A REMARK ON SOME SEMIGROUPS OF HYPERGROUP HOMOMORPHISMS

W. Mora^{*}, K. Kwakpatoon[†] and P. Youngkhong[‡]

Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand e-mail: * winita.m@student.chula.ac.th, † kannika.k@chula.ac.th and † pyoungkhong@yahoo.com

Abstract

Let \mathbb{Z} be the set of integers, n a positive integer and (\mathbb{Z}, \circ_n) the hypergroup where $x \circ_n y = x + y + n\mathbb{Z}$ for all $x, y \in \mathbb{Z}$. Denote by $\operatorname{Hom}(\mathbb{Z}, \circ_n)$ the semigroup, under composition, of all homomorphisms of (\mathbb{Z}, \circ_n) . It has been shown that for $f : \mathbb{Z} \to \mathbb{Z}, f \in \operatorname{Hom}(\mathbb{Z}, \circ_n)$ if and only if $f(x + n\mathbb{Z}) = xf(1) + n\mathbb{Z}$ for all $x \in \mathbb{Z}$ and $|\operatorname{Hom}(\mathbb{Z}, \circ_n)| = 2^{\aleph_0}$. Using this characterization, we show in this paper that the relation δ on $\operatorname{Hom}(\mathbb{Z}, \circ_n)$ defined by $f\delta g \Leftrightarrow f(1) \equiv g(1) \mod n$ is a congruence on $\operatorname{Hom}(\mathbb{Z}, \circ_n)$ and $\operatorname{Hom}(\mathbb{Z}, \circ_n)/\delta \cong (\mathbb{Z}_n, \cdot)$.

1 Introduction

A hyperoperation on a nonempty set H is a function $\circ : H \times H \to \mathcal{P}^*(H)$ where $\mathcal{P}(H)$ is the power set of H and $\mathcal{P}^*(H) = \mathcal{P}(H) \setminus \{\emptyset\}$. For $x, y \in H, x \circ y$ denotes the value of (x, y). For $A, B \subseteq H$, let

$$A \circ B = \bigcup_{\substack{a \in A \\ b \in B}} a \circ b.$$

If $x \in H$ and $A \subseteq H$, let $x \circ A$ and $A \circ x$ stand for $\{x\} \circ A$ and $A \circ \{x\}$, respectively. The system (H, \circ) is called a *hypergroup* if

$$x \circ (y \circ z) = (x \circ y) \circ z$$
 and $H \circ x = x \circ H = H$ for all $x, y, z \in H$.

Key words: Hypergroup, homomorphism, congruence 2000 AMS Mathematics Subject Classification: 20N20

Then every group is a hypergroup. By a homomorphism of the hypergroup (H, \circ) we mean a function $f : H \to H$ such that

$$f(x \circ y) = f(x) \circ f(y)$$
 for all $x, y \in H$.

We note here that our homomorphisms are good homomorphisms in [1]. Denote by $\text{Hom}(H, \circ)$ the set of all homomorphisms of (H, \circ) . Then $\text{Hom}(H, \circ)$ is closed under composition. To show this, let $f, g \in \text{Hom}(H, \circ)$ and $x, y \in H$. Then

$$\begin{aligned} (gf)(x\circ y) &= g(f(x\circ y)) = g(f(x)\circ f(y)) \\ &= g(f(x))\circ g(f(y)) = (gf)(x)\circ (gf)(y). \end{aligned}$$

It follows that $\text{Hom}(H, \circ)$ is a semigroup under composition. Notice that the identity mapping on $H, 1_H$, is the identity of the semigroup $\text{Hom}(H, \circ)$.

If G is a group, N is a normal subgroup of G and \circ_N is the hyperoperation on G defined by

$$x \circ_N y = xyN$$
 for all $x, y \in G$,

then (G, \circ) is a hypergroup ([1], page 11). Observe that if $N = \{e\}$ where e is the identity of G, then $(G, \circ_N) = G$. If \mathbb{Z} is the set of integers and n is a positive integer, let $(\mathbb{Z}, \circ_n) = (\mathbb{Z}, \circ_n \mathbb{Z})$ under usual addition, that is,

$$x \circ_n y = x + y + n\mathbb{Z}$$
 for all $x, y \in \mathbb{Z}$.

In [3], the authors characterized the elements of Hom(\mathbb{Z}, \circ_n) as follows:

Theorem 1.1. ([3]) If $f : \mathbb{Z} \to \mathbb{Z}$, then the following statements are equivalent.

- (i) $f \in \operatorname{Hom}(\mathbb{Z}, \circ_n)$.
- (ii) $f(x+n\mathbb{Z}) = xf(1) + n\mathbb{Z}$ for all $x \in \mathbb{Z}$.
- (iii) There exists an integer a such that

$$f(x+n\mathbb{Z}) = xa+n\mathbb{Z}$$
 for all $x \in \mathbb{Z}$.

The cardinality of a set X is denoted by |X|.

The following fact was also provided in [3].

Theorem 1.2. ([3]) The following statements hold.

- (i) For each $a \in \mathbb{Z}$, $|\{f \in \operatorname{Hom}(\mathbb{Z}, \circ_n) \mid f(1) = a\}| = 2^{\aleph_0}$.
- (ii) $|\operatorname{Hom}(\mathbb{Z}, \circ_n)| = 2^{\aleph_0}.$

We note here that multi-valued homomorphisms between groups were defined naturally in [6]. Some studies of this notation can be found in [6], [4], [5] and [7].

Let \mathbb{Z}_n be the set of integers modulo n. For $x \in \mathbb{Z}$, let \overline{x} be the congruence class of x modulo n. Recall that $\mathbb{Z}_n = \{\overline{x} \mid x \in \mathbb{Z}\} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$. If $\overline{x} \cdot \overline{y} = \overline{xy}$ for all $x, y \in \mathbb{Z}$, then (\mathbb{Z}_n, \cdot) is a semigroup of order n having $\overline{0}$ and $\overline{1}$ as its zero and identity, respectively.

Recall that an equivalence relation ρ on a semigroup S is called a congruence on S if

for all
$$x, y, z \in S$$
, $x \rho y \Rightarrow zx \rho zy$ and $xz \rho yz$.

If ρ is a congruence on a semigroup S, then S/ρ under the operation

$$(x\rho)(y\rho) = (xy)\rho$$
 for all $x, y \in S$

is a semigroup where $x\rho$ is the ρ -class of S containing x. Moreover, $x \mapsto x\rho$ is an epimorphism from S onto S/ρ .

Let δ be the relation defined on the semigroup Hom (\mathbb{Z}, \circ_n) as follows:

for $f, g \in \operatorname{Hom}(\mathbb{Z}, \circ_n), \ (f, g) \in \delta \iff f(1) \equiv g(1) \mod n.$

The purpose of this paper is to show that δ is a congruence on $\operatorname{Hom}(\mathbb{Z}, \circ_n)$ and $\operatorname{Hom}(\mathbb{Z}, \circ_n)/\delta \cong (\mathbb{Z}_n, \cdot).$

2 Main Result

First, we give as a lemma how gf and fg map on each coset $x + n\mathbb{Z}$ where $f, g \in \text{Hom}(\mathbb{Z}, \circ_n)$.

Lemma 2.1. If $f, g \in \text{Hom}(\mathbb{Z}, \circ_n)$, then

$$(gf)(x+n\mathbb{Z}) = (fg)(x+n\mathbb{Z}) = xf(1)g(1) + n\mathbb{Z}$$
 for all $x \in \mathbb{Z}$.

Proof. By Theorem 1.1, we have that for $x \in \mathbb{Z}$,

$$(gf)(x + n\mathbb{Z}) = g(f(x + n\mathbb{Z})) = g(xf(1) + n\mathbb{Z})$$
$$= xf(1)g(1) + n\mathbb{Z}$$
$$= xg(1)f(1) + n\mathbb{Z}$$
$$= f(xg(1) + n\mathbb{Z})$$
$$= f(g(x + n\mathbb{Z}))$$
$$= (fg)(x + n\mathbb{Z}).$$

Corollary 2.2. If $f, g \in \text{Hom}(\mathbb{Z}, \circ_n)$, then

$$(gf)(1) \equiv f(1)g(1) \equiv (fg)(1) \mod n.$$

Proof. By Lemma 2.1,

$$(gf)(1+n\mathbb{Z}) = (fg)(1+n\mathbb{Z}) = f(1)g(1) + n\mathbb{Z}.$$

Then $(gf)(1) \in (gf)(1+n\mathbb{Z}) = f(1)g(1) + n\mathbb{Z}$ and $(fg)(1) \in (fg)(1+n\mathbb{Z}) = f(1)g(1) + n\mathbb{Z}$, so

$$(gf)(1) \equiv f(1)g(1) \mod n \text{ and } (fg)(1) \equiv f(1)g(1) \mod n.$$

Since f(1)g(1) = g(1)f(1), the desired result follows.

Proposition 2.3. The relation δ is a congruence on the semigroup $\operatorname{Hom}(\mathbb{Z}, \circ_n)$.

Proof. The relation δ is clearly an equivalence relation on $\operatorname{Hom}(\mathbb{Z}, \circ_n)$. If $f, g, h \in \operatorname{Hom}(\mathbb{Z}, \circ_n)$ are such that $f \delta g$, then $f(1) \equiv g(1) \mod n$. Thus

$$h(1)f(1) \equiv h(1)g(1) \mod n. \tag{1}$$

By Corollary 2.2,

$$(hf)(1) \equiv h(1)f(1) \equiv (fh)(1) \mod n,$$

 $(hg)(1) \equiv h(1)g(1) \equiv (gh)(1) \mod n.$
(2)

From (1) and (2), we have

$$(hf)(1) \equiv (fh)(1) \equiv (hg)(1) \equiv (gh)(1) \mod n.$$

Hence $hf \,\delta \,hg$ and $fh \,\delta \,gh$. This shows that δ is a congruence on $\text{Hom}(\mathbb{Z}, \circ_n)$.

Theorem 2.4. If $\varphi : \operatorname{Hom}(\mathbb{Z}, \circ_n) / \delta \to \mathbb{Z}_n$ is defined by

$$\varphi(f\delta) = \overline{f(1)} \text{ for all } f \in \operatorname{Hom}(\mathbb{Z}, \circ_n),$$

then φ is an isomorphism from $\operatorname{Hom}(\mathbb{Z}, \circ_n)/\delta$ onto (\mathbb{Z}_n, \cdot) .

Proof. To show that φ is well-defined, let $f, g \in \operatorname{Hom}(\underline{\mathbb{Z}}, \circ_n)$ be such that $f\delta = g\delta$, that is, $f\delta g$. Then $f(1) \equiv g(1) \mod n$. Hence f(1) = g(1). If $f, g \in \operatorname{Hom}(\mathbb{Z}, \circ_n)$ are such that f(1) = g(1), then $f(1) \equiv g(1) \mod n$.

Thus $f \,\delta g$, so $f \delta = g \delta$. Hence φ is 1-1. For $f, g \in \text{Hom}(\mathbb{Z}, \circ_n)$,

$$\varphi((f\delta)(g\delta)) = \varphi((fg)\delta)$$

= $\overline{(fg)(1)}$
= $\overline{f(1)g(1)}$ from Corollary 2.2
= $\overline{f(1)} \overline{g(1)}$
= $\varphi(f\delta)\varphi(g\delta).$

210

Therefore φ is a semigroup homomorphism. If $k \in \mathbb{Z}$, by Theorem 1.2(i), there is $f \in \text{Hom}(\mathbb{Z}, \circ_n)$ such that f(1) = k. Thus $\varphi(f\delta) = \overline{f(1)} = \overline{k}$. This shows that φ is onto.

This shows that φ is an isomorphism from $\operatorname{Hom}(\mathbb{Z}, \circ_n)/\delta$ onto (\mathbb{Z}_n, \cdot) , as desired.

Remark 2.5. For $f \in \text{Hom}(\mathbb{Z}, \circ_n)$, by the definition of δ ,

$$f\delta = \{g \in \operatorname{Hom}(\mathbb{Z}, \circ_n) \mid g(1) \equiv f(1) \mod n\}.$$

Thus

$$f\delta = \{g \in \operatorname{Hom}(\mathbb{Z}, \circ_n) \mid g(1) \in f(1) + n\mathbb{Z}\}.$$

From this fact and Theorem 1.2, the following results are clearly seen.

- (1) The cardinality of each δ -class is 2^{\aleph_0} , that is, for each $f \in \operatorname{Hom}(\mathbb{Z}, \circ_n)$, $|\{g \in \operatorname{Hom}(\mathbb{Z}, \circ_n) \mid g \in f\delta\}| = 2^{\aleph_0}.$
- (2) For each $f \in \text{Hom}(\mathbb{Z}, \circ_n), \{g(1) \mid g \in f\delta\} = f(1) + n\mathbb{Z}.$

Remark 2.6. A semigroup S is called *regular* if for every $x \in S, x = xyx$ for some $y \in S$. Ehrlich [2] has shown that (\mathbb{Z}_n, \cdot) is a regular semigroup if and only if n is square-free. From this fact, Theorem 2.4 and Remark 2.5, we deduce that the following statements are equivalent.

- (i) For every $f \in \text{Hom}(\mathbb{Z}, \circ_n)$, there is an element $g \in \text{Hom}(\mathbb{Z}, \circ_n)$ such that $f\delta = (fgf)\delta$.
- (ii) For every $f \in \text{Hom}(\mathbb{Z}, \circ_n)$, there is an element $g \in \text{Hom}(\mathbb{Z}, \circ_n)$ such that $f(1) \equiv f(1)^2 g(1) \mod n$.
- (iii) For every $f \in \text{Hom}(\mathbb{Z}, \circ_n)$, there is an element $g \in \text{Hom}(\mathbb{Z}, \circ_n)$ such that $f(1)^2 g(1) \in f(1) + n\mathbb{Z}$
- (iv) n is square-free.

For example, $\operatorname{Hom}(\mathbb{Z}, \circ_6)/\delta$ is a regular semigroup but $\operatorname{Hom}(\mathbb{Z}, \circ_4)/\delta$ is not.

References

- P. Corsini, "Prolegomena of Hypergroup Theory", Aviani Editore, Udine (1993).
- [2] G. Ehrlich, Unit-regular rings, Portugaliae Mathematica, 27 (1968), 209-212.
- [3] W. Mora, W. Hemakul and Y. Kemprasit, On homomorphisms of certain hypergroups, East-West J., Spec. Issue for ICDMA 2008 (2008), 137-144.

212

- [4] S. Nenthein and P. Lertwichitsilp, Surjective multihomomorphisms between cyclic groups, Thai J. Math., 4(1) (2006), 35-42.
- [5] W. Teparos and Y. Kemprasit, Regularity of semigroups of multihomomorphisms of $(\mathbb{Z}_n, +)$, Thai J. Math., Spec. Issue for Annual Meetings in Math. (2006), 25-30.
- [6] N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups, Set-valued Math. and Appl., 1(1) (2007), 9-18.
- [7] P. Youngkhong and K. Savettaseranee, Multihomomorphisms from groups into groups of real numbers, Thai J. Math., 4(1) (2006), 43-48.