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Abstract

In this paper, for solving the multiple-sets split feasibility problem
(MSSFP) in Hilbert spaces, a new iterative method of Krasnosel’skii-
Mann type and its combination with the steepest-descent algorithm are
presented. In particular, the step size in these methods is calculated
directly from the iteration procedure without prior knowledge of opera-
tor norms. A numerical example is given for illustrating the introduced
methods.

1. Introduction

Let H1 and H2 be two real Hilbert spaces with inner products and norms,
denoted by 〈·, ·〉 and ‖ · ‖, respectively, and let A be a bounded linear mapping
from H1 into H2. Let Ci and Qj be closed convex subsets in H1 and H2,
respectively, for each i ∈ J1 = {1, 2, · · · , p} and j ∈ J2 = {1, 2, · · · , r} where p
and r are two fixed positive integers.

The MSSFP is to find a point

x ∈ C := ∩i∈J1Ci such that Ax ∈ Q := ∩j∈J2Qj . (1.1)

This research is founded by Vietnam National Foundation of Science and Technology Devel-
opment under grant number 101.02-2017.305.
Key words: Multiple-sets split feasibility problem, Self-adaptive, Variational inequality
2010 AMS Mathematics classification: 47J25, 47N10, 90C25.

59



60 New iterative methods of...

Denote by Γ the solution of (1.1). Throughout this paper, we assume that
Γ �= ∅.

Problem (1.1) was first introduced by Censor and Elfving [4] in finite-
dimensional Hilbert spaces for modeling inverse problems that arise from phase
retrievals and in image reconstruction [2]. Recently, the MSSFP can also be
used to model the intensity-modulated radiation therapy [5-8]. Many iterative
methods have been developed to solve this problem. See, for example, [1, 3,
9-11, 13-16, 20-22, 25-28, 30-35, 37, 40-44] and references therein.

In [5], Censor et al defined the proximity function p(x) to measure the
distance of a point x ∈ H1 to all sets Ci and Qj by

p(x) = g(x)+q(x), g(x) =
1
2

p∑
i=1

αi‖(I−PCi)x‖2, q(x) =
1
2

r∑
j=1

βj‖(I−PQj )Ax‖2,

where I denotes the identity mapping in Hm, m = 1, 2, αi > 0, βj > 0 for
all i and j, respectively, with

∑p
i=1 αi +

∑r
j=1 βj = 1, and considered the

constrained MSSFP as follows:

find z∗ ∈ Ω such that z∗ solves (1.1), (1.2)

where Ω is an auxiliary, simple, nonempty, closed and convex subset in H1

such that Γ ∩ Ω �= ∅. For solving (1.2), they proposed the projection-gradient
method,

xk+1 = PΩ(xk − s�p(xk)), x1 ∈ H1, (1.3)

for all k ∈ N+, the set of all positive integers, where s is a positive number and

�p(x) =
p∑

i=1

αi(I − PCi)x +
r∑

j=1

βjA
∗(I − PQjA)x, (1.4)

where A∗ denotes the adjoint of A. They proved global convergence of (1.3)-
(1.4) under condition 0 < s < 2/L with L =

∑p
i=1 αi + ‖A‖2

∑r
j=1 βj , being

the Lipschitz constant of �p(x). In infinite dimensional Hilbert spaces, basing
on the Krasnosel’skii-Mann algorithm (see, [24]),

xk+1 = (1 − γk)xk + γkTxk,

to find a fixed point of a self-nonexpansive mapping T of a closed convex subset,
Xu [37] introduced some weak convergent methods, one of which is a method
of Krasnosel’skii-Mann type,

xk+1 = (1 − γk)xk + γkPΩk

(
xk − s

( p∑
i=1

αi(I − PCik)xk

+
r∑

j=1

βjA
∗(I − PQjk )Axk

))
,

(1.5)
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where γk ∈ (0, 1) with
∑∞

k=1 γk(1−γk) = ∞ and the perturbations Ωk, Cik, Qjk

of the sets Ω, Ci, Qj satisfy some approximation properties. Next, He et al
[20], combining three iterative methods in [37] with the Krasnosel’skii-Mann
algorithm, obtained the following weakly convergent iterative methods:

xk+1 = (1 − γk)xk + γkTpTp−1 · · ·T1x
k, Ti = PCi(I − s�q),

xk+1 = (1 − γk)xk + γk

p∑
i=1

αiPCi

(
I − s

r∑
j=1

βjA
∗(I − PQj)A

)
xk,

xk+1 = (1 − γk)xk + γkT[k+1]x
k,

(1.6)

where T[k] = Tkmod p, the mod function takes values in {1, 2, · · · , p}, αi satisfies
condition
(α) αi > 0 for each i ∈ J1 such that

∑p
i=1 αi = 1,

0 < s < 2/L with L = ‖A‖2
∑r

j=1 βj . A strong convergent method of
Krasnosel’skii-Mann type,

xk+1 = (1 − γk)xk + γkPC[k] [(1− tk)(I − τkA∗(I − PQ[k])A)]xk (1.7)

in the case that p = r, was introduced by Wang et al [33], where tk has the
properties
(t) tk ∈ (0, 1) for all k ∈ N+, limk→∞ tk = 0 and

∑∞
k=1 tk = ∞,

PC[k] = PCkmod p and PQ[k] = PQkmod p with 0 < lim infk→∞ τk ≤ lim supk→∞ τk <

1/‖A‖2. In order to obtain a strong convergent iterative method, Dang and
Gao [13] combined the Krasnosel’skii-Mann algorithm with the Byrne’s CQ al-
gorithm [2] for the split feasibility problem (SFP), that is (1.1) with p = r = 1.
Very recently, for solving the SFP Yu et al [41] presented an iterative method
of Krasnosel’skii-Mann type,

xk+1 = (1 − γk)xk + γk[PC − τkA∗(I − PQ)A]xk, (1.8)

with conditions: 0 < lim infk→∞ γk ≤ lim supk→∞ γk < 1 and τk ∈ (0, 1/(γk‖A‖2)).
A simpler method was presented by Wang [34],

xk+1 = (1 − γk)xk + γk[PC − A∗(I − PQ)A]xk, (1.9)

where γk has the properties:
∑∞

k=1 γk = ∞ and
∑∞

k=1 γ2
k < ∞. At this time,

Ng. Buong [1] proposed several weak convergent methods

xk+1 = Txk, T = P1(I − sA∗(I − P2)A), (1.10)

where P1 and P2 are defined by one of the conditions (c):
(c1) P1 = PCp · · ·PC1 and P2 = PQr · · ·PQ1 ;
(c2) P1 =

∑p
i=1 αiPCi and P2 =

∑r
j=1 βjPQj ;

(c3) P1 = PCp · · ·PC1 and P2 =
∑r

j=1 βjPQj ;
(c4) P1 =

∑p
i=1 αiPCi and P2 = PQr · · ·PQ1
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with s ∈ (0, 1/‖A‖2), (α) and
(β) βj > 0 for 1 ≤ j ≤ r such that

∑r
j=1 βj = 1.

In order to obtain a strong convergence sequence {xk} from (1.10), he also
proposed the method

xk+1 = (I − tkμF )Txk, (1.11)

where F is an η-strongly monotone and L̃-Lipschitz continuous mapping on
H1, μ is a fixed number in (0, 2η/L̃2) and tk has property (t).

Weak and strong convergence theorems for the MSSFP in Banach spaces
were obtained in [26, 27] and references therein.

Methods (1.3)-(1.4), (1.5), (1.6), (1.7), (1.8), (1.10) and (1.11) use a fixed
step size restricted by the constants which depend on the largest eigenvalue
(spectral radius) of the operator A∗A. Computing the largest eigenvalue may
be very hard and conservative estimate of the constants usually results in slow
convergence. Motivated by a self-adaptive strategy given by He et al [19],
Zhang et al [42], Zhao et al [43] and Zhao with Yang [44] proposed several
self-adaptive projection-gradient methods. Two modifications of a method in
[43] were studied in [10] and [40]. These methods, at each iteration step,
need an inner iteration numbers to obtain a suitable step size. To exclude the
drawback in solving the SFP, López et al [22] suggested a new self-adaptive
way to compute directly the step size in each iteration. By considering the
constrained optimization problem minx∈C q(x), they proposed the weakly con-
vergent projection-gradient method

xk+1 = PC(xk − τk�q(xk)), (1.12)

where

τk =
ρkq(xk)

‖�q(xk)‖2
, (1.13)

(ρ) ρk ∈ (0, 4) for all k ∈ N+ and lim infk→∞ ρk > 0.
Here, they also introduced strongly convergent methods, by combining (1.12)-
(1.13) with the hybrid method in mathematical programming [29] and Halpern
method [18]. Recently, in infinite-dimensional Hilbert spaces, Tang et al [30]
and Wen et al [35] proposed also weakly convergent methods.

It is not difficult to see that when αi and βj satisfy conditions (α) and (β),
we have

p∑
i=1

αi(I−PCi) = I−
p∑

i=1

αiPCi and
r∑

j=1

βjA
∗(I−PQj )A = A∗

(
I−

r∑
j=1

βjPQj

)
A,

since A is a linear mapping. This changes decrease the computational time for
methods (1.3)-(1.4), (1.5) and (1.6) because the number of operations for the
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left-hand side of the equalities at any point is more than that for the right-
hand side. By the same reason, it will be better if we can replace

∑p
i=1 αiPCi

and
∑r

j=1 βjPQj in the equalities above by PCp · · ·PC1 and PQr · · ·PQ1 , respec-
tively, in constructing algorithms for (1.1).

In this paper, motivated by the results in the listed works and the above
remarks, we give a new iterative method of Krasnosel’skii-Mann type,

xk+1 = (1 − γk)xk + γkTkxk, Tk = P1 − τkA∗(I − P2)A, (1.14)

where P1 and P2 are defined by (c1) and (c2), respectively, the parameter γk

satisfies condition
(γ) γk ∈ [a, b] ⊂ (0, (p + 1)/(2p)),
τk is determined by

τk =
ρkf(xk)

(‖uk‖ + λk)2
(1.15)

with uk = A∗(I − P2)Axk,
(ρ′) ρk ∈ [ε, (r + 1)/r − ε] for all k ∈ N+, where ε is a small positive number,
(λ) λk ∈ [c, d] ⊂ (0,∞) for all k ∈ N+

and f(x) = ‖(I − P2)Ax‖2/2. Next, from (1.14), we can design a strong
convergent sequence {xk} by

xk+1 = (I − tkμF )[(1 − γk)I + γkTk]xk, (1.16)

that is a combination of the Krasnosel’skii-Mann type algorithm with the
steepest-descent one, where tk satisfies condition (t).

The rest of this paper is organized as follows. In Section 2, we list some
related facts, that will be used in the proof of our results. In Section 3, we
prove weak and strong convergences of our methods under suitable conditions.
As consequences, we obtain some modifications of the Krasnosel’skii-Mann and
Halpern algorithms. Finally, in Section 4, we give some numerical experiments
for testing our theoretical results.

2. Preliminaries

Let H be a real Hilbert space with inner product and norm, denoted, respec-
tively, also by 〈·, ·〉 and ‖ · ‖. Then,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 ∀x, y ∈ H.

Definitions 2.1 A mapping T from a subset C of H into H is called:
(i) nonexpansive, if ‖Tx− Ty‖ ≤ ‖x − y‖ for all x, y ∈ C;
(ii) contractive, if ‖Tx − Ty‖ ≤ ã‖x − y‖ for a fixed ã ∈ [0, 1) and for all
x, y ∈ C;
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(iii) γ-inverse strongly monotone, if γ‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 for all
x, y ∈ C, where γ is a positive number;
(iv) firmly nonexpansive, if there holds (iii) with γ = 1;
(v) averaged, if T = (1−ω)I+ωN for some fixed ω ∈ (0, 1) and a nonexpansive
mapping N and we say T is ω-averaged.

We denote by F ix(T ) the set of all fixed points of T , i.e.,

F ix(T ) = {x ∈ C : x = Tx}.
Lemma 2.1 [17] Let C be a closed convex subset of a real Hilbert space H and
let T be a nonexpansive mapping from C into H with F ix(T ) �= ∅. If {xk} is
a sequence in C weakly converging to x and if (I − T )xk converges strongly to
y, then (I − T )x = y. In particular, if y = 0, then x ∈ F ix(T ).
Lemma 2.2 [38, 12] We have:
(i) T is ω-averaged, if and only if I − T is (1/2ω)-inverse strongly monotone;
(ii) Let D be a nonempty set of H and let m ≥ 2 be an integer. Set

ω = 1
/(

1 + 1
/ m∑

i=1

ωi/(1 − ωi)
)

, ωi ∈ (0, 1) ∀i ∈ {1, 2, · · · , m}

and let Ti : D → D be ωi-averaged. Set T := TmTm−1 · · ·T1. Then, T is
ω-averaged;
(iii) Let D, ωi, Ti be as the above and let αi be satisfied condition (α) with
p = m. Then, the mapping T , defined by T =

∑m
i=1 αiTi, is ω-averaged, where

ω =
∑m

i=1 ωi.
For a closed convex subset C of H , there exists a mapping PC : H onto C such
that PC(x) = infy∈C ‖y − x‖ for each x ∈ H . The mapping PC is called the
metric projection onto C. We know that PC is firmly nonexpansive (hence,
nonexpansive), I − PC is also firmly nonexpansive and

‖PCx − z‖2 ≤ ‖x− z‖2 − ‖x − PCx‖2 ∀x ∈ H, z ∈ C. (2.1)

Recall that a sequence {xk} in H is said to be Fejér monotone with respect to
(w.r.t.) a nonempty, closed and convex subset S in H , if

‖xk+1 − z‖ ≤ ‖xk − z‖ ∀k ∈ N+, z ∈ S.

Lemma 2.3 [22] Let S be a nonempty, closed and convex subset in H. If the
sequence {xk} is Fejér monotone w.r.t. S, then {xk} converges weakly to a
point in S if and only if all weak cluster points of {xk} belong to S.

A mapping F , defined on H , is said to be η-strongly monotone and L̃-
Lipschitz continuous, if F satisfies, respectively, the following conditions:

〈Fx − Fy, x − y〉 ≥ η‖x − y‖2 and ‖Fx− Fy‖ ≤ L̃‖x − y‖ ∀x, y ∈ H,

where η and L̃ are fixed positive numbers.



Nguyen Thi Quynh Anh 65

Lemma 2.4 [39] Let F be an η-strongly monotone and L̃-Lipschitz continuous
mapping on a real Hilbert space H. Then, for two fixed numbers μ ∈ (0, 2η/L̃2)
and t ∈ (0, 1), we have ‖F tx − F ty‖ ≤ (1 − tτ )‖x − y‖ ∀x, y ∈ H, where

F t = I − tμF and constant τ = 1 −
√

1 − μ(2η − μL̃2) ∈ (0, 1).

Lemma 2.5 [36] Let {ak}, {tk} and {ck} be sequences of real numbers such
that
(i) ak+1 ≤ (1 − tk)ak + tkck;
(ii) ak ≥ 0;
(iii) tk satisfies condition (t);
(iv) lim supk→∞ ck ≤ 0.
Then, limk→∞ak = 0.

Lemma 2.6 [23] Let {ak} be a sequence of real numbers with a subsequence {kl}
of {k} such that akl < akl+1 for all l ∈ N+. Then, there exists a nondecreasing
sequence {mk} ⊆ N+ such that mk → ∞, amk ≤ amk+1 and ak ≤ amk+1 for all
(sufficiently large) numbers k ∈ N+. In fact, mk = max{l ≤ k : al ≤ al+1}.

3. Main Results

We have the following results.
Theorem 3.1 Let H1 and H2 be two real Hilbert spaces and let A be a bounded
linear mapping from H1 into H2. Let Ci and Qj be closed convex subsets in H1

and H2, respectively, for each i ∈ J1 = {1, 2, · · · , p} and j ∈ J2 = {1, 2, · · · , r}.
Assume that Γ �= ∅ and there hold conditions (γ), (ρ′) and (λ). Then, the
sequence {xk}, defined by (1.14)-(1.15), and one of the cases in condition (c),
as k → ∞, converges weakly to a point in Γ.

Proof. Clearly, P1z = z and (I − P2)Az = 0, for any z ∈ Γ.

From (1.14), we deduce immediately that

‖xk+1 − z‖2 = ‖xk − z − γk(xk − Tkxk)‖2

= ‖xk − z‖2 − 2γk〈xk − Tkxk, xk − z〉 + γ2
k‖xk − Tkxk‖2

≤ ‖xk − z‖2 − 2γk〈(I − P1)xk, xk − z〉 − 2γkτk〈uk, xk − z〉
+ 2γ2

k(‖(I − P1)xk‖2 + τ2
k ‖uk‖2).

(3.1)
First, we consider the case, when P1 = PCp · · ·PC1 and P2 = PQr · · ·PQ1 .

Since PCi is (1/2)-averaged (see, [2]), by Lemma 2.2, P1 is ω-averaged with
ω = p/(p + 1). So, I − P1 is (1/(2ω))-inverse strongly monotone, i.e.,

〈(I − P1)xk, xk − z〉 ≥ p + 1
2p

‖(I − P1)xk‖2. (3.2)
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Similarly, we have

〈uk, xk − z〉 = 〈(I − P2)Axk, Axk − Az〉
≥ r + 1

2r
‖(I − P2)Axk‖2 =

r + 1
r

f(xk).
(3.3)

From (3.1), (3.2) and (3.3) it implies that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − γk(p + 1)
p

‖(I − P1)xk‖2 − 2γkτk
r + 1

r
f(xk)

+ 2γ2
k(‖(I − P1)xk‖2 + τ2

k‖uk‖2)

≤ ‖xk − z‖2 − 2γk

(
p + 1
2p

− γk

)
‖(I − P1)xk‖2

− 2γk
r + 1

r

ρkf2(xk)
(‖uk‖ + λk)2

+ 2γk
ρ2

kf2(xk)
(‖uk‖ + λk)2

= ‖xk − z‖2 − 2γk

(
p + 1
2p

− γk

)
‖(I − P1)xk‖2

− 2γkρk

(
r + 1

r
− ρk

)
f2(xk)

(‖uk‖ + λk)2
,

(3.4)
since b < (p + 1)/(2p) ≤ 1 for any integer p. Taking into account of conditions
(γ) and (ρ′),

‖xk+1 − z‖ ≤ ‖xk − z‖,

2γk

(
p + 1
2p

− γk

)
‖(I − P1)xk‖2 ≤ ‖xk − z‖2 − ‖xk+1 − z‖2,

2γkρk

(
r + 1

r
− ρk

)
f2(xk)

(‖uk‖ + λk)2
≤ ‖xk − z‖2 − ‖xk+1 − z‖2.

(3.5)

According to the first inequality in (3.5), there exists limk→∞ ‖xk −z‖. There-
fore, {xk} is bounded, and hence, {‖uk‖} is also bounded. Next, from the
second and the last inequalities in (3.5), the existence of limk→∞ ‖xk − z‖, the
definition of f(x), conditions (ρ′) and (λ) with the boundedness of {‖uk‖}, it
follows that

lim
k→∞

‖(I − P1)xk‖ = 0 and lim
k→∞

f(xk) =
1
2

lim
k→∞

‖(I − P2)Axk‖/2 = 0. (3.6)

Now, we prove that

lim
k→∞

‖(I − PCi)x
k‖ = 0 ∀i ∈ J1 and lim

k→∞
‖(I − PQj)Axk‖ = 0 ∀j ∈ J2. (3.7)



Nguyen Thi Quynh Anh 67

Le R be a positive number such that R ≥ ‖xk − z‖ for all k ∈ N+. Using
property (2.1) for PCi with i = p, p− 1, · · · , 1, we get that

‖P1x
k − z‖2 ≤ ‖xk − z‖2 −

p∑
i=1

‖Six
k − Si−1x

k‖2,

where Si = PCiPCi−1 · · ·PC1 and PC0 = I. On the other hand,

‖P1x
k − z‖2 = ‖P1x

k − xk‖2 + ‖xk − z‖2 + 2〈P1x
k − xk, xk − z〉

≥ ‖P1x
k − xk‖2 + ‖xk − z‖2 − 2R‖(I − P1)xk‖. (3.8)

From two last inequalities and the first limit in (3.6), we know that

lim
k→∞

‖Six − Si−1x
k‖ = 0, i ∈ J1. (3.9)

Taking i = 1 in (3.9), we have immediately limk→∞ ‖(I − PC1)xk‖ = 0. In the
case that i = 2 in (3.9), limk→∞ ‖PC2PC1x− PC1x

k‖ = 0, which together with
the conclusion for the case i = 1 implies limk→∞ ‖(I −PC2)xk‖ = 0. Repeating
the process to i = p, we have the first limit in (3.7). By the second limit in
(3.6) and the similar argument as the above, we know that

lim
k→∞

‖S̃jAxk − S̃j−1Axk‖ = 0,

where S̃j = PQj PQj−1 · · ·PQ1 and S̃0 = I. Thus, we obtain the second limit in
(3.7).

Since {xk} is bounded, there exists a subsequence {xkl} converging weakly
to a point z̃ ∈ H1. From Lemma 2.1, the property of A, and (3.7) we deduce
immediately that z̃ ∈ ∩p

i=1F ix(PCi) and Az̃ ∈ ∩r
j=1F ix(PQj). It means that

z̃ ∈ Γ. Similarly, we have that every weak cluster point of the set {xk} belongs
to Γ. Consequently, from Lemma 2.3 with S = Γ and the first inequality in
(3.5), it follows that all sequence {xk} converges weakly to a point in Γ.

Now, consider the case when P1 =
∑p

i=1 αiPCi and P2 =
∑r

i=1 βjPQj with
conditions (α) and (β). Then,

〈(I − P1)xk, xk − z〉 =
p∑

i=1

αi〈(I − PCi)x
k, xk − z〉 ≥

p∑
i=1

αi‖(I − PCi)x
k‖2

≥
∥∥∥∥

p∑
i=1

αi(I − PCi)x
k

∥∥∥∥
2

= ‖(I − P1)xk‖2,

〈uk, xk − z〉 = 〈(I − P2)Axk, Axk − Az〉 ≥ ‖(I − P2)Axk‖2.
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Thus, instead of (3.4), we have the inequalities

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − 2γk(1 − γk)‖(I − P1)xk‖2

− 2γkρk(2 − ρk)
f2(xk)

(‖uk‖ + λk)2

≤ ‖xk − z‖2 − 2γk(1 − γk)‖(I − P1)xk‖2

− 2γkρk

(
r + 1

r
− ρk

)
f2(xk)

(‖uk‖ + λk)2
,

because (r + 1)/r ≤ 2 for any r ∈ N+. Consequently, {xk} is bounded and
we obtain the limits in (3.6). Next, let R be a positive number such that
‖xk − z‖ ≤ R. By the convexity of the function ‖x‖2 for x ∈ H1, (2.1) with
condition (α),

‖P1x
k − z‖2 =

∥∥∥∥
p∑

i=1

αi(PCix
k − z)

∥∥∥∥
2

≤
p∑

i=1

αi‖PCix
k − z‖2

≤ ‖xk − z‖2 −
p∑

i=1

αi‖(I − PCi)x
k‖2

and (3.8), we know that

1
R

p∑
i=1

αi‖(I − PCi)x
k‖2 ≤ ‖(I − P1)xk‖.

Therefore, we get the first limit in (3.7). By the similar argument, we also
get the second limit in (3.7). The cases, when P1 = PCp · · ·PC1 with P2 =∑r

i=1 βjPQj and P1 =
∑p

i=1 αiPCi with P2 = PQr · · ·PQ1 , are similar. The
proof is completed. �

Theorem 3.2 Let H1, H2, A, Ci, Qj and Γ be as in Theorem 3.1 and let F be
an η-strongly monotone and L̃-Lipschitz continuous mapping on H1. Let μ ∈
(0, 2η/L̃2) be a fixed number and let conditions (t), (γ), (ρ′) and (λ) be satisfied.
Then, as k → ∞, the sequence {xk}, defined by (1.16), Tk in (1.14) and τk in
(1.15), converges strongly to a point z∗, solving the variational inequality:

z∗ ∈ Γ : 〈Fz∗, z∗ − z〉 ≤ 0 ∀z ∈ Γ. (3.10)

Proof. First, we also consider the case, when P1 = PCp · · ·PC1 and P2 =
PQr · · ·PQ1 .

Set zk := (1− γk)xk + γkTkxk. By the similar argument as in the proof for
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(3.4), taking a fixed point z ∈ Γ, we have that

‖zk − z‖2 ≤ ‖xk − z‖2 − 2γk

(
p + 1
2p

− γk

)
‖(I − P1)xk‖2

− 2γkρk

(
r + 1

r
− ρk

)
f2(xk)

(‖uk‖ + λk)2
.

(3.11)

First, we prove that {xk} is bounded. Indeed, from (1.16), Lemma 2.4, (3.11)
and condition (ρ′), it follows that

‖xk+1 − z‖ = ‖(I − tkμF )zk − (I − tkμF )z − tkμFz‖
≤ (1 − tkτ )‖zk − z‖ + tkμ‖Fz‖
≤ (1 − tkτ )‖xk − z‖ + tkμ‖Fz‖
≤ max{‖x1 − z‖, μ‖Fz‖/τ}.

Therefore, {xk} is bounded. Next, using Lemma 2.4 and (3.11) again, we
obtain that

‖xk+1 − z‖2 = ‖(I − tkμF )zk − (I − tkμF )z − tkμFz‖2

≤ (1 − tkτ )‖zk − z‖2 − 2tkμ〈Fz, xk+1 − z〉
≤ (1 − tkτ )‖xk − z‖2 + 2tkμ〈Fz, z − xk+1〉

− 2γk

(
p + 1
2p

− γk

)
‖(I − P1)xk‖2

− 2γkρk

(
r + 1

r
− ρk

)
f2(xk)

(‖uk‖ + λk)2
.

(3.12)

Obviously, there exist two positive constant p̃ and r̃ such that, for all k ∈ N+,

2γk

(
p + 1
2p

− γk

)
≥ p̃ and 2γkρk

(
r + 1

r
− ρk

)
≥ r̃.

Thus, from (3.12) we get that

‖xk+1 − z‖2 ≤ (1 − tkτ )‖xk − z‖2 + 2tkμ〈Fz, z − xk+1〉

− p̃‖(I − P1)xk‖2 − r̃
f2(xk)

(‖uk‖ + λk)2
.

(3.13)

We need only discuss two cases.

Case 1. There exists an integer k0 ≥ 1 such that ‖xk+1 − z‖ ≤ ‖xk − z‖ for all
k ≥ k0.



70 New iterative methods of...

Then, limk→∞ ‖xk − z‖ exists. From (3.13), we can write that

‖xk+1−z‖2−‖xk−z‖2+tkτ‖xk−z‖2+p̃‖(I−P1)xk‖2+r̃
f2(xk)

(‖uk‖ + λk)2
≤ 2tkμM1,

(3.14)
where M1 ≥ ‖Fz‖‖z − xk+1‖. Since limk→∞ ‖xk − z‖ exists and tk → 0,
letting k tend to infinity in (3.14), we get (3.6). By the similar argument as in
the proof of Theorem 3.1, the sequence {xk} satisfies also (3.7), and hence, it
converges weakly to z̃ ∈ Γ. Moreover,

lim sup
k→∞

〈Fz∗, z∗ − xk+1〉 = lim
l→∞

〈Fz∗, z∗ − xkl+1〉 = 〈Fz∗, z∗ − z̃〉 ≤ 0, (3.15)

because z̃ ∈ Γ and z∗ is the unique solution of (3.10). Now, from (3.13) with
p̃ > 0 and r̃ > 0, we know that

‖xk+1 − z∗‖2 ≤ (1 − tkτ )‖xk − z∗‖2 + 2tkμ〈Fz∗, z∗ − xk+1〉,

which together with Lemma 2.5 and (3.15) implies that ‖xk − z∗‖ → 0.
Case 2. There exists a subsequence {kl} of {k} such that ‖xkl−z‖ < ‖xkl+1−z‖
for all l ∈ N+.

Hence, by Lemma 2.6, there exists a nondecreasing sequence {mk} ⊆ N+

such that mk → ∞,

‖xmk − z‖ ≤ ‖xmk+1 − z‖ and ‖xk − z‖ ≤ ‖xmk+1 − z‖ (3.16)

for each k ∈ N+. Next, according to (3.13) and the first inequality in (3.16),

‖xmk − z‖2 ≤ 2μ

τ
〈Fz, z − xmk+1〉. (3.17)

As in the proof of Theorem 3.1, the sequence {xmk} has a weak cluster point
in Γ and every weak convergent subsequence of {xmk} converges weakly to an
element in Γ. Therefore, we have

lim sup
k→∞

〈Fz∗, z∗ − xmk+1〉 ≤ 0. (3.18)

Using (3.17) with z replaced by z∗ and (3.18), we get that

lim
k→∞

‖xmk − z∗‖2 = 0. (3.19)

Now, from (3.13) with z replaced by z∗ and conditions (γ) with (τ ), we can
write that

‖xmk+1 − z∗‖2 ≤ (1 − tmk τ )‖xmk − z∗‖2 + 2tmk μ〈Fz∗, z∗ − xmk+1〉,
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which together with (3.19) and tmk → 0 implies that limk→∞ ‖xmk+1 − z∗‖2 =
0. Then, using this fact and the second inequality in (3.16) with z replaced by
z∗, we obtain that limk→∞ ‖xk − z∗‖ = 0.

The other cases of P1 and P2 are considered similarly. This completes the
proof. �

Remarks

It is easily seen that for a given contraction h(x) with coefficient ã ∈ [0, 1),
the mapping F = I − h is (1 − ã)-strongly monotone and (1 + ã)-Lipschitz
continuous.

1. Taking a fixed ã ∈ (0, 1) and h = ãI, replacing F in (1.16) by I−h = (1−ã)I
and setting t′k := tkμ(1 − ã), we obtain a new method,

xk+1 = (1 − t′k)[(1 − γk)I + γkTk]xk, (3.20)

that converges strongly to an element in Γ under conditions (t), (γ), (ρ′) and
(λ). Thus, method (3.20) is an improvement modification of (1.14)-(1.15).

2. Setting F = I −h in (1.16) with h = ãI +(1− ã)u for a fixed point u ∈ H1,
we get a modified Krasnosel’skii-Mann-Halpern method

xk+1 = t′ku + β′
kxk + γ′

kTkxk, (3.21)

that converges strongly under conditions in remark 1, where β′
k = (1−γk)(1−t′k)

and γ′
k = γk(1 − t′k).

4. Numerical Example

Obviously, if u = 0 then (3.20) and (3.21) are coincided and in finite dimensional
Hilbert spaces weak convergence is equivalent to strong one. So, in this section,
we give an example in finite-dimensional Hilbert spaces for illustrating (3.20),
and hence, (3.21) when u = 0.

We consider MSSFP (1.1) with C = ∩i∈J1Ci and Q = ∩j∈J2Qj where

Ci = {x ∈ E
n : ai

1x1 + ai
2x2 + · · ·+ ai

n ≤ bi},

ai
j , bi ∈ (−∞; +∞), for i ∈ J1 and 1 ≤ j ≤ n,

Qj =
{

y ∈ E
m :

m∑
l=1

(yl − aj
l )

2 ≤ r2
j

}
,

aj
l , rj ∈ (−∞; +∞), for 1 ≤ l ≤ m and j ∈ J2, and A is an m × n-matrix.
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For computation, we consider the case: n = 2 and m = 3; J1 = {1, 2, · · · , 100}
and J2 = {1, 2, · · · , 200}; ai

1 = 1/i, ai
2 = −1 and bi = 0 for all i ∈ J1;

A =

⎡
⎣1 0

0 1
1 1

⎤
⎦ ;

aj = (1/(j+1), 1/(j+1), 1/(j+1)) and rj = 1 for all j ∈ J2. Clearly, z∗ = (0; 0)
is the unique minimum norm solution.

We use the following values:

x1 = (−2.0;−2.0); ρk = 0.5 + (1/2k); tk = 0.25/k; γk = 0.2 + 1/(5k);
αi = 1/100; βj = 1/200; λk = 0.01 + 1/k.

The computational results by algorithm (3.20) with τk defined by (1.15) and
different forms of P1 and P2, are presented in 4 following numerical tables.
• P1 = PC100PC99 · · ·PC1 and P2 = PQ200PQ199 · · ·PQ1 .

k xk+1
1 xk+1

2 k xk+1
1 xk+1

2
100 -0.2524291284 0.1836867829 400 -0.1786197651 0.1299774326
200 -0.2123661475 0.1545338872 500 -0.1689360597 0.1229308263
300 -0.1919244414 0.1396589349 600 -0.1614137832 0.1174570413

• P1 = PC100PC99 · · ·PC1 and P2 =
∑200

j=1 βjPQj .

k xk+1
1 xk+1

2 k xk+1
1 xk+1

2
100 -0.4304284513 0.0688768475 400 -0.3044838988 0.0488304993
200 -0.3620512910 0.0579920951 500 -0.2879173003 0.0462031838
300 -0.3271601415 0.0524411032 600 -0.2750761647 0.0441623

• P1 =
∑100

i=1 αiPCi and P2 =
∑200

j=1 βjPQj .

k xk+1
1 xk+1

2 k xk+1
1 xk+1

2
100 -0.1948020988 0.0961874607 400 -0.1378411364 0.0680637848
200 -0.1638832695 0.0809229805 500 -0.1303682066 0.0643737967
300 -0.1481083747 0.0731335246 600 -0.1245632547 0.0615073757

• P1 =
∑100

i=1 PCi and P2 = PQ200PQ199 · · ·PQ1 .

k xk+1
1 xk+1

2 k xk+1
1 xk+1

2
100 -0.4082587527 -0.0045589461 400 -0.2886880085 -0.0028816231
200 -0.3433546286 -0.0035604815 500 -0.2729974061 -0.0026927938

300 -0.3102430999 -0.0031419744 600 -0.2608084207 -0.0025454572

Analyzing the computational results, we see that at the 600th step, |x1| +
|x2| ≈ 0.278; 0.319; 0.185 and 0.262 for the first, second, third and fourth cases,
respectively. So, the first case is the best one, because it is theoretically simpler
than the third one.
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5. Conclusions

We have proposed some new iterative methods with a self-adaptive step size
for solving the multiple-sets split feasibility problem. We have also showed that
some special cases of our methods are modifications of the Krasnoselskii-Mann
and Halpern type ones. Numerical examples have been done for illustration.
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[22] López G Marquez VM Wang F and Xu HK 2012 Solving the split feasibility problem
without prior knowledge of matrix norms Inverse Problems 28 085004
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