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Abstract

In metric spaces of curvature bounded above in the sense of Alexan-
drov, the notions of (pointwise) curvature and total curvature can be
defined. Certain properties of them were verified true, whereas many
are still left unchecked. These include the lower semi-continuity of total
curvature. In other words, it has not been known whether the relation
κ(γ) ≤ lim inf

m→∞
κ(γm), where γm is a sequence of curves that converges

to a curve γ, holds in a more general setting than that of the Euclidean
space. We present here the validity of this statement in spaces of curva-
ture bounded above.

1 Introduction

The notion of curvature for a curve is one of the central concepts of geometry.
A curvature, intuitively, measures the amount that a curve deviates away from
being straight. These amounts are determined by the change of the direction of
a curve at its points. Pointwise curvature tells how fast the direction changes
at a point and total curvature measures the accumulative change as the entire
curve is passed through. In a smooth case in Euclidean space, the total cur-
vature is the integral of its (unsigned) pointwise scalar curvature with respect
to arclength. For a more general case, the total curvature was introduced,
among others, by A. D. Alexandrov in 1946 [3]. An extensive development of
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the theory on this subject can be found in [5]. There, the total curvature was
defined by considering a total turn (rotation) of a sequence of polysegments
inscribed in and arbitrary close to it. Recently, this idea has been extended to
CAT(0) spaces by S. B. Alexander and R. L. Bishop [2] and then to CAT(K)
spaces by C. Maneesawarng and Y. Lenbury [11, 12]. Certain properties of
total curvature in CAT(K) spaces which are analogue to those in Euclidean
space were verified true and the estimate of the length of a curve through its
total curvature was also studied there. A variation of total curvature for closed
curves was studied by A.A. Sama-Ae [14]. The main purpose of this paper is to
prove the following theorem, which is an extension of the lower semi-continuity
of total curvature for curves in Euclidean space [5] to those in spaces of curva-
ture bounded above in the sense of Alexandrov.

Theorem If a sequence of curves γm converges to a curve γ in a metric space
of curvature bounded above, then

κ(γ) ≤ lim inf
m→∞ κ(γm).

2 Definitions and Preliminaries

A metric space X is called a CAT(K) space if any two points are joined by a
minimizing geodesic (a curve realizing distance in X) and for any minimizing
triangle with perimeter less than 2π/

√
K(= ∞ if K ≤ 0), the distance be-

tween any two points on the triangle is no greater than the distance between
corresponding points on its comparison triangle in the model space SK (the
2-dimensional spherical, Euclidean or hyperbolic space of constant curvature
K accordingly as K > 0, K = 0 or K < 0). A metric space has curvature
bounded above by K if every of its points is contained in an open neighborhood
which is a CAT(K) space itself.

In a CAT(K) space, the notion of angles between two geodesics having
a common endpoint can be defined. Actually, an angle between two general
curves with a common endpoint has carefully been studied by Alexandrov in
[4]. In the following proposition, the symbol ∠pqr, where p, q and r are points
in a metric space, denotes the angle between geodesics joining q to p and r.

Proposition 1. [5, p.18] Let xn, yn and zn be sequences of points in a CAT(K)
space X. If xn → x, yn → y and zn → z with y ∈ X and x, z �= y , then for
sufficiently large n the angles ∠xnynzn and ∠xnyzn are defined and

lim sup
n→∞

∠xnynzn ≤ lim
n→∞∠xnyzn = ∠xyz.
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The following concept of total curvature for curves in metric spaces of cur-
vature bounded above was generalized for all real values K by Maneesawarng
and Lenbury in [11, 12]. Consider first a CAT(K) space X. A polysegment
is a curve σ : [a, b] → X for which a partition a = t0 < t1 < · · · < tk = b
of [a, b] exists in such a way that for each i ∈ {1, 2, . . . , k}, the arc σ|[ti−1,ti]

is a minimizing geodesic, called a geodesic segment or simply a geodesic. A
polysegment σ is inscribed in a curve γ : [a, b] → X if there are a partition
a = t0 < t1 < · · · < tk = b of [a, b] and a parametrization of σ such that
σ(ti) = γ(ti), and σ|[ti−1,ti] is a geodesic for all i ∈ {1, 2, . . . , k}.

If σ is a polysegment with ordered vertices p0, p1, . . . , pk, i.e., the pi’s cor-
respond to ascending values of the parameter of σ, then the angle p̂i of σ at an
interior vertex pi is the angle subtended by the two geodesic segments [pi−1, pi]
and [pi, pi+1]. The total rotation κ∗(σ) of σ is then defined by the sum of
rotations of σ,

κ∗(σ) =
k−1∑
i=1

(π − p̂i).

Following terminology used in [5, 12] for each polysegment σ inscribed in a
curve γ, the modulus of σ associated with γ is defined as

μγ(σ) = max
1≤i≤k

diam(γ|[ti−1 ,ti]),

and the mesh of σ associated with γ as

μ̃γ(σ) = max
1≤i≤k

�(γ|[ti−1,ti]),

where a = t0 < t1 < · · · < tk = b is a partition of [a, b] associated with σ as
above and �(γ|[ti−1,ti]) is the length of γ|[ti−1,ti] for all i ∈ {1, 2, . . . , k}. The
total curvature κ(γ) of γ is defined by the limit supremum

κ(γ) = lim sup
μγ(σ)→0

κ∗(σ) = lim
ε→0+

sup
σ∈Σε(γ)

κ∗(σ),

where for each ε > 0, Σε(γ) is the set of polysegments σ inscribed in γ such that
μγ(σ) < ε. If γ is itself a polysegment in a CAT(K) space, it was shown in [12]
that its total curvature and its total rotation coincide. That total curvature is
additive, i.e., the total curvature of a curve γ is the sum of the total curvatures
of its subarcs (whose concatenation is γ) and the supplementary angles of
the angles between consecutive subarcs at their common endpoints, allows the
total curvature of a curve in a space of curvature bounded above to be defined.
Again, we refer to [12] for details.

Recall that in a metric space, a sequence of curves γm converges to the
curve γ if and only if the curves γ and each γm admit the parametrizations
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γ(t) and γm(t), a≤ t ≤ b, such that the sequence of functions γm converges
uniformly to γ in [a, b] (see [5, p.20]).

Finally, we state some important results that will be used later. One of
these is the famous Reshetnyak’s majorization theorem (Proposition 3) which
is a very useful tool in studying problems in CAT(K) spaces. We will definitely
need it in the proof of our main result. For a proper restatement, we first
note that a nonexpanding map is a map between metric spaces that does not
increase the distance between any pair of points. A convex domain D in SK

is said to majorize a rectifiable closed curve γ in a metric space if there exists
a nonexpanding map from D to that space that maps the boundary of D onto
the image of γ in an arclength-preserving way. We also note that the statement
of Dekster’s estimate (Proposition 4) is a short and simplify version, described
in [12], of the results in [10].

Proposition 2. [5, p.30] Let γ be a rectifiable curve in a metric space. Then
for given ε > 0 there exists a δ > 0 such that any subarc of γ of diameter less
than δ has length less than ε.

Proposition 3. [13] Any closed rectifiable curve of length less than 2π/
√

K in
a CAT(K) space admits a convex domain in SK that majorizes it.

Proposition 4. [10] For each real number K, there exists a positive number
θK < π/2 such that if 0 ≤ θ ≤ θK then the maximum length among piece-
wise C2 curves in a closed disk of radius less than π/(2

√
K) in SK with total

curvature at most θ is finite and attained by a curve with total curvature θ.

Proposition 5. [5, p.30] (Lower semi-continuity of length.) If a sequence of
curves γm converges to a curve γ in a metric space, then �(γ) ≤ lim

m→∞ �(γm).

Proposition 6. [11, 12] Suppose σn is a sequence of polysegments inscribed
in γ such that μγ(σn) → 0. Then �(σn) → �(γ), σn → γ pointwise and
κ(σn) → κ(γ). Furthermore, if κ(γ) is finite, then γ is rectifiable.

Notice that by Proposition 2 we obtain immediately that μ̃γ(σn) → 0 if
μγ(σn) → 0.

3 Main Results

In this section, we prove a generalization of the lower semi-continuity of total
curvature for curves in Euclidean space to curves in spaces of curvature bounded
above. Firstly, we need some lemmas. A proof of the first lemma is a direct
generalization of the proof given in [2].

Lemma 1. In a CAT(0) space, if a polysegment σ is inscribed in a polysegment
γ, then κ(σ) ≤ κ(γ).
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Proof It suffices to show that adjoining one vertex to a polysegment does not
decrease its total curvature. Suppose p0, p1, . . . , pk−1, pk+1, . . . , pn are vertices
of σ and adjoin pk to obtain ordered vertices p0, p1, . . . , pk−1, pk, pk+1, . . . , pn

of γ. Denote by αi and α̃i the angles at pi of γ and σ, respectively. Let
βk−1 be the angle at pk−1 between the outgoing edges of σ and γ and βk+1

be the angle at pk+1 between the coming edges. If 1 < k < n − 1,then by the
triangle inequality for angles and the excess of a triangle �(pk−1, pk, pk+1),
κ(γ) − κ(σ) = (α̃k−1 − αk−1) + (π − αk) + (α̃k+1 − αk+1)

≥ −βk−1 + (π − αk) − βk+1 ≥ 0.
If k = 1, similarly, we obtain

κ(γ) − κ(σ) = (π − α1) + (α̃2 − α2)
≥ (π − α1) − β2 ≥ 0.

If k = n − 1, then
κ(γ) − κ(σ) = (α̃n−2 − αn−2) + (π − αn−1)

≥ −βn−2 + (π − αn−1) ≥ 0.
In each case, we conclude that κ(σ) ≤ κ(γ) as required. �

Remark 1. It follows from the previous lemma that for a curve γ in a CAT(K)
space with K ≤ 0, its total curvature is equal to the supremun of κ(σ) over all
polysegments σ inscribed in γ, that is;

κ(γ) = lim
ε→0+

sup
σ∈Σε(γ)

κ∗(σ) = sup
σ∈Σ(γ)

κ(σ).

Lemma 2. Let σ be a polysegment in a CAT(K) space with order vertices
σ(a) = p0, p1, . . . , pk = σ(b). Suppose σm is a sequence of polysegments in a
CAT(K) space with ordered vertices σm(a) = p

(m)
0 , p

(m)
1 , . . . , p

(m)
k = σm(b) such

that p
(m)
i → pi for 0 ≤ i ≤ k. Then κ(σ) ≤ lim inf

m→∞ κ(σm).

Proof For 1 ≤ i ≤ k−1, write αi = ∠pi−1pipi+1 and α
(m)
i = ∠p

(m)
i−1p

(m)
i p

(m)
i+1 .

It follows that, κ(σ) =
k−1∑
i=1

(π−αi) and κ(σm) =
k−1∑
i=1

(π−α
(m)
i ). Since p

(m)
i → pi

for 0 ≤ i ≤ k, we have by Proposition 1 that lim sup
m→∞

α
(m)
i ≤ αi. Thus,

κ(σ) =
k−1∑
i=1

(π − αi) ≤
k−1∑
i=1

(π − lim sup
m→∞

α
(m)
i )

≤
k−1∑
i=1

π − lim sup
m→∞

(
k−1∑
i=1

α
(m)
i ) = lim inf

m→∞

k−1∑
i=1

(π − α
(m)
i )

= lim inf
m→∞ κ(σm).

�
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To prove our theorem, we follow [11, 12] with modifications by using the
chord-curvature length estimate for a nonrectifiable case and using the tech-
nique of inscribing a sequence of polysegments in and arbitrary close to the
sequence of curves being considered for a rectifiable case.

Theorem 1. If a sequence of curves γm converges to a curve γ in a CAT(K)
space, then

κ(γ) ≤ lim inf
m→∞ κ(γm).

Proof Let γ, γm : [a, b] → X be curves in a CAT(K) space such that γm

converges uniformly to γ in [a,b]. There are two cases to be considered.
case 1. γ is nonrectifiable. Suppose first that γ is contained in a small closed

ball of radius R < π/2
√

K. Now, κ(γ) = ∞ by Proposition 6. Because γm →
γ, the property of lower semi-continuity of length yields �(γ) ≤ lim

m→∞ �(γm)

and hence �(γm) → ∞. We shall show that κ(γm) → ∞. Suppose on the
contrary that there are k > 0 and a subsequence (γmi ) of (γm) such that
κ(γmi ) is uniformly bounded above by k for all i. Nevertheless, �(γmi ) → ∞.
Since γm → γ, there is R′, R < R′ < π/2

√
K, such that for sufficiently large

m, γm is contained in the closed ball of radius R′. For each m, choose a
sequence τmj of polysegments in this closed ball such that μγm(τmj) → 0, so
that τmj → γm, κ(τmj) → κ(γm) and �(τmj ) → �(γm). But then for each m
we have that κ(τmj ) < κ(γm) + 1 for sufficiently large j. This means that
for sufficiently large i, γmi is contained in the closed ball of radius R′ and
κ(τmij) < κ(γmi ) + 1 ≤ k + 1 for sufficiently large j. Letting ji be such a large
integer j for each i, it is possible to construct a sequence σi = τmiji such that
�(σi) → �(γ) = ∞ and κ(σi) ≤ k + 1 for all i. By a line of arguments similar
to that used in case I of the proof of Proposition 2.4 in [12], this leads to a
contradiction. Note that this is where we make use of Proposition 4. Therefore,
κ(γm) → ∞ and hence κ(γ) ≤ lim inf

m→∞ κ(γm).
Now suppose γ is not contained in a small circumball as above. Then we take

any R satisfying such a radius condition. The open balls of radii R centered at
points on γ form an open cover of the image of γ. By compactness of the image
of γ, we can subdivide γ into finitely many subarcs each of which is contained
in a circumball satisfying the radius condition. Each γm is also subdivided
accordingly so that each sequence of subarcs converges to the corresponding
subarc of γ. Applying the arguments as above to a nonrectifiable subarc of γ,
we obtain a similar contradiction.

case 2. γ is rectifiable. Let σ be a polysegment inscribed in γ and σ(a) =
p0, p1, . . . , pk = σ(b) be its ordered vertices on γ. Because γm → γ, it is possible
to find, for each m, a finite sequence of points γm(a) = p

(m)
0 , p

(m)
1 , . . . , p

(m)
k =

γm(b) on γm such that p
(m)
i → pi as m → ∞ for 0 ≤ i ≤ k. For each

m, let σ′
m be a polysegment inscribed in γm with the ordered vertices of the
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foregoing points p
(m)
0 , p

(m)
1 , . . . , p

(m)
k . Then σ′

m → σ and κ(σ) ≤ lim inf
m→∞ κ(σ′

m)
by lemma 2.

Suppose K ≤ 0, then by Remark 1, κ(γm) = sup
η∈Σ(γm)

κ(η) and hence

κ(σ′
m) ≤ κ(γm). According to κ(σ) ≤ lim inf

m→∞ κ(σ′
m), we get that κ(σ) ≤

lim inf
m→∞ κ(γm). Because σ is an arbitrary polysegment inscribed in γ we have,

κ(γ) = sup
σ∈Σ(γ)

κ(σ) ≤ lim inf
m→∞ κ(γm)

as desired.
Now suppose K > 0. Let σn be a sequence of polysegments inscribed in γ

such that μγ(σn) → 0 and τ
(m)
� a sequence of polysegments inscribed in γm

such that μγm(τ (m)
� ) → 0. Then, by Proposition 6 we get σn → γ, τ

(m)
� → γm,

κ(σn) → κ(γ), and κ(τ (m)
� ) → κ(γm). We also obtain that μ̃γ(σn) → 0,

μ̃γm(τ (m)
� ) → 0.

Fix n, put σn = σ and σ′
m(n) = σ′

m as above. Then for each m, a poly-
segment σ′

m with ordered vertices γm(a) = p
(m)
0 , p

(m)
1 , . . . , p

(m)
k = γm(b) is in-

scribed in γm, σ′
m → σ and κ(σ) ≤ lim inf

m→∞ κ(σ′
m). Because τ

(m)
� → γm, for each

� there is a finite sequence of points τ
(m)
� (a) = p

(m)
0 = p

(m)
0� , p

(m)
1� , . . . , p

(m)
k� =

p
(m)
k = τ

(m)
� (b) on τ

(m)
� such that p

(m)
i� → p

(m)
i for 1 ≤ i ≤ k − 1.

For each �, let τ
′(m)
� = τ

′(m)
� (n) be a polysegment inscribed in τ

(m)
� with

ordered vertices p
(m)
0 = p

(m)
0� , p

(m)
1� , . . . , p

(m)
k� = p

(m)
k . Then, since the vertices

of τ
′(m)
� converges to the vertices of σ′

m, we have τ
′(m)
� → σ′

m and κ(σ′
m) ≤

lim inf
�→∞

κ(τ ′(m)
� ) by lemma 2.

Fix m and �. Notice that τ
′(m)
� cuts τ

(m)
� into k polysegments τ

′′(m)
i =

τ
′′(m)
i (�), 1 ≤ i ≤ k, where endpoints are p

(m)
i−1 � and p

(m)
i� . Following the same

arguments as in [12] we have that

κ(τ ′(m)
� ) ≤ KA(m, n, �) + κ(τ (m)

� ),

where A(m, n, �) =
k∑

i=1

ai(m, n, �) and each ai(m, n, �) is the area of the convex

region in SK bounded by the convex polygon Pi(m, n, �) in SK that majorizes
the closed curve formed by τ

′′(m)
i� and its chord. Since lim

m,n→∞ μ̃γm(σ′
m(n)) = 0

and lim
�→∞

τ
′(m)
� (n)= σ′

m(n) such a polysegment exists by Reshetnyak’s majoriza-

tion theorem if m, n and � are sufficiently large. Notice that, for any partition
a = t0 < t1 < · · · < tk = b of [a, b] and s, t ∈ [ti−1, ti], 1 ≤ i ≤ k,

d(γm(s), γm(t)) ≤ d(γm(s), γ(s)) + d(γ(s), γ(t)) + d(γ(t), γm(t)).
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Because γm → γ and μγ(σn) → 0 we have lim
m,n→∞ μγm(σ′

m(n)) = 0, and

hence lim
m,n→∞ μ̃γm(σ′

m(n))=0.

Write A(m, n) = lim sup
�→∞

A(m, n, �). With the same reason as in [12] and

the fact that lim
m,n→∞ μ̃γm(σ′

m(n)) = 0, we have that lim
m,n→∞A(m, n) = 0. Con-

sequently,

κ(σn) ≤ lim inf
m→∞ κ(σ′

m(n))

≤ lim inf
m→∞ lim inf

�→∞
κ(τ ′(m)

� )

≤ lim inf
m→∞ lim sup

�→∞
KA(m, n, �) + lim inf

m→∞ lim inf
�→∞

κ(τ (m)
� )

= lim inf
m→∞ KA(m, n) + lim inf

m→∞ κ(γm).

Because lim
m,n→∞A(m, n) = 0, it follows that lim

n→∞ lim inf
m→∞ A(m, n) = 0. By

letting n → ∞,
κ(γ) = lim

n→∞κ(σn) ≤ lim inf
m→∞ κ(γm),

as required. �

Corollary 1. If a sequence of curves γm converges to a curve γ in a space of
curvature bounded above, then

κ(γ) ≤ lim inf
m→∞ κ(γm).

Proof Take a finite subcover of the open cover of (the image of) γ consisting
of CAT(K) neighborhoods of its points, and apply the theorem. �

Corollary 2. If a curve γ in a space of curvature bounded above has finite
total curvature, then for any point p on γ the total curvature of subarc of γ
starting at p converges to 0 as the other endpoint tends to p along γ.

Proof We only need to consider subarcs of γ in a CAT(K) neighborhood
of p. See a proof in Euclidean case in [5, p.121]. The arguments for arbitrary
curves described there apply to our case as well. �
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