A REMARK ON SOME SEMIGROUPS OF HYPERGROUP HOMOMORPHISMS

W. Mora ${ }^{*}$, K. Kwakpatoon ${ }^{\dagger}$ and P. Youngkhong ${ }^{\ddagger}$
Department of Mathematics, Faculty of Science, Chulalongkorn *University, Bangkok 10330, Thailand
\dagger e-mail: * winita.m@student.chula.ac.th,
$\dagger{ }^{\text {kannika.k@chula.ac.th and }}{ }^{\ddagger}$ pyoungkhong@yahoo.com

Abstract

Let \mathbb{Z} be the set of integers, n a positive integer and $\left(\mathbb{Z}, \circ_{n}\right)$ the hypergroup where $x \circ_{n} y=x+y+n \mathbb{Z}$ for all $x, y \in \mathbb{Z}$. Denote by $\operatorname{Hom}\left(\mathbb{Z}, o_{n}\right)$ the semigroup, under composition, of all homomorphisms of $\left(\mathbb{Z}, \circ_{n}\right)$. It has been shown that for $f: \mathbb{Z} \rightarrow \mathbb{Z}, f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ if and only if $f(x+n \mathbb{Z})=x f(1)+n \mathbb{Z}$ for all $x \in \mathbb{Z}$ and $\left|\operatorname{Hom}\left(\mathbb{Z}, \mathrm{o}_{n}\right)\right|=2^{\aleph_{0}}$. Using this characterization, we show in this paper that the relation δ on $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ defined by $f \delta g \Leftrightarrow f(1) \equiv g(1) \bmod n$ is a congruence on $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ and $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right) / \delta \cong\left(\mathbb{Z}_{n}, \cdot\right)$.

1 Introduction

A hyperoperation on a nonempty set H is a function $\circ: H \times H \rightarrow \mathcal{P}^{*}(H)$ where $\mathcal{P}(H)$ is the power set of H and $\mathcal{P}^{*}(H)=\mathcal{P}(H) \backslash\{\emptyset\}$. For $x, y \in H, x \circ y$ denotes the value of (x, y). For $A, B \subseteq H$, let

$$
A \circ B=\bigcup_{\substack{a \in A \\ b \in B}} a \circ b
$$

If $x \in H$ and $A \subseteq H$, let $x \circ A$ and $A \circ x$ stand for $\{x\} \circ A$ and $A \circ\{x\}$, respectively. The system (H, \circ) is called a hypergroup if

$$
x \circ(y \circ z)=(x \circ y) \circ z \text { and } H \circ x=x \circ H=H \text { for all } x, y, z \in H
$$

[^0]Then every group is a hypergroup. By a homomorphism of the hypergroup (H, \circ) we mean a function $f: H \rightarrow H$ such that

$$
f(x \circ y)=f(x) \circ f(y) \text { for all } x, y \in H
$$

We note here that our homomorphisms are good homomorphisms in [1]. Denote by $\operatorname{Hom}(H, \circ)$ the set of all homomorphisms of (H, \circ). Then $\operatorname{Hom}(H, \circ)$ is closed under composition. To show this, let $f, g \in \operatorname{Hom}(H, \circ)$ and $x, y \in H$. Then

$$
\begin{aligned}
(g f)(x \circ y)=g(f(x \circ y)) & =g(f(x) \circ f(y)) \\
& =g(f(x)) \circ g(f(y))=(g f)(x) \circ(g f)(y)
\end{aligned}
$$

It follows that $\operatorname{Hom}(H, \circ)$ is a semigroup under composition. Notice that the identity mapping on $H, 1_{H}$, is the identity of the semigroup $\operatorname{Hom}(H, \circ)$.

If G is a group, N is a normal subgroup of G and \circ_{N} is the hyperoperation on G defined by

$$
x \circ_{N} y=x y N \text { for all } x, y \in G
$$

then (G, \circ) is a hypergroup ([1], page 11). Observe that if $N=\{e\}$ where e is the identity of G, then $\left(G, \circ_{N}\right)=G$. If \mathbb{Z} is the set of integers and n is a positive integer, let $\left(\mathbb{Z}, \circ_{n}\right)=\left(\mathbb{Z}, \circ_{n \mathbb{Z}}\right)$ under usual addition, that is,

$$
x \circ_{n} y=x+y+n \mathbb{Z} \text { for all } x, y \in \mathbb{Z}
$$

In [3], the authors characterized the elements of $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ as follows:
Theorem 1.1. ([3]) If $f: \mathbb{Z} \rightarrow \mathbb{Z}$, then the following statements are equivalent.
(i) $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$.
(ii) $f(x+n \mathbb{Z})=x f(1)+n \mathbb{Z}$ for all $x \in \mathbb{Z}$.
(iii) There exists an integer a such that

$$
f(x+n \mathbb{Z})=x a+n \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

The cardinality of a set X is denoted by $|X|$.

The following fact was also provided in [3].

Theorem 1.2. ([3]) The following statements hold.
(i) For each $a \in \mathbb{Z},\left|\left\{f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right) \mid f(1)=a\right\}\right|=2^{\aleph_{0}}$.
(ii) $\left|\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)\right|=2^{\aleph_{0}}$.

We note here that multi-valued homomorphisms between groups were defined naturally in [6]. Some studies of this notation can be found in [6], [4], [5]
and [7].
Let \mathbb{Z}_{n} be the set of integers modulo n. For $x \in \mathbb{Z}$, let \bar{x} be the congruence class of x modulo n. Recall that $\mathbb{Z}_{n}=\{\bar{x} \mid x \in \mathbb{Z}\}=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$. If $\bar{x} \cdot \bar{y}=\overline{x y}$ for all $x, y \in \mathbb{Z}$, then $\left(\mathbb{Z}_{n}, \cdot\right)$ is a semigroup of order n having $\overline{0}$ and $\overline{1}$ as its zero and identity, respectively.

Recall that an equivalence relation ρ on a semigroup S is called a congruence on S if

$$
\text { for all } x, y, z \in S, x \rho y \Rightarrow z x \rho z y \text { and } x z \rho y z
$$

If ρ is a congruence on a semigroup S, then S / ρ under the operation

$$
(x \rho)(y \rho)=(x y) \rho \text { for all } x, y \in S
$$

is a semigroup where $x \rho$ is the ρ-class of S containing x. Moreover, $x \mapsto x \rho$ is an epimorphism from S onto S / ρ.

Let δ be the relation defined on the semigroup $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ as follows:

$$
\text { for } f, g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right), \quad(f, g) \in \delta \Leftrightarrow f(1) \equiv g(1) \bmod n \text {. }
$$

The purpose of this paper is to show that δ is a congruence on $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ and $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right) / \delta \cong\left(\mathbb{Z}_{n}, \cdot\right)$.

2 Main Result

First, we give as a lemma how $g f$ and $f g$ map on each coset $x+n \mathbb{Z}$ where $f, g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$.

Lemma 2.1. If $f, g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$, then

$$
(g f)(x+n \mathbb{Z})=(f g)(x+n \mathbb{Z})=x f(1) g(1)+n \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

Proof. By Theorem 1.1, we have that for $x \in \mathbb{Z}$,

$$
\begin{aligned}
(g f)(x+n \mathbb{Z})=g(f(x+n \mathbb{Z})) & =g(x f(1)+n \mathbb{Z}) \\
& =x f(1) g(1)+n \mathbb{Z} \\
& =x g(1) f(1)+n \mathbb{Z} \\
& =f(x g(1)+n \mathbb{Z}) \\
& =f(g(x+n \mathbb{Z})) \\
& =(f g)(x+n \mathbb{Z})
\end{aligned}
$$

Corollary 2.2. If $f, g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$, then

$$
(g f)(1) \equiv f(1) g(1) \equiv(f g)(1) \quad \bmod n
$$

Proof. By Lemma 2.1,

$$
(g f)(1+n \mathbb{Z})=(f g)(1+n \mathbb{Z})=f(1) g(1)+n \mathbb{Z}
$$

Then $(g f)(1) \in(g f)(1+n \mathbb{Z})=f(1) g(1)+n \mathbb{Z}$ and $(f g)(1) \in(f g)(1+n \mathbb{Z})=$ $f(1) g(1)+n \mathbb{Z}$, so

$$
(g f)(1) \equiv f(1) g(1) \quad \bmod n \quad \text { and } \quad(f g)(1) \equiv f(1) g(1) \quad \bmod n
$$

Since $f(1) g(1)=g(1) f(1)$, the desired result follows.

Proposition 2.3. The relation δ is a congruence on the semigroup $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$.
Proof. The relation δ is clearly an equivalence relation on $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$. If $f, g, h \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ are such that $f \delta g$, then $f(1) \equiv g(1) \bmod n$. Thus

$$
\begin{equation*}
h(1) f(1) \equiv h(1) g(1) \quad \bmod n \tag{1}
\end{equation*}
$$

By Corollary 2.2,

$$
\begin{align*}
(h f)(1) & \equiv h(1) f(1) \equiv(f h)(1) \quad \bmod n \tag{2}\\
(h g)(1) \equiv h(1) g(1) \equiv(g h)(1) & \bmod n
\end{align*}
$$

From (1) and (2), we have

$$
(h f)(1) \equiv(f h)(1) \equiv(h g)(1) \equiv(g h)(1) \quad \bmod n
$$

Hence $h f \delta h g$ and $f h \delta g h$. This shows that δ is a congruence on $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$.

Theorem 2.4. If $\varphi: \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right) / \delta \rightarrow \mathbb{Z}_{n}$ is defined by

$$
\varphi(f \delta)=\overline{f(1)} \text { for all } f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)
$$

then φ is an isomorphism from $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right) / \delta$ onto $\left(\mathbb{Z}_{n}, \cdot\right)$.
Proof. To show that φ is well-defined, let $f, g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ be such that

If $f, g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ are such that $\overline{f(1)}=\overline{g(1)}$, then $f(1) \equiv g(1) \bmod n$. Thus $f \delta g$, so $f \delta=g \delta$. Hence φ is $1-1$. For $f, g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$,

$$
\begin{aligned}
\varphi((f \delta)(g \delta)) & =\varphi((f g) \delta) \\
& =\overline{(f g)(1)} \\
& =\overline{f(1) g(1)} \quad \text { from Corollary } 2.2 \\
& =\overline{f(1)} \overline{g(1)} \\
& =\varphi(f \delta) \varphi(g \delta)
\end{aligned}
$$

Therefore φ is a semigroup homomorphism. If $k \in \mathbb{Z}$, by Theorem 1.2(i), there is $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ such that $f(1)=k$. Thus $\varphi(f \delta)=\overline{f(1)}=\bar{k}$. This shows that φ is onto.

This shows that φ is an isomorphism from $\operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right) / \delta$ onto $\left(\mathbb{Z}_{n}, \cdot\right)$, as desired.

Remark 2.5. For $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$, by the definition of δ,

$$
f \delta=\left\{g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right) \mid g(1) \equiv f(1) \bmod n\right\}
$$

Thus

$$
f \delta=\left\{g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right) \mid g(1) \in f(1)+n \mathbb{Z}\right\}
$$

From this fact and Theorem 1.2, the following results are clearly seen.
(1) The cardinality of each δ-class is $2^{\aleph_{0}}$, that is, for each $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$, $\left|\left\{g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right) \mid g \in f \delta\right\}\right|=2^{\aleph_{0}}$.
(2) For each $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right),\{g(1) \mid g \in f \delta\}=f(1)+n \mathbb{Z}$.

Remark 2.6. A semigroup S is called regular if for every $x \in S, x=x y x$ for some $y \in S$. Ehrlich [2] has shown that $\left(\mathbb{Z}_{n}, \cdot\right)$ is a regular semigroup if and only if n is square-free. From this fact, Theorem 2.4 and Remark 2.5, we deduce that the following statements are equivalent.
(i) For every $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$, there is an element $g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ such that $f \delta=(f g f) \delta$.
(ii) For every $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$, there is an element $g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ such that $f(1) \equiv f(1)^{2} g(1) \bmod n$.
(iii) For every $f \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$, there is an element $g \in \operatorname{Hom}\left(\mathbb{Z}, \circ_{n}\right)$ such that $f(1)^{2} g(1) \in f(1)+n \mathbb{Z}$
(iv) n is square-free.

For example, $\operatorname{Hom}\left(\mathbb{Z}, \circ_{6}\right) / \delta$ is a regular semigroup but $\operatorname{Hom}\left(\mathbb{Z}, \circ_{4}\right) / \delta$ is not.

References

[1] P. Corsini, "Prolegomena of Hypergroup Theory", Aviani Editore, Udine (1993).
[2] G. Ehrlich, Unit-regular rings, Portugaliae Mathematica, 27 (1968), 209212.
[3] W. Mora, W. Hemakul and Y. Kemprasit, On homomorphisms of certain hypergroups, East-West J., Spec. Issue for ICDMA 2008 (2008), 137-144.
[4] S. Nenthein and P. Lertwichitsilp, Surjective multihomomorphisms between cyclic groups, Thai J. Math., 4(1) (2006), 35-42.
[5] W. Teparos and Y. Kemprasit, Regularity of semigroups of multihomomorphisms of $\left(\mathbb{Z}_{n},+\right)$, Thai J. Math., Spec. Issue for Annual Meetings in Math. (2006), 25-30.
[6] N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups, Set-valued Math. and Appl., 1(1) (2007), 9-18.
[7] P. Youngkhong and K. Savettaseranee, Multihomomorphisms from groups into groups of real numbers, Thai J. Math., 4(1) (2006), 43-48.

[^0]: Key words: Hypergroup, homomorphism, congruence
 2000 AMS Mathematics Subject Classification: 20N20

