \tag{22}
\end{equation*}
$$

Lemma 2.7. G is additive on $R_{11}+R_{21}=R e$.

Proof. Consider the arbitrary elements x_{11}, y_{11} in R_{11} and x_{21}, y_{21} in R_{21}. So, Lemmas 2.2, 2.4 and 2.6 give $G\left(\left(x_{11}+x_{21}\right)+\left(y_{11}+y_{21}\right)\right)=G\left(\left(x_{11}+y_{11}\right)+\right.$ $\left.\left(x_{21}+y_{21}\right)\right)=G\left(x_{11}+y_{11}\right)+G\left(x_{21}+y_{21}\right)=G\left(x_{11}\right)+G\left(y_{11}\right)+G\left(x_{21}\right)+G\left(y_{21}\right)=$ $\left(G\left(x_{11}\right)+G\left(x_{21}\right)\right)+\left(G\left(y_{11}\right)+G\left(y_{21}\right)\right)=G\left(x_{11}+x_{21}\right)+G\left(y_{11}+y_{21}\right)$. Thus G is additive on $R_{11}+R_{21}$ which as required.

Now we are in a position to prove the main theorem,
Proof of Theorem 2.1. Let x and y be any elements of R. Consider $G(x)+G(y)$. Take an element t in $R e=R_{11}+R_{21}$. Thus, $x t$ and $y t$ are elements of $R e$. According to Lemma 2.7, we can obtain $(G(x)+G(y)) t=G(x) t+G(y) t=$ $G(x t)+G(y t)-(x+y) D(t)=G(x t+y t)-(x+y) D(t)=G((x+y) t)-$ $(x+y) D(t)=G(x+y) t+(x+y) D(t)-(x+y) D(t)=G(x+y) t$. Thus, $(G(x)+G(y)) t=G(x+y) t$. Since t is an arbitrary element in $R e$, we obtain $(G(x)+G(y)-G(x+y)) R e=0$. By condition $\left(T_{1}\right)$, we get

$$
G(x+y)=G(x)+G(y)
$$

Which shows that the multiplicative generalized derivation G, and also g, is additive.

Acknowledgment

The authors thank the referee for his/her helpful suggestions. The second author would like to thank Profesor Miguel Ferrero for many helpful comments.

References

[1] M. Bres̆ar, On the distance of the compositions of two derivations to generalized derivations, Glasgow Math. J. 33 (1991), 80-93.
[2] M. N. Daif, When is a multiplicative derivation additive?, Inter. J. Math. and Math. Sci., 14 (3) (1991), 615-618.
[3] B Hvala, Generalized derivations in rings, Comm. Alg. 26(4) (1998), 11471166.
[4] N. Jacobson, "Structure of rings", Amer. Math. Soc. Colloq. Publ. 37 (1964).
[5] W. S. Martindale III, When are Multiplicative Mappings Additive?, Proc. Amer. Math. Soc. 21 (1969), 695-698.

