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Abstract
The purpose of this note is to prove the following. Suppose R is a
ring having an idempotent element e (e # 0, e # 1) which satisfies some
conditions. If g is any multiplicative generalized derivation of R, i.e.
g(zy) = g(x)y + zd(y), for all z,y in R and some derivation d of R, then
g is additive.

1 Introduction

In [5] Martindale has asked the following question: When is a multiplicative
mapping additive? He answered his question for a multiplicative isomorphism
of a ring R under the existence of a family of idempotent elements in R which
satisfies some conditions. In [2], Daif has given an answer to that question
when the mapping is a multiplicative derivation on R.

In [3], Hvala has defined the notion of generalized derivation as follows: An
additive mapping g : R — R is said to be a generalized derivation if there exists
a derivation d : R — R such that

g(zy) = g(x)y + zd(y) for all z,y € R.

Also, he calls the maps of the form z — ax + xb where a, b are fixed elements
in R by the inner generalized derivations. Hence the concept of a generalized
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32 Multiplicative generalized derivations which are additive

derivation covers both the concepts of a derivation and a left centralizer (i.e.,
an additive map f satisfying f(zy) = f(z)y for all z,y € R). In [1, Remark
1] Bresar proved that: for a semiprime ring R, if g is a function from R to R
and d : R — R is an additive mapping such that g(xy) = g(z)y + zd(y) for
all xz,y € R, then g is uniquely determined by d and moreover d must be a
derivation.

In this note, We introduce the notion of the multiplicative generalized
derivation of a ring R to be a mapping g of R into R such that g(zy) =
g(x)y + xd(y), for all z,y € R, where d is a derivation from R into R. Parallel
to the works of Martindale [5] and Daif [2], we ask the following question for
a multiplicative generalized derivation, that is, when is a multiplicative gener-
alized derivation additive? Under some conditions, we give an answer for this
question.

As in [4], let e in R be an idempotent element so that e # 1,e # 0 (R need
not have an identity). We will formally set ¢; = e and e =1 — e . The two-
sided Peirce decomposition of R relative to the idempotent e takes the form
R = e1Re; @ e; Rex ® eaRep @ eaRes. So letting Ry, = ey Ren @ myn = 1,2,
we may write R = R11 ® R12® R21 ® Raoo. An element of the subring R, will
be denoted by &, -

From the definition of g we note that g(0) = g(00) = ¢(0)0 + 0d(0) = 0,
and also, d(0) = 0. Moreover, d(e) = d(e?) = d(e)e + ed(e). So we can express
d(e) = a11 + a1z + ag1 + ase and use the value of d(e) to get that a;; = ass,
that is @11 = 0 = a22. Consequently, we have

d(@) = a2 + ao1.

By the same manner g(e) = g(e?) = g(e)e + ed(e) and we can write g(e) =
b11 + b12 + b2y + boo and using the value of g(e) and d(e) we get b1y + bia +
ba1 4 ba2 = b11 + ba1 + a2, from this equality and since any element in a direct
sum is written uniquely, we conclude that bys = 0 and so,

g(e) = b1 + a2 + bas1.

In the sequel, and for simplifications, let f be the inner derivation of R
determined by the element aj2 — a2, that is f(z) = [z, a12 — a2] for all z in
R. Therefore,

f(e) = le,a12 — az1] = a12 + ao1.
Let F(x) = (b11 + bo1)x + x(a12 — az1) be the generalized inner derivation
determined by the two elements b1 + b21 and ai2 — a21, so we have,
F(e) =b11 + ba1 + ain

In the sequel, we will replace, without loss of generality, the derivation d
by the derivation D = d — f and the multiplicative generalized derivation g by
the multiplicative generalized derivation G = g — F'. This yields
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D(e) =0 and G(e) = 0.
In our next proofs we will need the following lemma,

Lemma 1.1. [2, Lemma 1] With the above notations, we have

D(Ryn) C Ry, mymn=1,2. (1)

2 The main result.

We intend to prove the following

Theorem 2.1. Let R be a ring containing an idempotent e which satisfies the
following conditions,

(Th) xRe = 0 implies x = 0. (and hence xR = 0 implies x = 0.)
(T3) exeR(1 —e) = 0 implies exe = 0.
(T5) (1 — e)zeR(1 — e) = 0 implies (1 — e)ze = 0.

If g is any multiplicative generalized derivation of R, i.e. g(xy) = g(x)y+zd(y),
for all x,y in R and some derivation d of R, then g is additive.

Now we need several lemmas.

Lemma 2.2. G(Rln) C Rip,n=1,2; G(Rgl) C Ri1 + Roq, G(Rll + R21) C
Ri1 + Ro1 and G(Ra2) C Raa + Ria. Moreover, G is additive on Ry, and
G(JZH + xlg) = G(ZCH) + G(xlg), fO?” every ri1 € Ri1 and x12 € Ryo.

Proof. Since G(zy) = G(x)y + xD(y), for every x,y € R, and it follows that
for every x1, € Rin, n = 1,2, we have G(z1,) = Gler1n) = Ge)zin +
eD(x1,) = D(x1,), because G(e) = 0 and D(R1,) C Ri,. So we have that
G |r,,= D |Rr,,, n=1,2, and it follows that G(R1,) C Rin, n = 1,2 and that
G is additive on Ry,, n = 1,2, since D is. Moreover, as a consequence, the
same kind of arguments implies that if 17 € R1; and 12 € R12, then we have
G(z11+712) = G(e(x11+712)) = G(e) (211 +T12) +eD (211 +212) = e[D(x11)+
D(x12)] = D(z11) + D(z12) = G(x11) + G(x12), by the above argument and
Lemma 1.1, so we have G(JZH + xlg) = G(ZCH) + G(xlg). Now let zo1 € Roq
and write G(z21) = a11 + a12 + az1 + ase, then G(x21) = G(x21€) = G(x21)e =
ai1 +ag € R11+R21, SO G(ZCQl) € Ri1+Roy. If Y11 € R11 and Y21 € R then
G(yi+y21) = G(y11+y21)e] = Gy +y21)e+(yi1+y21)D(e) = Gy +ya1)e €
R11 + Ro1. So, we get G(RH + RQl) C R11 + Ro1. Finally, let x95 € Rao, write
G(xgg) = b11 + b1z + bo1 + bao, then 0 = G(xgge) = G(xgg)e = by1 + bo1, SO
G(ZCQQ) = bia + by € Rig + RQQ, SO G(ZCQQ) € Ris + Roo and the pI"OOf of the
lemma is complete. O
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Lemma 2.3. For any x11 € R11, 212 € R12 and x21 € Ra1, we have
G(z21 + z11212) = G(721) + G(Z11212)- (2)
Proof. For any w1, € Ri,, where n = 1,2, we have

[G(z21) + G(z11212)]u1n = G(T21)u1n + G(211212)U1n = G(T21)U1n =
G(z21u1n) — z21D(u1pn) = G((z21 + T11212)U1n) — T21D(U1p) =
G(z21 +z11212)U1n + (T21 + T11212) D(U1n) — 21D (U1n) = G(x21 +T11212)U1n-

So we have
{G(z21 + z11212) — G(221) — G(211212) } R1n = (0). (3)
Now, for any ug, € Ray,, where n = 1,2, we have
[G(z21) + G(z11212)|u2n = G(x21)U2n + G(x11212) U2 = G(Z11212)U2s =

G(z11212U20) — T11212D(U2,) = G((T21 + T11212)U2n) — T11212D (U2p) =
G(zo1+z11212)U2n+(T21+211212) D (U2 ) —T11 212D (U2s) = G(T21+T11212)U2n.-

So we have
{G(z21 + x11212) — G(x21) — G(211212) } R2n = (0). (4)
From equations (3) and (4) we get
{G(z21 + x11212) — G(221) — G(x11212) } R = (0). (5)
Using condition (7}) in the above equation we get

G(z21 + z11212) = G(721) + G(Z11212)- (6)

Lemma 2.4. For any x11 € R11 and x21 € Ra1, we have
G(z11 + x21) = G(z11) + G(721). (7)
Proof. For any w1, € R, and z12 € Ry2, where n = 1,2, we have
{G(z11 4+ x21) — G(x11) — G(221) }212U1n = (0).
Which means
{G(r11 + 221) — G(x11) — G(x21)}212R1n = (0). (8)

Now, for any ug, € Ra, and z12 € Rj2, where n = 1,2, we have
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G(x11 + z21)2z12u2n = G((T11 + T21)212U20) — (T11 + T21)D(212U2,) =
G[(z11212 + T21) (U2 + z12U2,)] — (11 + 221) D(212u2n) = G(T11212 +
x21)(U2n + 212U2n) + (T11212 + Z21) D(U2n + 212U2n) — (T11 + Z21) D(212U2,) =
G(x11212 + ®21) (U2 + 212U2p) — T11 D (212) U2y =
G(x11212) (U2n + 212U2n) + G(221) (U2 + 212U2n) — 11D (212)U2n =
G(x11212)U2n + G(221)212U2 — T11D(212)U2n = G(11)212U2n + G(T21)212U2n.

So we have
{G(z11 + ®21) — G(211) — G(21) }212u20 = (0).
And so we get
{G(z11 + 221) — G(x11) — G(x21)}212R2n = (0). (9)
From equations (8) and (9) we get
{G(z11 + z21) — G(z11) — G(221)}212R = (0). (10)
Using condition (77) we have
{G(z11 + z21) — G(211) — G(221) } R12 = (0). (11)
Using conditions (7%), (T3) and Lemma 2.2 we obtain

G(J?ll + .2321) = G(J?ll) + G(J?Ql). (12)

Lemma 2.5. For any z12 € R12 and x21, Y21 € Re1, we have

G(y21 + z21212) = G(y21) + G(z21212). (13)
Proof. For any w1, € Ri,, where n = 1,2, we have

[G(y21) + G(z21212)]u1n = G(Y21)u1n + G(z21212)U1n = G(Y21)U1n =
G(y21u1n) — Y21 D(u1n) = G((y21 + x21212)U1n) — Y21 D(u1n) =
G(y21 + z21212)Utn + (Y21 + T21212) D(U1n) — Y21 D(w1n) = G(y21 + T21212)U1n-

So we have
{G(y21 + x21212) — G(y21) — G(x21212) } R1n = (0). (14)
Now, for any ug, € Ray,, where n = 1,2, we have

[G(y21) + G(z21212)]u2n = G(y21)uon + G(x21212)Uu2s = G(X21212) U2, =
G(z21212u20) — T21212D(u2n) = G((Y21 + T21212)U2n) — T21212D(U2n) =
G(y21 +x21212) U2+ (Y21 +x21212) D (U2n) — 221 212D (U2n) = G (Y21 +T21212)U2n.
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So we have
{G(y21 + z21212) — G(y21) — G(x21212) } Ron, = (0). (15)
From equations (14) and (15) we get
{G(y21 + x21212) — G(y21) — G(x21212)} R = (0). (16)
Using condition (7}) in the above equation we get

G(y21 + z21212) = G(y21) + G(z21212). (17)

Lemma 2.6. G is additive on Ra;.
Proof. For any xa1, y21 € Ra1, 212 € Ri2 and 22, € Ry, we have

G(x21 +y21)z1222n = G((T21 + Y21)212220) — (T21 + Y21)D(212220) =
G(x2121222n + Y2121222n) — (21 + Y21)D(212220) =
G((w21212 + Y21) (220 + 21222n)) — (21 + y21)D(21222n) = G(z21212 +
y21)(22n + 2z1222n) + (221212 + Y21)D(220 + 212220) — (T21 + Y21)D(212220) =
G(x21212 + Y21) (220 + 212220) — 21 D(212) 220 =
G(x21212)22n + G(y21)22n + G(r21212) 212220 + G(Y21) 212220 — T21D(212) 220 =
G(x21212)22n + G(y21)21222n — T21D(212) 220 = (G(221) + G(y21))21222n-

So we have,
(G221 + y21) — G(221) — G(y21)| R12Ran = (0) (18)
Also, it is clear that
(G221 + y21) — G(221) — G(y21)| R12R1p = (0) (19)
where n = 1, 2. From (18) and (19) we get
[G(@21 + y21) — G(221) — G(y21)| B2l = (0) (20)
By condition (77) we have
[G(@21 + y21) — G(@21) — G(y21)] R12 = (0) (21)
Using conditions (7T%), (T3) and Lemma 2.2 we get

G(721 +y21) = G(z21) + G(y21)- (22)

Lemma 2.7. G is additive on R11 + Ro1 = Re.
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Proof. Consider the arbitrary elements 11, y11 in Rq1 and x21, y21 in Rey. So,
Lemmas 2.2, 2.4 and 2.6 give G((x11 + z21) + (Y11 + y21)) = G((x11 + y11) +
(z21+y21)) = G(11+y11) +G (221 +y21) = G(211) +G (Y1) + G (221) +G (Y1) =
(G(x11) + G(x21)) + (G(y11) + G(y21)) = G(z11 + 221) + G(y11 + y21). Thus G
is additive on R11 + Ro1 which as required. O

Now we are in a position to prove the main theorem,

Proof of Theorem 2.1. Let x and y be any elements of R. Consider G(z)+G(y).
Take an element ¢ in Re = Ry1 + R21. Thus, ot and yt are elements of Re.
According to Lemma 2.7, we can obtain (G(z) + G(y))t = G(z)t + G(y)t =
G(zt) + Gyt) — (v +y)D(t) = G(at +yt) — (z + y)D(t) = G((z + y)t) —
(z +y)D(t) = Gz + y)t + (x + y)D(t) — (v + y)D(t) = G(x + y)t. Thus,
(G(z) + G(y))t = G(x + y)t. Since t is an arbitrary element in Re, we obtain
(G(x) + G(y) — G(z + y))Re = 0. By condition (T}), we get

Gz +y) = G(x) + G(y).

Which shows that the multiplicative generalized derivation G, and also g, is
additive. O
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