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Abstract

The purpose of this note is to prove the following. Suppose R is a
ring having an idempotent element e (e �= 0, e �= 1) which satisfies some
conditions. If g is any multiplicative generalized derivation of R, i.e.
g(xy) = g(x)y + xd(y), for all x, y in R and some derivation d of R, then
g is additive.

1 Introduction

In [5] Martindale has asked the following question: When is a multiplicative
mapping additive? He answered his question for a multiplicative isomorphism
of a ring R under the existence of a family of idempotent elements in R which
satisfies some conditions. In [2], Daif has given an answer to that question
when the mapping is a multiplicative derivation on R.

In [3], Hvala has defined the notion of generalized derivation as follows: An
additive mapping g : R → R is said to be a generalized derivation if there exists
a derivation d : R → R such that

g(xy) = g(x)y + xd(y) for all x, y ∈ R.

Also, he calls the maps of the form x → ax + xb where a, b are fixed elements
in R by the inner generalized derivations. Hence the concept of a generalized
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derivation covers both the concepts of a derivation and a left centralizer (i.e.,
an additive map f satisfying f(xy) = f(x)y for all x, y ∈ R). In [1, Remark
1] Bres̆ar proved that: for a semiprime ring R, if g is a function from R to R
and d : R → R is an additive mapping such that g(xy) = g(x)y + xd(y) for
all x, y ∈ R, then g is uniquely determined by d and moreover d must be a
derivation.

In this note, We introduce the notion of the multiplicative generalized
derivation of a ring R to be a mapping g of R into R such that g(xy) =
g(x)y + xd(y), for all x, y ∈ R, where d is a derivation from R into R. Parallel
to the works of Martindale [5] and Daif [2], we ask the following question for
a multiplicative generalized derivation, that is, when is a multiplicative gener-
alized derivation additive? Under some conditions, we give an answer for this
question.

As in [4], let e in R be an idempotent element so that e �= 1, e �= 0 (R need
not have an identity). We will formally set e1 = e and e2 = 1 − e . The two-
sided Peirce decomposition of R relative to the idempotent e takes the form
R = e1Re1 ⊕ e1Re2 ⊕ e2Re1 ⊕ e2Re2. So letting Rmn = emRen : m, n = 1, 2,
we may write R = R11 ⊕R12⊕R21 ⊕R22. An element of the subring Rmn will
be denoted by xmn.

From the definition of g we note that g(0) = g(00) = g(0)0 + 0d(0) = 0,
and also, d(0) = 0. Moreover, d(e) = d(e2) = d(e)e + ed(e). So we can express
d(e) = a11 + a12 + a21 + a22 and use the value of d(e) to get that a11 = a22,
that is a11 = 0 = a22. Consequently, we have

d(e) = a12 + a21.

By the same manner g(e) = g(e2) = g(e)e + ed(e) and we can write g(e) =
b11 + b12 + b21 + b22 and using the value of g(e) and d(e) we get b11 + b12 +
b21 + b22 = b11 + b21 + a12, from this equality and since any element in a direct
sum is written uniquely, we conclude that b22 = 0 and so,

g(e) = b11 + a12 + b21.

In the sequel, and for simplifications, let f be the inner derivation of R
determined by the element a12 − a21, that is f(x) = [x, a12 − a21] for all x in
R. Therefore,

f(e) = [e, a12 − a21] = a12 + a21.

Let F (x) = (b11 + b21)x + x(a12 − a21) be the generalized inner derivation
determined by the two elements b11 + b21 and a12 − a21, so we have,

F (e) = b11 + b21 + a12

In the sequel, we will replace, without loss of generality, the derivation d
by the derivation D = d− f and the multiplicative generalized derivation g by
the multiplicative generalized derivation G = g − F . This yields
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D(e) = 0 and G(e) = 0.

In our next proofs we will need the following lemma,

Lemma 1.1. [2, Lemma 1] With the above notations, we have

D(Rmn) ⊂ Rmn, m, n = 1, 2. (1)

2 The main result.

We intend to prove the following

Theorem 2.1. Let R be a ring containing an idempotent e which satisfies the
following conditions,

(T1) xRe = 0 implies x = 0. (and hence xR = 0 implies x = 0.)

(T2) exeR(1 − e) = 0 implies exe = 0.

(T3) (1 − e)xeR(1 − e) = 0 implies (1 − e)xe = 0.

If g is any multiplicative generalized derivation of R, i.e. g(xy) = g(x)y+xd(y),
for all x, y in R and some derivation d of R, then g is additive.

Now we need several lemmas.

Lemma 2.2. G(R1n) ⊂ R1n, n = 1, 2; G(R21) ⊂ R11 + R21, G(R11 + R21) ⊂
R11 + R21 and G(R22) ⊂ R22 + R12. Moreover, G is additive on R1n and
G(x11 + x12) = G(x11) + G(x12), for every x11 ∈ R11 and x12 ∈ R12.

Proof. Since G(xy) = G(x)y + xD(y), for every x, y ∈ R, and it follows that
for every x1n ∈ R1n, n = 1, 2, we have G(x1n) = G(ex1n) = G(e)x1n +
eD(x1n) = D(x1n), because G(e) = 0 and D(R1n) ⊂ R1n. So we have that
G |R1n= D |R1n , n = 1, 2, and it follows that G(R1n) ⊂ R1n, n = 1, 2 and that
G is additive on R1n, n = 1, 2, since D is. Moreover, as a consequence, the
same kind of arguments implies that if x11 ∈ R11 and x12 ∈ R12, then we have
G(x11+x12) = G(e(x11+x12)) = G(e)(x11+x12)+eD(x11 +x12) = e[D(x11)+
D(x12)] = D(x11) + D(x12) = G(x11) + G(x12), by the above argument and
Lemma 1.1, so we have G(x11 + x12) = G(x11) + G(x12). Now let x21 ∈ R21

and write G(x21) = a11 + a12 + a21 + a22, then G(x21) = G(x21e) = G(x21)e =
a11 +a21 ∈ R11 +R21, so G(x21) ∈ R11 +R21. If y11 ∈ R11 and y21 ∈ R21 then
G(y11+y21) = G[(y11+y21)e] = G(y11+y21)e+(y11+y21)D(e) = G(y11+y21)e ∈
R11 + R21. So, we get G(R11 + R21) ⊂ R11 + R21. Finally, let x22 ∈ R22, write
G(x22) = b11 + b12 + b21 + b22, then 0 = G(x22e) = G(x22)e = b11 + b21, so
G(x22) = b12 + b22 ∈ R12 + R22, so G(x22) ∈ R12 + R22 and the proof of the
lemma is complete.
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Lemma 2.3. For any x11 ∈ R11, z12 ∈ R12 and x21 ∈ R21, we have

G(x21 + x11z12) = G(x21) + G(x11z12). (2)

Proof. For any u1n ∈ R1n, where n = 1, 2, we have

[G(x21) + G(x11z12)]u1n = G(x21)u1n + G(x11z12)u1n = G(x21)u1n =
G(x21u1n) − x21D(u1n) = G((x21 + x11z12)u1n) − x21D(u1n) =

G(x21 +x11z12)u1n +(x21 +x11z12)D(u1n)−x21D(u1n) = G(x21 +x11z12)u1n.

So we have

{G(x21 + x11z12) − G(x21) − G(x11z12)}R1n = (0). (3)

Now, for any u2n ∈ R2n, where n = 1, 2, we have

[G(x21) + G(x11z12)]u2n = G(x21)u2n + G(x11z12)u2n = G(x11z12)u2n =
G(x11z12u2n) − x11z12D(u2n) = G((x21 + x11z12)u2n) − x11z12D(u2n) =

G(x21+x11z12)u2n+(x21+x11z12)D(u2n)−x11z12D(u2n) = G(x21+x11z12)u2n.

So we have

{G(x21 + x11z12) − G(x21) − G(x11z12)}R2n = (0). (4)

From equations (3) and (4) we get

{G(x21 + x11z12) − G(x21) − G(x11z12)}R = (0). (5)

Using condition (T1) in the above equation we get

G(x21 + x11z12) = G(x21) + G(x11z12). (6)

Lemma 2.4. For any x11 ∈ R11 and x21 ∈ R21, we have

G(x11 + x21) = G(x11) + G(x21). (7)

Proof. For any u1n ∈ R1n and z12 ∈ R12, where n = 1, 2, we have

{G(x11 + x21) − G(x11) − G(x21)}z12u1n = (0).

Which means

{G(x11 + x21) − G(x11) − G(x21)}z12R1n = (0). (8)

Now, for any u2n ∈ R2n and z12 ∈ R12, where n = 1, 2, we have
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G(x11 + x21)z12u2n = G((x11 + x21)z12u2n) − (x11 + x21)D(z12u2n) =
G[(x11z12 + x21)(u2n + z12u2n)] − (x11 + x21)D(z12u2n) = G(x11z12 +

x21)(u2n + z12u2n) + (x11z12 + x21)D(u2n + z12u2n) − (x11 + x21)D(z12u2n) =
G(x11z12 + x21)(u2n + z12u2n) − x11D(z12)u2n =

G(x11z12)(u2n + z12u2n) + G(x21)(u2n + z12u2n) − x11D(z12)u2n =
G(x11z12)u2n + G(x21)z12u2n − x11D(z12)u2n = G(x11)z12u2n + G(x21)z12u2n.

So we have

{G(x11 + x21) − G(x11) − G(x21)}z12u2n = (0).

And so we get

{G(x11 + x21) − G(x11) − G(x21)}z12R2n = (0). (9)

From equations (8) and (9) we get

{G(x11 + x21) − G(x11) − G(x21)}z12R = (0). (10)

Using condition (T1) we have

{G(x11 + x21) − G(x11) − G(x21)}R12 = (0). (11)

Using conditions (T2), (T3) and Lemma 2.2 we obtain

G(x11 + x21) = G(x11) + G(x21). (12)

Lemma 2.5. For any z12 ∈ R12 and x21, y21 ∈ R21, we have

G(y21 + x21z12) = G(y21) + G(x21z12). (13)

Proof. For any u1n ∈ R1n, where n = 1, 2, we have

[G(y21) + G(x21z12)]u1n = G(y21)u1n + G(x21z12)u1n = G(y21)u1n =
G(y21u1n) − y21D(u1n) = G((y21 + x21z12)u1n) − y21D(u1n) =

G(y21 + x21z12)u1n + (y21 + x21z12)D(u1n)− y21D(u1n) = G(y21 + x21z12)u1n.

So we have

{G(y21 + x21z12) − G(y21) − G(x21z12)}R1n = (0). (14)

Now, for any u2n ∈ R2n, where n = 1, 2, we have

[G(y21) + G(x21z12)]u2n = G(y21)u2n + G(x21z12)u2n = G(x21z12)u2n =
G(x21z12u2n) − x21z12D(u2n) = G((y21 + x21z12)u2n) − x21z12D(u2n) =

G(y21+x21z12)u2n+(y21+x21z12)D(u2n)−x21z12D(u2n) = G(y21+x21z12)u2n.
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So we have

{G(y21 + x21z12) − G(y21) − G(x21z12)}R2n = (0). (15)

From equations (14) and (15) we get

{G(y21 + x21z12) − G(y21) − G(x21z12)}R = (0). (16)

Using condition (T1) in the above equation we get

G(y21 + x21z12) = G(y21) + G(x21z12). (17)

Lemma 2.6. G is additive on R21.

Proof. For any x21, y21 ∈ R21, z12 ∈ R12 and z2n ∈ R2n we have

G(x21 + y21)z12z2n = G((x21 + y21)z12z2n) − (x21 + y21)D(z12z2n) =
G(x21z12z2n + y21z12z2n) − (x21 + y21)D(z12z2n) =

G((x21z12 + y21)(z2n + z12z2n)) − (x21 + y21)D(z12z2n) = G(x21z12 +
y21)(z2n + z12z2n) + (x21z12 + y21)D(z2n + z12z2n) − (x21 + y21)D(z12z2n) =

G(x21z12 + y21)(z2n + z12z2n) − x21D(z12)z2n =
G(x21z12)z2n + G(y21)z2n + G(x21z12)z12z2n + G(y21)z12z2n − x21D(z12)z2n =

G(x21z12)z2n + G(y21)z12z2n − x21D(z12)z2n = (G(x21) + G(y21))z12z2n.

So we have,

[G(x21 + y21) − G(x21) − G(y21)]R12R2n = (0) (18)

Also, it is clear that

[G(x21 + y21) − G(x21) − G(y21)]R12R1n = (0) (19)

where n = 1, 2. From (18) and (19) we get

[G(x21 + y21) − G(x21) − G(y21)]R12R = (0) (20)

By condition (T1) we have

[G(x21 + y21) − G(x21) − G(y21)]R12 = (0) (21)

Using conditions (T2), (T3) and Lemma 2.2 we get

G(x21 + y21) = G(x21) + G(y21). (22)

Lemma 2.7. G is additive on R11 + R21 = Re.
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Proof. Consider the arbitrary elements x11, y11 in R11 and x21, y21 in R21. So,
Lemmas 2.2, 2.4 and 2.6 give G((x11 + x21) + (y11 + y21)) = G((x11 + y11) +
(x21+y21)) = G(x11+y11)+G(x21+y21) = G(x11)+G(y11)+G(x21)+G(y21) =
(G(x11) + G(x21)) + (G(y11) + G(y21)) = G(x11 + x21) + G(y11 + y21). Thus G
is additive on R11 + R21 which as required.

Now we are in a position to prove the main theorem,

Proof of Theorem 2.1. Let x and y be any elements of R. Consider G(x)+G(y).
Take an element t in Re = R11 + R21. Thus, xt and yt are elements of Re.
According to Lemma 2.7, we can obtain (G(x) + G(y))t = G(x)t + G(y)t =
G(xt) + G(yt) − (x + y)D(t) = G(xt + yt) − (x + y)D(t) = G((x + y)t) −
(x + y)D(t) = G(x + y)t + (x + y)D(t) − (x + y)D(t) = G(x + y)t. Thus,
(G(x) + G(y))t = G(x + y)t. Since t is an arbitrary element in Re, we obtain
(G(x) + G(y) − G(x + y))Re = 0. By condition (T1), we get

G(x + y) = G(x) + G(y).

Which shows that the multiplicative generalized derivation G, and also g, is
additive.
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