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Abstract

For the complete, second order differential equation u′′(t) = Au′(t)+
Bu(t) + f(t) (*), 0 ≤ t ≤ T on a Hilbert space E, we find the necessary
and sufficient conditions so that (*) has a unique T -periodic solution.
Some applications are also given.

1 Introduction

In this paper, of concern is the second order differential equation:

u′′(t) = Au′(t) + Bu(t) + f(t), 0 ≤ t ≤ T, (1.1)

related to the first order equation:

u′(t) = Au(t) + f(t), 0 ≤ t ≤ T, (1.2)

where A and B are linear, closed operators in a Hilbert space E and f is a
function from [0, T ] with values in E. The periodicity of solutions of Equation
(1.2) has been intensively studied, when A generates a strongly continuous
semigroups (see e.g. [2], [5], [8] and [10]), and when A is closed operator (see
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[6], [7], [11]). However, for the complete higher differential equations, we have
little consideration about the regularity of their solutions, mainly because of
the complexity of the structure of the equation.

In this paper, we first investigate the periodicity of the solutions of Equation
(1.2) by using the method of Fourier series. Next, we study the periodicity of
solutions of Equation (1.1) by reducing the second order equation to a first
order one. Namely, if we define new variables u1 and u2 as follows:{

u1(t) := Au(t)
u2(t) := u′(t),

then, from (1.1), we obtain the differential equations:{
u′

1(t) := Au2(t)
u′

2(t) := u′′(t) = Au′(t) + Bu + f = Au2 + BA−1u1 + f(t)

or, equivalently,(
u1(t)
u2(t)

)′
=
(

0 A
BA−1 A

)(
u1(t)
u2(t)

)
+
(

0
f(t)

)
(1.3)

as a single first order differential equation on E × E. In Lemma 3.5 we show
the equivalent relation between solution of (1.1) and that of (1.3). That lemma
allows us to determine the existence and uniqueness, and the periodicity of
solutions to the complete second order differential equation by studying those
to the corresponding first order differential equation. As the main result, we
show the different equivalent conditions so that (1.1) has a unique periodic
solution. The main tool we use here is the Fourier series method. For an
integrable function f(t) from [0, T ] to E, the kth Fourier coefficient of f(t) is
defined as

fk =
1
T

∫ T

0

f(s)e−2kπis/T ds, k ∈ Z.

Then f(t) can be represented by Fourier series

f(t) ≈
∞∑

k=−∞
e2kπit/Tfk.

Let us first fix some notations. From now on E is a Hilbert space. For a closed
operator A in E, the resolvent set and spectrum of A are denoted by �(A) and
σ(A). A continuous function on [0, T ] is said to be T-periodic if u(0) = u(T ).
For the sake of simplicity (and without loss of generality) we assume T = 1
and put J := [0, 1]. L2(J) denotes the space of E-valued functions on J

with
∫ 1

0
‖f(t)‖2dt < ∞ and C(J) the space of continuous functions on J with
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‖f‖ = sup
J

‖f(t)‖ < ∞. Moreover, for m > 0, the function space Wm
2 (J) is

defined by

Wm
2 (J) := {f ∈ Lp(J) : f ′, f ′′, ..., f(m) ∈ L2(J)}.

Recall, L2(J) and Wm
2 (J) are Hilbert spaces with the norms

‖f‖L2(J) := (
∫ 1

0

‖f(t)‖2dt)1/2 and ‖f‖Wm
2

:=
m∑

k=0

‖f(k)‖L2(J).

We will use the following lemma, which can be found in [4].

Lemma 1.1. If F is a continuous function on J such that f = F ′ ∈ L2(J),
then for k �= 0 we have

Fk =
1

2kπi
fk +

F (0) − F (1)
2kπi

,

where fk and Fk are the kth Fourier coefficients of f and F , respectively.

More details about the Fourier series can be found in e.g. [4].

2 Periodic mild solutions of first order differen-

tial equations

In this section, we consider the first order differential equation

u′(t) = Au(t) + f(t), 0 ≤ t ≤ T, (2.1)

where A is a linear, closed operator in a Hilbert space E.

Definition 2.1. (i) A function u is called a classical solution of (2.1) if it
is continuously differentiable and satisfies (2.1) for all t ∈ [0, T ].

(ii) A function u is called a mild solution of (2.1) if
∫ t

0 u(s)ds ∈ D(A) and

u(t) = u(0) + A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds (2.2)

for all t ∈ [0, T ].

It is not hard to see that a mild solution will be a classical one, if it is
continuously differentiable. The following proposition gives the conditions for
the existence of periodic mild solutions of (2.1), when the inhomogeneity f is
given.
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Proposition 2.2. Let E be a Hilbert space and f be a given function in L2(J).
The following are equivalent:

(i) Equation (2.1) has a 1-periodic mild solution contained in W 1
2 (J).

(ii) For each k ∈ Z, fk ∈ Range(2kπi − A) and there exists a sequence
{uk}k∈Z ⊂ E such that

(2kπi − A)uk = fk and
∞∑
−∞

k2‖uk‖2 < ∞. (2.3)

Proof (i) ⇒ (ii): Let u(t) be a 1-periodic solution to (2.1) of the form

u(t) = u(0) + A

∫ t

0

u(s)ds +
∫ t

0

f(s)ds. (2.4)

Take the kth Fourier coefficient of u from (2.4), we obtain

uk =
∫ 1

0

e−2kπitu(0)dt + A

∫ 1

0

e−2kπit

∫ t

0

u(s)dsdt +
∫ 1

0

e−2kπit

∫ t

0

f(s)dsdt

=
Auk − A

∫ 1

0
u(t)dt

2kπi
+

fk − ∫ 1

0
f(t)dt

2kπi
.

Thus,

(2kπi − A)uk = fk − A
∫ 1

0
u(t)dt +

∫ 1

0
f(t)dt

2kπi
= fk. (2.5)

Here we used the fact that A
∫ 1

0
u(t)dt +

∫ 1

0
f(t)dt = 0, which is obtained by

putting t = 1 in formula (2.4). Hence, fk ∈ Range(2kπi − A) for every k ∈ Z.
Moreover, since u ∈ W1,2(J), we have

∞∑
−∞

k2‖uk‖2 =
1

4π2
‖u′‖2

L2(J) < ∞.

(ii) ⇒ (i): Let {uk} be a sequence satisfying (2kπi−A)uk = fk and
∑∞

−∞ k2‖uk‖2 <
∞. Define

fN (t) :=
N∑

k=−N

e2kπitfk and uN(t) :=
N∑

k=−N

e2kπituk.

Then fN and uN are continuous, 1-periodic functions satisfying

uN(t) = uN(0) + A

∫ t

0

uN(s)ds +
∫ t

0

fN (s)ds. (2.6)
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Moreover, fN converges to f , and by assumption (2.3), uN → u and u′
N → v

in L2(J) for some certain function u and v in L2(J) as N → ∞. Since the
differential operator d

dt is closed in L2(J), we have u ∈ W 1
2 (J) and u′ = v. As

a consequence, u is a continuous function and uN
N→∞−→ u in C(J). Hence, u a

1-periodic function.

Put now xN :=
∫ t

0
uN(s)ds, then lim

N→∞
xN =

∫ t

0
u(s)ds. Moreover, from

(2.6) we have

AxN = uN(t) − uN(0) −
∫ t

0

fN (s)ds

N→∞−→ u(t) − u(0) −
∫ t

0

f(s)ds.

Since A is a closed operator, we obtain that
∫ t

0 u(s)ds ∈ D(A) and

A

∫ t

0

u(s)ds = u(t) − u(0) −
∫ t

0

f(s)ds

for 0 ≤ t ≤ T , which means that u is a mild solution of (2.1). �
From the structure of its 1-periodic solution, Equation (2.1) can have more

than one 1-periodic solutions. However, if (2kπi − A) are injective for all
k ∈ Z, then (2.1) has at most one 1-periodic solution. This is contained in the
following main theorem of this section, which has a similar version in [5], when
A generates a C0-semigroup, with a different proof.

Theorem 2.3. Suppose A is a closed operator on a Hilbert space E, then the
following are equivalent

(i) For each function f ∈ W 1
2 (J), equation (2.1) has a unique 1-periodic mild

solution contained in W 1
2 (J).

(ii) For each k ∈ Z, 2kπi ∈ �(A) and

sup
k∈Z

‖(2kπi − A)−1‖ ≤ ∞. (2.7)

Proof (i) ⇒ (ii): By Proposition 2.2, fk ∈ Range(2kπi−A) for each function
f and k ∈ Z, hence (2kπi − A) is surjective. On the other hand, (2kπi − A) is
injective, otherwise, u(t) ≡ 0 and u(t) = e2kπitx, where x is a nonzero vector in
E satisfying (2kπi − A)x = 0, would be two distinct 1-periodic mild solutions
to (2.1) with f(t) ≡ 0. Hence (2kπi − A) is bijective and 2kπi ∈ �(A) for all
k ∈ Z.

We now define the operator L : W 1
2 (J) �→ W 1

2 (J) by follows: L(f) is
the unique 1-periodic mild solution to (2.1) corresponding to f . Then, by
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the assumption, L is everywhere defined. We will prove that L is a bounded
operator by showing that L is closed in W 1

2 (J). Let fn → f and Lfn → u in
W 1

2 (J), where

(Lfn)(t) = (Lfn)(0) + A

∫ t

0

(Lfn)(s)ds +
∫ t

0

fn(s)ds. (2.8)

Since the convergence in W 1
2 (J) is stronger than that in C(J), it is Lfn

n→∞−→ u
in C(J). Hence, u is 1-periodic. Moreover, from (2.8) we obtain

A

∫ t

0

(Lfn)(s)ds = (Lfn)(t)−(Lfn)(0)−
∫ t

0

fn(s)ds
n→∞−→ u(t)−u(0)−

∫ t

0

f(s)ds

for each t ∈ J . Since A is a closed operator,
∫ t

0
u(s)ds ∈ D(A) and

A

∫ t

0

u(s)ds = u(t) − u(0) −
∫ t

0

f(s)ds,

which means f ∈ D(L) and Lf = u and hence, L is closed.

Next, for any x ∈ E, put f(t) = e2kπitx, then u(t) = e2kπit(2kπi − A)−1x
is the unique 1-periodic solution to (2.1), i.e., u = Lf . Using the boundedness
of operator L, we obtain

(2|k|π + 1)‖(2kπi − A)−1x‖ = ‖u‖W1
2 (J) ≤ ‖L‖‖f‖W1

2 (J) = ‖L‖(2|k|π + 1)‖x‖,
which implies

‖(2kπi − A)−1x‖ ≤ ‖L‖ · ‖x‖
for any x ∈ E and any k ∈ Z. Thus, (2.7) holds.

(ii) ⇒ (i): For any function f in W 1
2 (J), put uk := (2kπi − A)−1fk, where

fk is the kth Fourier coefficient of f . Then∑
k∈Z

k2‖uk‖2 ≤ sup
k∈Z

‖(2kπi − A)−1‖2
∑
k∈Z

k2‖fk‖2

= sup
k∈Z

‖(2kπi − A)−1‖2

4π2
‖f ′‖2

L2(J) < ∞.

By Proposition 2.2, Equation (2.1) has an 1-periodic mild solution in W 1
2 (J).

Finally, if (2.1) had another 1-periodic solution f ′, then, from (2.5), its Fourier
coefficients would be determined by u′

k = (2kπi − A)−1fk, i.e. u′
k = uk for all

k ∈ Z, and thus, f ′ = f . �
In particular, if A generates a C0-semigroup (T (t))t≥0, then (see [1, The-

orem 2.5]), mild solutions of the first order differential equation (2.1) can be
explicitly expressed by

u(t) = T (t)u(0) +
∫ t

0

T (t − s)f(s)ds. (2.9)
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In this case, we obtain the following results, in which we show the Gearhart’s
Theorem (the equivalence (iv) ⇔ (v)) with a short proof.

Corollary 2.4. Let A generate a C0-semigroup (T (t)) on a Hilbert E, then
the following are equivalent

(i) For each function f ∈ L2(J), equation (2.1) has a unique 1-periodic mild
solution.

(ii) For each function f ∈ W 1
2 (J), equation (2.1) has a unique 1-periodic

classical solution.

(iii) For each function f ∈ W 1
2 (J), equation (2.1) has a unique 1-periodic

solution contained in W 1
2 (J).

(iv) For each k ∈ Z, 2kπi ∈ �(A) and

sup
k∈Z

‖(2kπi − A)−1‖ ≤ ∞. (2.10)

(v) 1 ∈ �(T (1)).

Proof The equivalence (iii) ⇔ (iv) is shown Theorem 2.3, (i) ⇔ (ii) can be
easily proved by using standard arguments, (i) ⇔ (v) has been shown in [8]
and (ii) ⇒ (iii) is obvious. So, it remains to show the inclusion (iii) ⇒ (ii).

Let f be any function in W 1
2 (J) and u(t) be the unique mild solution of

(2.1), which is 1-periodic and which is in W 1
2 (J). Since for each f ∈ W 1

2 (J)
it is that

∫ t

0 T (t − s)f(s)ds ∈ D(A) and t → ∫ t

0 T (t − s)f(s)ds is continuously
differentiable (see [9]), to show u is a classical solution, it suffices to show
u(0) ∈ D(A).

By formula (2.9), the function t �→ T (t)u(0) = u(t) − ∫ t

0 T (t − s)f(s)ds
belongs to W 1

2 (J). It follows that T (t)u(0) ∈ D(A) for t > 0 (since t �→
T (t)x is differentiable at t0 if and only if T (t0)x ∈ D(A)). Hence, u(1), and
thus, u(0) = u(1) belongs to D(A). The uniqueness of this 1-periodic classical
solution is obvious and the proof is complete. �

3 Periodic mild solutions of complete second

order differential equations

We now turn to the complete differential equation

u′′(t) = Au′(t) + Bu(t) + f(t), 0 ≤ t ≤ T (3.1)
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and the related first order equation{ (
u1(t)
u2(t)

)′
= A

(
u1(t)
u2(t)

)
+
(

0
f(t)

)
, 0 ≤ t ≤ T, (3.2)

where A =
(

0 A
BA−1 A

)
on E × E with D(A) = E × D(A). Recall that

a function u is a classical solution of Equation (3.1) if it is twice continuously
differentiable, Au′(·) and Bu(·) are continuous and (3.1) is satisfied. We first
state the relationship between the classical solutions of (3.1) and those of (3.2).

Lemma 3.1. Let A and B be closed operators on E such that D(B) ⊇ D(A)
and A is invertible. Then the following statements hold:

(1) If u is a classical solution of (3.1) then (Au, u′)T is a classical solution
of (3.2).

(2) If (u1, u2)T is a classical solution of (3.2), then u(t) = A−1u1(t) is a
classical solution of (3.1).

Proof Let u be a classical solution of (3.1), then t �→ u′(t) and t �→ Au′(t) are
continuous and ∫ t

0

Au′(s)ds = A

∫ t

0

u′(s) = Au(t) − Au(0),

which implies Au(t) = Au(0) +
∫ t

0
Au′(s)ds. Hence, t �→ Au(t) is continuously

differentiable and
d

dt
Au(t) = Au′(t). (3.3)

Let now (u1, u2) = (Au, u′), then, by (3.3), we have

u′
1 = Au2

and
u′

2 = u′′ = Au′ + Bu + f = Au2 + BA−1u1 + f.

Thus, (u1, u2)T is a classical solution of (3.2).

Conversely, let (u1, u2)T be a classical solution of (3.2) and let u(t) :=
A−1u1(t), then it is easy to see that

u′(t) = u2(t)

and

u′′(t) = u′
2(t) = BA−1u1(t) + Au2(t) + f(t) = Au(t) + Au′(t) + f(t),

which indicates that u(t) is a classical solution of (3.1). �
From the above lemma, it suggests us to define mild solutions of Equation

(3.1) as follows
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Definition 3.2. A function u : [0, T ] �→ E is a mild solution of the complete
second order differential equation (3.1), if u(t) := A−1u1(t), where u1(t) is the
first component of a mild solution of equation (3.2).

It is also not hard to see that a mild solution is a classical solution if and
only if it is twice continuously differentiable. We now study the periodicity of
the mild solutions of Equation (3.1). First, we define the following sets

�(A, B) := {λ ∈ C : (λ2 − λA − B) is bijective and has bounded inverse},
where (λ2 − λA − B) : D(A) ∩ D(B) �→ E is defined by

(λ2 − λA − B)x = λ2x − λAx − Bx;

σ(A, B) := C/�(A, B);

and
σp(A, B) := {λ ∈ C : ∃x ∈ E : x �= 0 and (λ2 − λA − B)x = 0}.
Moreover, for λ ∈ �(A, B), the bounded inverse of (λ2 −λA−B) is denoted

by R(λ, A, B). We are now in a position to state the main theorem of this
section.

Theorem 3.3. Let A and B be two closed operators on a Hilbert space E,
such that D(A) ⊆ D(B) and A is invertible. Then the following statements are
equivalent.

(i) For each function f ∈ W 1
2 (J), Equation (3.1) admits a unique 1-periodic

mild solution u in W 2
2 (J).

(ii) For every k ∈ Z, 2kπi ∈ �(A, B) and

sup
k∈Z

‖kR(2kπi, A, B)−1‖ < ∞ and sup
k∈Z

‖AR(2kπi, A, B)−1‖ < ∞. (3.4)

We need the following lemma:

Lemma 3.4. The following statements hold:

(i) λ is in the point spectrum of A if and only if λ ∈ σp(A, B);

(ii) (λ −A) is injective if and only if (λ2 − λA − B) is injective.

In particular, λ ∈ �(A, B) if and only if λ ∈ �(A) and in this case,

R(λ,A) =

(
I+AR(λ,A,B)BA−1

λ AR(λ, A, B)
R(λ, A, B)BA−1 λR(λ, A, B)

)
(3.5)

for λ �= 0. For λ = 0, then R(0, A, B) = B−1 and

A−1 =
(

AB−1 −AB−1

−A−1 0

)
. (3.6)
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Proof It is not hard to show (i) and (ii) by using the standard arguments. If
now λ ∈ �(A, B), then λ ∈ �(A) by (3.5) for λ �= 0 and (3.6) for λ = 0.

Conversely, if λ ∈ �(A), then there exist bounded operators X1, X2, X3

and X4 on E such that(
λ −A

−BA−1 (λ − A)

)(
X1 X2

X3 X4

)
=
(

Id 0
0 Id

)
(3.7)

and (
X1 X2

X3 X4

)(
λ −A

−BA−1 (λ − A)

)
=
(

Id 0
0 Id

)
. (3.8)

From identity (3.7) we obtain

λX2 − AX4 = 0

and
−BA−1X2 + (λ − A)X4 = Id,

which imply

(λ2 − λA − B) · (X4/λ) = Id. (3.9)

Similarly, using identity (3.8) we obtain

(X4/λ) · (λ2 − λA − B) = Id. (3.10)

Hence, λ ∈ �(A, B) for λ �= 0. With the same manner of arguing we also obtain
that λ ∈ �(A, B) when λ = 0, and the lemma is proved. �
Proof of Theorem 3.3: Suppose (i) holds, then for each f ∈ W 1

2 (J), Equation

(3.2) has a unique 1-periodic mild solution U(t) :=
(

x(t)
y(t)

)
in W 1

2 (J, E ×E).

Define the operator G : W 1
2 (J) �→ W 1

2 (J, E ×E) by Gf = U . It is obvious that
G is linear and everywhere defined. Using the same arguments as in the proof
of Theorem 2.3, we can show G is a closed and hence, a bounded operator.

Let now f(t) = e2kπitx for any k ∈ Z and x ∈ E. Using the fact that

(2kπi − A)
(

xk

yk

)
=
(

0
x

)
, where

(
xk

yk

)
is the kth Fourier coefficient of

Gf(t), we have
(2kπi − A)xk = 0

and
−BA−1xk + (2kπi − A)yk = x,
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from which it implies ((2kπi)2 − 2kπiA − B)yk = (2kπi)x. Thus (2kπi)2 −
2kπiA − B is surjective. On the other hand, if there is a non-zero vector
y ∈ E satisfying ((2kπi)2 − 2kπiA−B)y = 0, then the functions u1(t) ≡ 0 and
u2(t) = e2kπity are two distinct mild solutions of (3.1) corresponding to f(t) ≡
0. It would be contradicted to the assumption, hence ((2kπi)2 − 2kπiA − B)
is injective. By Lemma 3.4, it implies that 2kπi ∈ �(A, B).

Finally, for f(t) = e2kπitx (k �= 0) we have

U(t) = Gf(t) = e2kπit(2kπi −A)−1

(
0
x

)

= e2kπit

(
I+AR(2kπi,A,B)BA−1

2kπi AR(2kπi, A, B)
R(2kπi, A, B)BA−1 2kπiR(2kπi, A, B)

)(
0
x

)

=
(

AR(2kπi, A, B)e2kπitx
2kπiR(2kπi, A, B)e2kπitx

)
.

Here we used formula (3.5). Hence,

‖Gf‖W1
2 (J,E×E) = (1 + 2|k|π)(‖AR(λ, A, B))x‖+ ‖2kR(λ, A, B))x‖.

Using now the boundedness of G, we obtain

‖AR(λ, A, B)x‖+ ‖2kR(λ, A, B)x‖ ≤ ‖G‖‖x‖
for each x ∈ E, which implies (3.4).

Conversely, suppose (ii) holds, then 2kπi ∈ �(A) for all k ∈ Z and, by
formula (3.5),

sup
k∈Z

‖R(2kπi,A)−1‖ < ∞.

By Theorem 2.3, for each function f ∈ W1,2(J), equation (3.2) has a unique

1-periodic mild solution
(

x(·)
y(·)

)
∈ W 1

2 (J, E × E). It is then easy to see that

u(t) = A−1x(t) = u(0) +
∫ t

0

y(s)ds

is a 1-periodic mild solution to (3.1), which is contained in W 2
2 (J). The unique-

ness of this solution is from its definition, and the proof is complete. �
Remark: We actually have proved a stronger statement: if for each f ∈

W 1
2 (J), Equation (3.2) has a unique 1-periodic mild solution in W 1

2 (J, E ×E),
then equation{ (

u1(t)
u2(t)

)′
=
(

0 A
BA−1 A

)(
u1(t)
u2(t)

)
+ F (t) (3.11)
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has a unique 1-periodic mild solution in W 1
2 (J, E × E) for each function F ∈

W 1
2 (J, E × E).

If operator A generates a C0-semigroup in E, then operator A also generates
a C0-semigroup on E × E, as the lemma below states. Hence, we can make
use of Corollary 2.4 and obtain interesting results about the periodicity of mild
and classical solutions of (3.1).

Lemma 3.5. Operator A generates a C0 semigroup on E × E if and only if
operator A generates a C0 semigroup on E.

To prove Lemma 3.5, we need the following result, which can be found in
[3].

Lemma 3.6. Let H be a closed operator on a Banach space X. The following
hold

(i) (Similar semigroups) If S is an isomorphism on X, then H generates a
C0-semigroup on X if and only if S−1HS generates a C0-semigroup on
X.

(ii) (Bounded perturbation) If C is a bounded operator on X, then H gener-
ates a C0-semigroup on X if and only if H +C generates a C0-semigroup
on X.

Proof of Lemma 3.5. We have

A =
(

0 0
BA−1 0

)
+
(

0 A
0 A

)

=
(

0 0
BA−1 0

)
+
(

Id Id
0 Id

)(
0 0
0 A

)(
Id −Id
0 Id

)

= C + S−1

(
0 0
0 A

)
S

where C and S are bounded operators on E × E. By Lemma 3.6, A generates

a C0-semigroup on E × E if and only if operator
(

0 0
0 A

)
generates a C0-

semigroup on E × E, which in turn does if and only if A generates a C0-
semigroup on E, and the lemma is proved. �

Corollary 3.7. If A generates a C0 semigroup, then the following statements
are equivalent.

(i) For each function f ∈ L2(J), Equation (3.1) admits a unique 1-periodic
mild solution which is one-time continuously differentiable;

(ii) For each periodic function f ∈ W 1
2 (J), Equation (3.1) admits a unique

1-periodic classical solution.
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(iii) For each periodic function f ∈ W 1
2 (J), Equation (3.1) admits a unique

1-periodic mild solution in W 2
2 (J).

(iv) For every k ∈ Z, 2kπi ∈ �(A, B) and

sup
k∈Z

‖kR(2kπi, A, B)‖ < ∞ and sup
k∈Z

‖AR(2kπi, A, B)‖ < ∞.

Proof. The equivalence (i) ⇔ (ii) can be shown by standard arguments,
the equivalence (iii) ⇔ (iv) holds by Theorem 3.3 and the implication (ii) ⇒
(iii) is obvious. So, it remains to show that (iii) implies (ii). But this fol-
lows from that the fact that A generates a C0-semigroup on E × E and the
equivalence (i) ⇔ (ii) in Corollary 2.4. �
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