NON-DETERMINISTIC HYPERIDENTITIES IN MANY-SORTED ALGEBRAS

Klaus Denecke* and Somsak Lekkoksung

Universität Potsdam
Institute of Mathematics
Am Neuen Palais, 14415 Potsdam, Germany.
E-mail: kdenecke@rz.uni-potsdam.de

Abstract

Many-sorted algebras are used in Computer Science for abstract data type specifications. It is widely believed that many-sorted algebras are the appropriate mathematical tools to explain what abstract data types are ([6]). In this paper we extend the approach to non-deterministic hypersubstitutions and non-deterministic hyperidentities given in [4] to the many-sorted case. The main result is the characterization of nondeterministic solid varieties. This will be done by showing that on the basis of non-deterministic hypersubstitutions one obtains a conjugate pair of additive closure operators which allows to apply the theory of conjugate pairs of additive closure operators also to this case (see [7]). Our results form a universal-algebraic background of the theory of manysorted tree languages (see [8]).

1 Introduction

We follow the definition of terms for many-sorted algebras given in [1] and the superposition of many-sorted terms from [3].

To describe terms over many-sorted algebras we need the following notation.
Let I be a non-empty set and $n \in \mathbb{N}^{+}:=\mathbb{N} \backslash\{0\}$, let $I^{*}:=\bigcup I^{n}, \Sigma \subseteq I^{*} \times I$. $n \geq 1$
Then we define $\Sigma_{n}:=\Sigma \cap\left(I^{n} \times I\right)$. Let $\Sigma_{m}(i):=\left\{\gamma \in \Sigma_{m} \mid \gamma(m+1)=i\right\}$,

[^0]$i \in I, m \in \mathbb{N}^{+}$. We set $\Sigma(i):=\bigcup_{m \in \mathbb{N}^{+}} \Sigma_{m}(i)$. Let K_{γ} be a set of indices of each $\gamma \in \Sigma$. If $\left|K_{\gamma}\right|=1$, we will drop the index.

Definition 1.1 ([1]) Let $X^{(n)}:=\left(X_{i}^{(n)}\right)_{i \in I}$ be an I-sorted set of variables, also called an n-element I-sorted alphabet, with $X_{i}^{(n)}:=\left\{x_{i 1}, \ldots, x_{i n}\right\}, i \in I$, and let $\left(\left(f_{\gamma}\right)_{k}\right)_{k \in K_{\gamma}, \gamma \in \Sigma}$ be an indexed set of Σ-sorted operation symbols. Then a set $W_{n}(i)$ which is called the set of all n-ary Σ-terms of sort i, is inductively defined as follows: For all $i \in I$ we set
(i) $W_{0}^{n}(i):=X_{i}^{(n)}$.
(ii) $W_{l+1}^{n}(i):=W_{l}^{n}(i) \cup\left\{\left(f_{\gamma}\right)_{k}\left(t_{1}, \ldots, t_{m}\right) \mid k \in K_{\gamma}, \gamma \in \Sigma_{m}(i)\right\}, l \in \mathbb{N}$, $t_{j} \in W_{l}^{n}\left(i_{j}\right), 1 \leq j \leq m, m \in \mathbb{N}$ whenever $\gamma=\left(i_{1}, \ldots, i_{m}, i\right)$.

Then $W_{n}(i):=\bigcup_{l=0}^{\infty} W_{l}^{n}(i)$ and we set $W(i):=\bigcup_{n \in \mathbb{N}^{+}} W_{n}(i)$. Let $X_{i}:=\bigcup_{n \in \mathbb{N}^{+}} X_{i}^{(n)}$ and $X:=\left(X_{i}\right)_{i \in I}$. Let $W_{\Sigma}(X):=(W(i))_{i \in I}$. The set $W_{\Sigma}(X)$ is called I-sorted set of all Σ-terms.

For $\alpha \in \Sigma_{m}$ let $\alpha(j)$ be the j-th component of α for $1 \leq j \leq m$. Then for any $n \in \mathbb{N}^{+}, i \in I$ we set
$\Lambda_{n}(i):=\left\{(w, i) \in I^{n} \times I \mid \exists m \in \mathbb{N}^{+}, \exists \alpha \in \Sigma_{m}, \exists j(1 \leq j \leq m)(\alpha(j)=i)\right\}$. Let $\Lambda(i):=\bigcup_{n=1}^{\infty} \Lambda_{n}(i)$ and we set $\Lambda:=\bigcup_{i \in I} \Lambda(i)$.

Let $\mathcal{P}(W(i))$ be the power set of $W(i)$. The elements of $\mathcal{P}(W(i))$ are called tree languages of sort i. Now we define superposition operations on manysorted sets of tree languages.

Definition 1.2 ([3]) Let $T \in \mathcal{P}(W(i)), T_{j} \in \mathcal{P}\left(W\left(k_{j}\right)\right), 1 \leq j \leq n, n \in \mathbb{N}$, such that T, T_{j} are non-empty. Then the superposition operation

$$
S_{\alpha}^{n d}: \mathcal{P}(W(i)) \times \mathcal{P}\left(W\left(k_{1}\right)\right) \times \cdots \times \mathcal{P}\left(W\left(k_{n}\right)\right) \rightarrow \mathcal{P}(W(i))
$$

with $\alpha=\left(k_{1}, \ldots, k_{n} ; i\right) \in \Lambda$, is inductively defined in the following way:

1) If $T=\left\{x_{i j}\right\}$ where $x_{i j} \in X_{i}$, then
1.1) for $i \neq k_{j}$,

$$
S_{\alpha}^{n d}\left(\left\{x_{i j}\right\}, T_{1}, \ldots, T_{n}\right):=\left\{x_{i j}\right\}
$$

1.2) for $i=k_{j}$,

$$
S_{\alpha}^{n d}\left(\left\{x_{i j}\right\}, T_{1}, \ldots, T_{n}\right):=T_{j}
$$

2) If $T=\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right\} \in \mathcal{P}(W(i))$ where $k \in K_{\gamma}, \gamma=\left(i_{1}, \ldots, i_{m} ; i\right) \in$ $\Sigma, s_{q} \in W\left(i_{q}\right), 1 \leq q \leq m, m \in \mathbb{N}$, and if we assume that $S_{\alpha_{q}}^{n d}\left(\left\{s_{q}\right\}, T_{1}\right.$, $\left.\ldots, T_{n}\right)$ with $\alpha_{q}=\left(k_{1}, \ldots, k_{n} ; i_{q}\right) \in \Lambda$, are already satisfied, then
$S_{\alpha}^{n d}\left(\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right\}, T_{1}, \ldots, T_{n}\right):=\left\{\left(f_{\gamma}\right)_{k}\left(r_{1}, \ldots, r_{m}\right) \mid r_{q} \in S_{\alpha_{q}}^{n d}\left(\left\{s_{q}\right\}\right.\right.$, $\left.\left.T_{1}, \ldots, T_{n}\right)\right\}$.
3) If T is an arbitrary subset of $W(i)$, then

$$
S_{\alpha}^{n d}\left(T, T_{1}, \ldots, T_{n}\right):=\bigcup_{t \in T} S_{\alpha}^{n d}\left(\{t\}, T_{1}, \ldots, T_{n}\right)
$$

If one of the sets T, T_{1}, \ldots, T_{n} is empty, then we define $S_{\alpha}^{n d}\left(T, T_{1}, \ldots, T_{n}\right):=\emptyset$.
Non-deterministic many-sorted hypersubstitutions map many-sorted operation symbols to sets of many-sorted terms and are defined as follows.

Definition 1.3 ([3]) Let $\left(\left(f_{\gamma}\right)_{k}\right)_{k \in K_{\gamma}, \gamma \in \Sigma}$ be an indexed set of Σ-sorted operation symbols and $\mathcal{P}\left(W_{\Sigma}(X)\right):=(\mathcal{P}(W(i)))_{i \in I}$. Any mapping

$$
\sigma_{i}^{n d}:\left\{\left(f_{\gamma}\right)_{k} \mid k \in K_{\gamma}, \gamma \in \Sigma(i)\right\} \rightarrow \mathcal{P}(W(i)), i \in I
$$

with $\sigma_{i}^{n d}\left(\left(f_{\gamma}\right)_{k}\right) \subseteq W_{i} \subseteq W(i)$ such that W_{i} is the set of all Σ-terms of sort i which have arity $|\gamma|-1$, is said to be a non-deterministic Σ-hypersubstitution of sort i. Let $n d \Sigma(i)-H y p$ be the set of all non-deterministic Σ-hypersubstitutions of sort i. The I-sorted mapping $\sigma^{n d}:=\left(\sigma_{i}^{n d}\right)_{i \in I}$ is called an I-sorted nondeterministic Σ-hypersubstitution. Let $n d \Sigma$-Hyp be the set of all I-sorted non-deterministic Σ-hypersubstitutions. Any I-sorted non-deterministic Σ hypersubstitution $\sigma^{n d}$ can inductively be extended to an I-sorted mapping $\hat{\sigma}^{n d}:=\left(\hat{\sigma}_{i}^{n d}\right)_{i \in I}$. The I-sorted mapping

$$
\hat{\sigma}^{n d}: \mathcal{P}\left(W_{\Sigma}(X)\right) \rightarrow \mathcal{P}\left(W_{\Sigma}(X)\right)
$$

is defined in the following way: For all $i \in I$, for every $T \subseteq W(i)$,
(1) if $T=\emptyset$, then $\hat{\sigma}_{i}^{n d}[T]:=\emptyset$,
(2) if $T=\left\{x_{i j}\right\}, x_{i j} \in X_{i}$, then $\hat{\sigma}_{i}^{n d}[T]:=\left\{x_{i j}\right\}$,
(3) if $T=\left\{\left(f_{\gamma}\right)_{k}\left(t_{1}, \ldots, t_{n}\right)\right\}$, with $k \in K_{\gamma}, \gamma \in \Sigma_{n}(i)$ and $t_{j} \in W\left(k_{j}\right), 1 \leq$ $j \leq n, n \in \mathbb{N}$ whenever $\gamma=\left(k_{1}, \ldots, k_{n}, i\right)$, and if we assume that $\hat{\sigma}_{k_{j}}^{n d}\left[\left\{t_{j}\right\}\right]$ are already defined, then

$$
\hat{\sigma}_{i}^{n d}[T]:=S_{\gamma}^{n d}\left(\sigma_{i}^{n d}\left(\left(f_{\gamma}\right)_{k}\right), \hat{\sigma}_{k_{1}}^{n d}\left[\left\{t_{1}\right\}\right], \ldots, \hat{\sigma}_{k_{n}}^{n d}\left[\left\{t_{n}\right\}\right]\right),
$$

(4) if T is an arbitrary subset of $W(i)$, then $\hat{\sigma}_{i}^{n d}[T]:=\bigcup_{t \in T} \hat{\sigma}_{i}^{n d}[\{t\}]$.

A many-sorted Σ-algebra is a pair $\mathcal{A}:=\left(\left(A_{i}\right)_{i \in I} ;\left(f_{\gamma}^{\mathcal{A}}\right)_{\gamma \in \Sigma}\right)$ consisting of an I-sorted set and a Σ-sorted set of I-sorted fundamental operations. Important examples for I-sorted Σ-algebras are vector spaces over a field \mathcal{F} and deterministic automata. Let $\operatorname{Alg}(\Sigma)$ be the class of all many-sorted Σ-algebras. The connection between many-sorted terms and term operations of many-sorted algebras of the same type is given by inducing term operations by terms.

Definition 1.4 ([3]) Let $X^{(n)}$ be an n-element I-sorted alphabet and let A be an I-sorted set. Let $\mathcal{A} \in \operatorname{Alg}(\Sigma)$ be a Σ-algebra, and $t \in W_{n}(i)$ be an n-ary Σ-term of sort $i \in I$. Let $f:=\left(f_{i}\right)_{i \in I}$ where $f_{i}: X_{i}^{(n)} \rightarrow A_{i}$ be an I-sorted evaluation mapping of variables from $X^{(n)}$ by elements in A. Each mapping f_{i} can be extended in a canonical way to a mapping $\bar{f}_{i}: W_{n}(i) \rightarrow A_{i}$. Then $t^{\mathcal{A}}: A^{X^{(n)}} \rightarrow A_{i}$ defined by

$$
t^{\mathcal{A}}(f):=\bar{f}_{i}(t) \text { for all } f \in A^{X^{(n)}}
$$

where \bar{f}_{i} is the extension of the evaluation mapping $f_{i}: X_{i}^{(n)} \rightarrow A_{i} . t^{\mathcal{A}}$ is called the n-ary Σ-term operation on \mathcal{A} induced by the n-ary Σ-term t of sort i.

Let $W^{\mathcal{A}}(i)$ be the set of all Σ-term operations on \mathcal{A} induced by all Σ-terms of sort i. Then we set $W_{\Sigma}^{\mathcal{A}}(X):=\left(W^{\mathcal{A}}(i)\right)_{i \in I}$ and call this set I-sorted set of Σ-term operations induced on \mathcal{A} by the Σ-terms. This can be extended to sets of terms.

Definition 1.5 Let \mathcal{A} be a Σ-algebra, and $B \in \mathcal{P}(W(i)), i \in I$. Then we define the set $B^{\mathcal{A}}$ of Σ-term operations on \mathcal{A} induced by Σ-terms of sort i as follows:
(1) If $B=\left\{x_{i j}\right\}$, then $B^{\mathcal{A}}:=\left\{x_{i j}^{\mathcal{A}}\right\}$.
(2) If $B=\left\{\left(f_{\gamma}\right)_{k}\left(t_{1}, \ldots, t_{n}\right)\right\}$ where $k \in K_{\gamma}, \gamma \in \Sigma_{n}(i)$ and $t_{j} \in W\left(i_{j}\right), 1 \leq$ $j \leq n, n \in \mathbb{N}$ whenever $\gamma=\left(i_{1}, \ldots, i_{n}, i\right)$, then $B^{\mathcal{A}}:=\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\left(t_{1}^{\mathcal{A}}, \ldots\right.\right.$, $\left.\left.t_{n}^{\mathcal{A}}\right)\right\}$ where $\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}$ is the fundamental operation of \mathcal{A} corresponding to the operation symbol $\left(f_{\gamma}\right)_{k}$ and where $t_{j}^{\mathcal{A}}$ are the Σ-term operations on \mathcal{A} which are induced in the usual way by the $t_{j}{ }^{\prime} s$.
(3) If B is an arbitrary non-empty subset of $W(i)$, then we define $B^{\mathcal{A}}:=$ $\bigcup_{b \in B}\{b\}^{\mathcal{A}}$.
If B is empty, then we define $B^{\mathcal{A}}:=\emptyset$.
A superposition operation for sets of Σ-term operations on the many-sorted algebra \mathcal{A} can be defined in the following way:

Definition 1.6 Let \mathcal{A} be a Σ-algebra and let $T \in \mathcal{P}(W(i)), T_{j} \in \mathcal{P}\left(W\left(k_{j}\right)\right)$, $1 \leq j \leq n, n \in \mathbb{N}$, such that T, T_{j} are non-empty. Then the superposition operation

$$
S_{\alpha}^{n d A}: \mathcal{P}\left(W^{\mathcal{A}}(i)\right) \times \mathcal{P}\left(W^{\mathcal{A}}\left(k_{1}\right)\right) \times \cdots \times \mathcal{P}\left(W^{\mathcal{A}}\left(k_{n}\right)\right) \rightarrow \mathcal{P}\left(W^{\mathcal{A}}(i)\right)
$$

where $\alpha=\left(k_{1}, \ldots, k_{n} ; i\right) \in \Lambda$, is inductively defined in the following way:

1) If $T=\left\{x_{i j}\right\}$ where $x_{i j} \in X_{i}$, then
1.1) for $i \neq k_{j}$,

$$
S_{\alpha}^{n d A}\left(\left\{x_{i j}\right\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right):=\left\{x_{i j}\right\}^{\mathcal{A}}
$$

1.2) for $i=k_{j}$,

$$
S_{\alpha}^{n d A}\left(\left\{x_{i j}\right\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right):=T_{j}^{\mathcal{A}}
$$

2) If $T=\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right\} \in \mathcal{P}(W(i))$ where $k \in K_{\gamma}, \gamma=\left(i_{1}, \ldots, i_{m} ; i\right) \in$ $\Sigma, s_{q} \in W\left(i_{q}\right), 1 \leq q \leq m, m \in \mathbb{N}$, and if we assume that

$$
S_{\alpha_{q}}^{n d A}\left(\left\{s_{q}\right\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right)
$$

with $\alpha_{q}=\left(k_{1}, \ldots, k_{n} ; i_{q}\right) \in \Lambda$, are already defined, then

$$
\begin{aligned}
& S_{\alpha}^{n d A}\left(\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right) \\
& :=\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\left(r_{1}^{\mathcal{A}}, \ldots, r_{m}^{\mathcal{A}}\right) \mid r_{q}^{\mathcal{A}} \in S_{\alpha_{q}}^{n d A}\left(\left\{s_{q}\right\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right)\right\} .
\end{aligned}
$$

3) If T is an arbitrary subset of $W(i)$, then

$$
S_{\alpha}^{n d A}\left(T^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right):=\bigcup_{t \in T} S_{\alpha}^{n d A}\left(\{t\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right)
$$

If one of the sets T, T_{1}, \ldots, T_{n} is empty, then we define $S_{\alpha}^{n d A}\left(T^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right):=$ \emptyset.

For illustration we consider the following example.
Example 1.7 Let $I=\{1,2\}, \Sigma=\{(1,2,1),(2,1,1)\}$ and \mathcal{A} be a Σ-algebra.
Let $T=\left\{x_{12}, f_{(1,2,1)}\left(x_{11}, x_{21}\right)\right\}, T_{1}=\left\{f_{(2,1,1)}\left(x_{21}, x_{11}\right)\right\}$ and $T_{2}=\left\{x_{22}\right\}$. Then

$$
\begin{aligned}
& S_{(1,2,1)}^{n d A}\left(T^{\mathcal{A}}, T_{1}^{\mathcal{A}}, T_{2}^{\mathcal{A}}\right)=S_{(1,2,1)}^{n d A}\left(\left\{x_{12}, f_{(1,2,1)}\left(x_{11}, x_{21}\right)\right\}^{\mathcal{A}},\left\{f_{(2,1,1)}\left(x_{21}, x_{11}\right)\right\}^{\mathcal{A}}\right. \text {, } \\
& \left\{x_{22}\right\}^{\mathcal{A}} \text {) } \\
& =S_{(1,2,1)}^{n d A}\left(\left\{x_{12}\right\}^{\mathcal{A}},\left\{f_{(2,1,1)}\left(x_{21}, x_{11}\right)\right\}^{\mathcal{A}},\left\{x_{22}\right\}^{\mathcal{A}}\right) \cup \\
& S_{(1,2,1)}^{n d A}\left(\left\{f_{(1,2,1)}\left(x_{11}, x_{21}\right)\right\}^{\mathcal{A}},\left\{f_{(2,1,1)}\left(x_{21}, x_{11}\right)\right\}^{\mathcal{A}},\left\{x_{22}\right\}^{\mathcal{A}}\right) \\
& =\left\{x_{12}\right\}^{\mathcal{A}} \cup\left\{f_{(1,2,1)}^{\mathcal{A}}\left(r_{11}^{\mathcal{A}}, r_{21}^{\mathcal{A}}\right) \mid r_{11}^{\mathcal{A}} \in S_{(1,2,1)}^{n d A}\left(\left\{x_{11}\right\}^{\mathcal{A}}\right. \text {, }\right. \\
& \left.\left\{f_{(2,1,1)}\left(x_{21}, x_{11}\right)\right\}^{\mathcal{A}},\left\{x_{22}\right\}^{\mathcal{A}}\right), r_{21}^{\mathcal{A}} \in S_{(1,2,1)}^{n d \mathcal{A}}\left(\left\{x_{21}\right\}^{\mathcal{A}},\right. \\
& \left.\left.\left\{f_{(2,1,1)}\left(x_{21}, x_{11}\right)\right\}^{\mathcal{A}},\left\{x_{22}\right\}^{\mathcal{A}}\right)\right\} \\
& =\left\{x_{12}\right\}^{\mathcal{A}} \cup\left\{f_{(1,2,1)}^{\mathcal{A}}\left(r_{11}^{\mathcal{A}}, r_{21}^{\mathcal{A}}\right) \mid r_{11}^{\mathcal{A}} \in\left\{f_{(2,1,1)}\left(x_{21}, x_{11}\right)\right\}^{\mathcal{A}},\right. \\
& \left.r_{21}^{\mathcal{A}} \in\left\{x_{21}\right\}^{\mathcal{A}}\right\} \\
& =\left\{x_{12}\right\}^{\mathcal{A}} \cup\left\{f_{(1,2,1)}^{\mathcal{A}}\left(r_{11}^{\mathcal{A}}, r_{21}^{\mathcal{A}}\right) \mid r_{11}^{\mathcal{A}} \in\left\{\left(f_{(2,1,1)}\left(x_{21}, x_{11}\right)\right)^{\mathcal{A}}\right\}\right. \text {, } \\
& \left.r_{21}^{\mathcal{A}} \in\left\{x_{21}^{\mathcal{A}}\right\}\right\} \\
& =\left\{x_{12}\right\}^{\mathcal{A}} \cup\left\{f_{(1,2,1)}^{\mathcal{A}}\left(\left(f_{(2,1,1)}\left(x_{21}, x_{11}\right)\right)^{\mathcal{A}}, x_{21}^{\mathcal{A}}\right)\right\} \\
& =\left\{x_{12}\right\}^{\mathcal{A}} \cup\left\{\left(f_{(1,2,1)}\right)\left(f_{(2,1,1)}\left(x_{21}, x_{11}\right), x_{21}\right)^{\mathcal{A}}\right\} \\
& =\left\{x_{12}\right\}^{\mathcal{A}} \cup\left\{f_{(1,2,1)}\left(f_{(2,1,1)}\left(x_{21}, x_{11}\right), x_{21}\right)\right\}^{\mathcal{A}} \\
& =\left\{x_{12}, f_{(1,2,1)}\left(f_{(2,1,1)}\left(x_{21}, x_{11}\right), x_{21}\right)\right\}^{\mathcal{A}}
\end{aligned}
$$

Proposition 1.8 Let \mathcal{A} be a Σ-algebra and let $\alpha=\left(i_{1}, \ldots, i_{m} ; i\right), \beta=\left(k_{1}, \ldots\right.$, $\left.k_{n} ; i\right), \beta_{j}=\left(i_{1}, \ldots, i_{m} ; k_{j}\right) \in \Lambda$ with $m \leq n, 1 \leq j \leq n$ such that $m, n \in$ \mathbb{N}^{+}. Assume that $i \neq i_{q}, 1 \leq q \leq m$ if $i \neq k_{j}$. Let $S \in \mathcal{P}(W(i)), L_{j} \in$ $\mathcal{P}\left(W\left(k_{j}\right)\right), T_{q} \in \mathcal{P}\left(W\left(i_{q}\right)\right)$ such that L_{j}, T_{q} are non-empty. Then we have

$$
\begin{aligned}
& S_{\alpha}^{n d A}\left(S_{\beta}^{n d A}\left(S^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
= & S_{\beta}^{n d A}\left(S^{\mathcal{A}}, S_{\beta_{1}}^{n d A}\left(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right), \ldots, S_{\beta_{n}}^{n d A}\left(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right) .
\end{aligned}
$$

Proof If S is empty, then all is clear. If S is non-empty, then we will give a proof by induction on the complexity of the Σ-term which is the only element of the one-element set S.

1) If $S=\left\{x_{i j}\right\}$ where $x_{i j} \in X_{i}$, then
1.1) for $i \neq k_{j}$,

$$
\begin{aligned}
& S_{\alpha}^{n d A}\left(S_{\beta}^{n d A}\left(S^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
& =S_{\alpha}^{n d A}\left(S_{\beta}^{n d A}\left(\left\{x_{i j}\right\}^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
& =S_{\alpha}^{n d A}\left(\left\{x_{i j}\right\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
& =\left\{x_{i j}\right\}^{\mathcal{A}} \\
& =S_{\beta}^{n d A}\left(\left\{x_{i j}\right\}^{\mathcal{A}}, S_{\beta_{1}}^{n d A}\left(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right), \ldots, S_{\beta_{n}}^{n d A}\left(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right) \\
& =S_{\beta}^{n d A}\left(S^{\mathcal{A}}, S_{\beta_{1}}^{n d A}\left(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right), \ldots, S_{\beta_{n}}^{n d A}\left(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right),
\end{aligned}
$$

1.2) for $i=k_{j}$,

$$
\begin{aligned}
& S_{\alpha}^{n d A}\left(S_{\beta}^{n d A}\left(S^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
& =S_{\alpha}^{n d A}\left(S_{\beta}^{n d A}\left(\left\{x_{i j}\right\}^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
& =S_{\alpha}^{n d A}\left(L_{j}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
& =S_{\beta_{j}}^{n d A}\left(L_{j}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
& =S_{\beta}^{n A}\left(\left\{x_{i j}\right\}^{\mathcal{A}}, S_{\beta_{1} A}^{n d A}\left(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right), \ldots, S_{\beta_{n}}^{n d A}\left(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right) \\
& =S_{\beta}^{n d A}\left(S^{\mathcal{A}}, S_{\beta_{1}}^{n d A}\left(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right), \ldots, S_{\beta_{n}}^{n d A}\left(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right) .
\end{aligned}
$$

2) If $S=\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{p}\right)\right\} \in \mathcal{P}(W(i))$ with $k \in K_{\gamma}, \gamma=\left(h_{1}, \ldots, h_{p} ; i\right)$ $\in \Sigma, s_{t} \in W\left(h_{t}\right), 1 \leq t \leq p, p \in \mathbb{N}$ and if we assume that the equations

$$
\begin{aligned}
& S_{\alpha_{t}}^{n d \mathcal{A}}\left(S_{\lambda_{t}}^{n d A}\left(\left\{s_{t}\right\}^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)=S_{\lambda_{t}}^{n d \mathcal{A}}\left(\left\{s_{t}\right\}^{\mathcal{A}}, S_{\beta_{1}}^{n d A}\left(L_{1}^{\mathcal{A}},\right.\right. \\
&\left.\left.T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right), \ldots, S_{\beta_{n}}^{n d A}\left(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right) \text { with } \lambda_{t}=\left(k_{1}, \ldots, k_{n} ; h_{t}\right), \alpha_{t}= \\
&\left(i_{1}, \ldots, i_{m} ; h_{t}\right) \in \Lambda, \operatorname{are} \text { satisfied, then } S_{\alpha}^{n d A}\left(S_{\beta}^{n d A}\left(S^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
&= S_{\alpha}^{n d A}\left(S_{\beta}^{n d A}\left(\left(\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{p}\right)\right\}\right)^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
&= S_{\alpha}^{n d A}\left(\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\left(u_{1}^{\mathcal{A}}, \ldots, u_{p}^{\mathcal{A}}\right) \mid u_{t}^{\mathcal{A}} \in S_{\lambda_{t}}^{n d A}\left(\left\{s_{t}\right\}^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right)\right\}, T_{1}^{\mathcal{A}}, \ldots,\right. \\
&\left.T_{m}^{\mathcal{A}}\right) \\
&=\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\left(r_{1}^{\mathcal{A}}, \ldots, r_{p}^{\mathcal{A}}\right) \mid r_{t}^{\mathcal{A}} \in S_{\alpha_{t}}^{n d A}\left(\left\{u_{t}^{\mathcal{A}} \mid u_{t}^{\mathcal{A}} \in S_{\lambda_{t}}^{n d A}\left(\left\{s_{t}\right\}^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right)\right\},\right.\right. \\
&\left.\left.T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right\} \\
&=\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\left(r_{1}^{\mathcal{A}}, \ldots, r_{p}^{\mathcal{A}}\right) \mid r_{t}^{\mathcal{A}} \in S_{\alpha_{t}}^{n d A}\left(S_{\lambda_{t}}^{n d A}\left(\left\{s_{t}\right\}^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right\} \\
&=\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\left(r_{1}^{\mathcal{A}}, \ldots, r_{p}^{\mathcal{A}}\right) \mid r_{t}^{\mathcal{A}} \in S_{\lambda_{t}}^{n d A}\left(\left\{s_{t}\right\}^{\mathcal{A}}, S_{\beta_{1}}^{n d A}\left(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right), \ldots,\right.\right. \\
&\left.\left.\left.S_{\beta_{n} A \mathcal{A}}^{n d} L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right)\right\} \\
&= S_{\beta}^{n d A}\left(\left(\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{p}\right)\right\}\right)^{\mathcal{A}}, S_{\beta_{1}}^{n d A}\left(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right), \ldots, S_{\beta_{n}}^{n d A}\left(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots,\right.\right. \\
&\left.\left.T_{m}^{\mathcal{A}}\right)\right)
\end{aligned}
$$

3) If S is an arbitrary subset of $W(i)$, then

$$
\begin{aligned}
& S_{\alpha}^{n d A}\left(S_{\beta}^{n d A}\left(S^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
= & S_{\alpha}^{n d A}\left(\bigcup_{s \in S}^{\mathcal{A}} S_{\beta}^{n d A}\left(\{s\}^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
= & \bigcup_{s \in S} S_{\alpha}^{n d A}\left(S_{\beta}^{n d A}\left(\{s\}^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \ldots, L_{n}^{\mathcal{A}}\right), T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right) \\
= & \bigcup_{s \in S} S_{\beta}^{n d A}\left(\{s\}^{\mathcal{A}}, S_{\beta_{1}}^{n d A}\left(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right), \ldots, S_{\beta_{n}}^{n d A}\left(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right) \\
= & S_{\beta}^{n d A}\left(S^{\mathcal{A}}, S_{\beta_{1}}^{n d A}\left(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right), \ldots, S_{\beta_{n}}^{n d A}\left(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{m}^{\mathcal{A}}\right)\right) .
\end{aligned}
$$

Proposition 1.9 Let \mathcal{A} be a Σ-algebra, and let $\alpha=\left(k_{1}, \ldots, k_{n} ; i\right) \in \Lambda$. For $T \in \mathcal{P}(W(i))$ and for any $x_{k_{j} j} \in X_{k_{j}}, 1 \leq j \leq n, n \in \mathbb{N}$ we have

$$
S_{\alpha}^{n d A}\left(T^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right)=T^{\mathcal{A}}
$$

Proof If T is empty, then all is clear. If T is non-empty, then we will give a proof by induction on the complexity of the Σ-term which is the only element of the one-element set T.

1) If $T=\left\{x_{i j}\right\}$ where $x_{i j} \in X_{i}$, then
1.1) for $i \neq k_{j}$,

$$
\begin{aligned}
& S_{\alpha}^{n d A}\left(T^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right) \\
& =S_{\alpha}^{n d A}\left(\left\{x_{i j}\right\}^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right) \\
& =\left\{x_{i j}\right\}^{\mathcal{A}} \\
& =T^{\mathcal{A}}
\end{aligned}
$$

1.2) for $i=k_{j}$,
$S_{\alpha}^{n d A}\left(T^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right)$
$=S_{\alpha}^{n d A}\left(\left\{x_{i j}\right\}^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right)$
$=\left\{x_{k_{j} j}\right\}^{\mathcal{A}}$
$=\left\{x_{i j}\right\}^{\mathcal{A}}$
$=T^{\mathcal{A}}$.
2) If $T=\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right\} \in \mathcal{P}(W(i))$ where $k \in K_{\gamma}, \gamma=\left(i_{1}, \ldots, i_{m} ; i\right) \in$ $\Sigma, s_{q} \in W\left(i_{q}\right), 1 \leq q \leq m, m \in \mathbb{N}$ and if we assume that the equations

$$
S_{\alpha_{q}}^{n d A}\left(\left\{s_{q}\right\}^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right)=\left\{s_{q}\right\}^{\mathcal{A}}
$$

with $\alpha_{q}=\left(k_{1}, \ldots, k_{n} ; i_{q}\right) \in \Lambda$, are satisfied, then

$$
\begin{aligned}
& S_{\alpha}^{n d A}\left(T^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right) \\
& =S_{\alpha}^{n d A}\left(\left(\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right\}\right)^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right) \\
& =\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\left(r_{1}^{\mathcal{A}}, \ldots, r_{m}^{\mathcal{A}}\right) \mid r_{q}^{\mathcal{A}} \in S_{\alpha_{q}}^{n d A}\left(\left\{s_{q}\right\}^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right)\right\} \\
& =\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\left(r_{1}^{\mathcal{A}}, \ldots, r_{m}^{\mathcal{A}}\right) \mid r_{q}^{\mathcal{A}} \in\left\{s_{q}\right\}^{\mathcal{A}}\right\} \\
& =\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\left(r_{1}^{\mathcal{A}}, \ldots, r_{m}^{\mathcal{A}}\right) \mid r_{q}^{\mathcal{A}} \in\left\{s_{q}^{\mathcal{A}}\right\}\right\} \\
& =\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\left(s_{1}^{\mathcal{A}}, \ldots, s_{m}^{\mathcal{A}}\right)\right\} \\
& =\left\{\left(\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right)^{\mathcal{A}}\right\} \\
& =\left\{\left(\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right)\right\}^{\mathcal{A}} \\
& =T^{\mathcal{A}}
\end{aligned}
$$

3) If T is an arbitrary subset of $W(i)$, then

$$
\begin{aligned}
& S_{\alpha}^{n d A}\left(T^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right) \\
& =\bigcup_{t \in T} S_{\alpha}^{n d A}\left(\{t\}^{\mathcal{A}},\left\{x_{k_{1} 1}\right\}^{\mathcal{A}}, \ldots,\left\{x_{k_{n} n}\right\}^{\mathcal{A}}\right) \\
& =\bigcup_{t \in T}\{t\}^{\mathcal{A}} \\
& =T^{\mathcal{A}} .
\end{aligned}
$$

Lemma 1.10 Let \mathcal{A} be a Σ-algebra, and $\alpha=\left(k_{1}, \ldots, k_{n}, i\right) \in \Lambda$. Let $T \in$ $\mathcal{P}(W(i)), T_{j} \in \mathcal{P}\left(W\left(k_{j}\right)\right), 1 \leq j \leq n, n \in \mathbb{N}$ such that T, T_{j} are non-empty. Then

$$
\bigcup_{t \in T}\left(S_{\alpha}^{n d}\left(\{t\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}}=\left(\bigcup_{t \in T} S_{\alpha}^{n d}\left(\{t\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}}
$$

Proof Let $s \in W(i)$. Then

$$
\begin{aligned}
s^{\mathcal{A}} \in \bigcup_{t \in T}\left(S_{\alpha}^{n d}\left(\{t\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} \Leftrightarrow & s^{\mathcal{A}} \in\left(S_{\alpha}^{n d}\left(\{t\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} \text { for some } \\
& t \in T \\
\Leftrightarrow & s \in S_{\alpha}^{n d}\left(\{t\}, T_{1}, \ldots, T_{n}\right) \text { for some } t \in T \\
\Leftrightarrow & \Leftrightarrow \in \bigcup_{t \in T} S_{\alpha}^{n d}\left(\{t\}, T_{1}, \ldots, T_{n}\right) \\
\Leftrightarrow & s^{\mathcal{A}} \in\left(\bigcup_{t \in T} S_{\alpha}^{n d}\left(\{t\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} .
\end{aligned}
$$

Lemma 1.11 Let \mathcal{A} be a Σ-algebra, and let $\alpha=\left(k_{1}, \ldots, k_{n} ; i\right) \in \Lambda$. Let $T \in \mathcal{P}(W(i)), T_{j} \in \mathcal{P}\left(W\left(k_{j}\right)\right), 1 \leq j \leq n, n \in \mathbb{N}$ such that T_{j} is non-empty. Then we have

$$
\left(S_{\alpha}^{n d}\left(T, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}}=S_{\alpha}^{n d A}\left(T^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right)
$$

Proof If T is empty, then all is clear. If T is non-empty, then we will give a proof by induction on the complexity of the Σ-term which is the only element of the one-element set T.

1) If $T=\left\{x_{i j}\right\}$ where $x_{i j} \in X_{i}$, then
1.1) for $i \neq k_{j}$,

$$
\begin{aligned}
\left(S_{\alpha}^{n d}\left(T, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} & =\left(S_{\alpha}^{n d}\left(\left\{x_{i j}\right\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} \\
& =\left\{x_{i j}\right\}^{\mathcal{A}} \\
& =S_{\alpha}^{n d A}\left(\left\{x_{i j}\right\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right) \\
& =S_{\alpha}^{n d A}\left(T^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right),
\end{aligned}
$$

1.2) for $i=k_{j}$,

$$
\begin{aligned}
\left(S_{\alpha}^{n d}\left(T, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} & =\left(S_{\alpha}^{n d}\left(\left\{x_{i j}\right\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} \\
& =T_{j}^{\mathcal{A}} \\
& =S_{\alpha}^{n d A}\left(\left\{x_{i j}\right\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right) \\
& =S_{\alpha}^{n d A}\left(T^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right) .
\end{aligned}
$$

2) If $T=\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right\} \in \mathcal{P}(W(i))$ where $k \in K_{\gamma}, \gamma=\left(i_{1}, \ldots, i_{m} ; i\right) \in$ $\Sigma, s_{q} \in W\left(i_{q}\right), 1 \leq q \leq m, m \in \mathbb{N}^{+}$and if we assume that the equations

$$
\left(S_{\alpha_{q}}^{n d}\left(\left\{s_{q}\right\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}}=S_{\alpha_{q}}^{n d A}\left(\left\{s_{q}\right\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right)
$$

with $\alpha_{q}=\left(k_{1}, \ldots, k_{n} ; i_{q}\right) \in \Lambda$, are satisfied, then

$$
\begin{aligned}
& \left(S_{\alpha}^{n d}\left(T, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} \\
& =\left(S_{\alpha}^{n d}\left(\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} \\
& =\left(\left\{\left(f_{\gamma}\right)_{k}\left(r_{1}, \ldots, r_{m}\right) \mid r_{q} \in S_{\alpha_{q}}^{n d}\left(\left\{s_{q}\right\}, T_{1}, \ldots, T_{n}\right)\right\}\right)^{\mathcal{A}} \\
& =\left\{\left(\left(f_{\gamma}\right)_{k}\left(r_{1}, \ldots, r_{m}\right)\right)^{\mathcal{A}} \mid r_{q}^{\mathcal{A}} \in\left(S_{\alpha q}^{n d}\left(\left\{s_{q}\right\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}}\right\} \\
& =\left\{\left(\left(f_{\gamma}\right)_{k}\right) \mathcal{A}\left(r_{1}^{\mathcal{A}}, \ldots, r_{m}^{\mathcal{A}}\right) \mid r_{q}^{\mathcal{A}} \in S_{\alpha_{q}}^{n A}\left(\left\{s_{q}\right\} \mathcal{A}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right)\right\} \\
& =S_{\alpha}^{n A}\left(\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right) \\
& =S_{\alpha}^{n d A}\left(T^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right) .
\end{aligned}
$$

3) If T is an arbitrary subset of $W(i)$, then

$$
\begin{aligned}
\left(S_{\alpha}^{n d}\left(T, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} & =\left(\bigcup_{t \in T} S_{\alpha}^{n d}\left(\{t\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} \\
& =\bigcup_{t \in T}\left(S_{\alpha}^{n d}\left(\{t\}, T_{1}, \ldots, T_{n}\right)\right)^{\mathcal{A}} \\
& =\bigcup_{t \in T}^{t \in T} S_{\alpha}^{n d \mathcal{A}}\left(\{t\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right) \\
& =S_{\alpha}^{n d A}\left(T^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \ldots, T_{n}^{\mathcal{A}}\right) .
\end{aligned}
$$

2 I-Sorted Nd-Identities and Nd-Model Classes

Let K be a subset of $\operatorname{Alg}(\Sigma)$ and we set $\mathcal{P}(X):=\left(\mathcal{P}\left(X_{i}\right)\right)_{i \in I}$.
Definition 2.1 A non-deterministic Σ-equation of sort i in $\mathcal{P}(X)$ is a pair $\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right)$ of elements from $\mathcal{P}(W(i)), i \in I$: Such pairs are more commonly written as $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$. The non-deterministic Σ-equation $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$ of sort i is said to be a non-deterministic Σ-identity of sort i in Σ-algebra \mathcal{A} if $\left(B_{1}\right)_{i}^{\mathcal{A}}=\left(B_{2}\right)_{i}^{\mathcal{A}}$.

In this case we also say that the non-deterministic Σ-equation $\left(B_{1}\right)_{i} \approx_{i}^{\text {nd }}$ $\left(B_{2}\right)_{i}$ is satisfied or modelled by the Σ-algebra \mathcal{A}, and write $\mathcal{A} \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}$ $\left(B_{2}\right)_{i}$. If the non-deterministic Σ-equation $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$ is satisfied by every Σ-algebra in K, we write $K \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$, that is,

$$
K \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}: \Leftrightarrow \forall \mathcal{A} \in K\left(\mathcal{A} \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right) .
$$

Let $\mathcal{K} \subseteq \mathcal{P}(\operatorname{Alg}(\Sigma))$. Then if the non-deterministic Σ-equation $\left(B_{1}\right)_{i} \approx_{i}^{\text {nd }}\left(B_{2}\right)_{i}$ is satisfied by every class in \mathcal{K}, we write $\mathcal{K} \models_{i}^{\text {nd }}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$, that is,

$$
\mathcal{K} \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}: \Leftrightarrow \forall K \in \mathcal{K}\left(K \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right) .
$$

For a set $\mathcal{P} \mathcal{L}(i)$ of non-deterministic Σ-equations of sort i we write $K \models_{i}^{\text {nd }}$ $\mathcal{P L}(i)$ if $K \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$ for all $\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right) \in \mathcal{P} \mathcal{L}(i)$. We write $\mathcal{K} \models_{i}^{\text {nd }} \mathcal{P L}(i)$ if $K \models_{i}^{\text {nd }}\left(B_{1}\right)_{i} \approx_{i}^{\text {nd }}\left(B_{2}\right)_{i}$ for all $K \in \mathcal{K}$, and $\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right) \in$ $\mathcal{P} \mathcal{L}(i)$.

For illustration we consider the following example.
Example 2.2 Let $I=\{1,2\}, X^{(2)}=\left(X_{i}^{(2)}\right)_{i \in I}$, and let $\Sigma=\{(1,1,1),(2,1,1)\}$. Let \mathcal{V} be a real vector space, $A_{1}=\left\{f_{(2,1,1)}\left(x_{21}, f_{(1,1,1)}\left(x_{11}, x_{12}\right)\right)\right\}, B_{1}=$ $\left\{f_{(1,1,1)}\right.$
$\left.\left(f_{(2,1,1)}\left(x_{21}, x_{11}\right), f_{(2,1,1)}\left(x_{21}, x_{12}\right)\right)\right\}$. Then the non-deterministic Σ-equation $A_{1} \approx_{1}^{n d} B_{1}$ of sort 1 is a non-deterministic Σ-identity of sort 1 in \mathcal{V}, that is, $\mathcal{V} \mid={ }_{1}^{n d} A_{1} \approx_{1}^{n d} B_{1}$. Then
$A_{1}^{\mathcal{V}}=\left\{f_{(2,1,1)}\left(x_{21}, f_{(1,1,1)}\left(x_{11}, x_{12}\right)\right)\right\}^{\mathcal{V}}$

$$
=\left\{\left(f_{(2,1,1)}\left(x_{21}, f_{(1,1,1)}\left(x_{11}, x_{12}\right)\right)\right)^{\mathcal{V}}\right\}
$$

$$
=\left\{\left(f_{(1,1,1)}\left(f_{(2,1,1)}\left(x_{21}, x_{11}\right), f_{(2,1,1)}\left(x_{21}, x_{12}\right)\right)\right)^{\mathcal{V}}\right\}
$$

$$
=\left\{f_{(1,1,1)}\left(f_{(2,1,1)}\left(x_{21}, x_{11}\right), f_{(2,1,1)}\left(x_{21}, x_{12}\right)\right)\right\}^{\mathcal{V}}
$$

$$
=B_{1}^{\mathcal{V}}
$$

Therefore $\mathcal{V} \not \models_{1}^{n d} A_{1} \approx_{1}^{n d} B_{1}$.
Let $\mathcal{K} \subseteq \mathcal{P}(\operatorname{Alg}(\Sigma))$ and $\mathcal{P} \mathcal{L}(i) \subseteq \mathcal{P}(W(i))^{2}$. Then we define a mapping

$$
n d \Sigma(i)-I d: \mathcal{P}(\mathcal{P}(\operatorname{Alg}(\Sigma))) \rightarrow \mathcal{P}\left(\mathcal{P}(W(i))^{2}\right)
$$

by
$n d \Sigma(i)-I d \mathcal{K}:=\left\{\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right) \in \mathcal{P}(W(i))^{2} \mid \forall K \in \mathcal{K}\left(K \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right)\right\}$,
and a mapping

$$
n d \Sigma(i)-\operatorname{Mod}: \mathcal{P}\left(\mathcal{P}(W(i))^{2}\right) \rightarrow \mathcal{P}(\mathcal{P}(\operatorname{Alg}(\Sigma)))
$$

by

$$
\begin{aligned}
n d \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}(i): & =\left\{K \in \mathcal{P}(\operatorname{Alg}(\Sigma)) \mid \forall\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right) \in \mathcal{P} \mathcal{L}(i)\left(K \mid={ }_{i}^{n d}\right.\right. \\
& \left.\left.\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right)\right\} .
\end{aligned}
$$

In the next propositions we will show that these two mappings satisfy the Galois-connection properties.

Proposition 2.3 Let $i \in I$, and let $\mathcal{P}(\operatorname{Alg}(\Sigma))$ be the set of all subsets of $\operatorname{Alg}(\Sigma)$ and let $\mathcal{K}, \mathcal{K}_{1}, \mathcal{K}_{2} \subseteq \mathcal{P}(\operatorname{Alg}(\Sigma))$. Then
(1) If $\mathcal{K}_{1} \subseteq \mathcal{K}_{2}$, then $n d \Sigma(i)-I d \mathcal{K}_{2} \subseteq n d \Sigma(i)-I d \mathcal{K}_{1}$,
(2) $\mathcal{K} \subseteq n d \Sigma(i)-M o d n d \Sigma(i)-I d \mathcal{K}$.

Proof (1) Assume that $\mathcal{K}_{1} \subseteq \mathcal{K}_{2}$ and let $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i} \in n d \Sigma(i)-I d \mathcal{K}_{2}$. Then for all $K \in \mathcal{K}_{2}, K=_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$, but we have $\mathcal{K}_{1} \subseteq \mathcal{K}_{2}$, so that $K \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$ for all $K \in \mathcal{K}_{1}$. It follows that $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i} \in$ $n d \Sigma(i)-I d \mathcal{K}_{1}$, and then $n d \Sigma(i)-I d \mathcal{K}_{2} \subseteq n d \Sigma(i)-I d \mathcal{K}_{1}$.
(2) Let $K \in \mathcal{K}$. Then $K \not \models_{i}^{n d} n d \Sigma(i)-I d \mathcal{K}$, means that $K \in n d \Sigma(i)$ $\operatorname{Modnd} \Sigma(i)-I d \mathcal{K}$, and then $\mathcal{K} \subseteq n d \Sigma(i)-M o d n d \Sigma(i)-I d \mathcal{K}$.

Proposition 2.4 Let $i \in I$, and let $\mathcal{P}(W(i))$ be the set of all subsets of $W(i)$ and let $\mathcal{P} \mathcal{L}(i), \mathcal{P} \mathcal{L}_{1}(i), \mathcal{P} \mathcal{L}_{2}(i) \subseteq \mathcal{P}(W(i))^{2}$. Then
(1) If $\mathcal{P} \mathcal{L}_{1}(i) \subseteq \mathcal{P} \mathcal{L}_{2}(i)$, then $n d \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}_{2}(i) \subseteq n d \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}_{1}(i)$,
(2) $\mathcal{P} \mathcal{L}(i) \subseteq n d \Sigma(i)-I d n d \Sigma(i)-M o d \mathcal{P} \mathcal{L}(i)$.

Proof (1) Assume that $\mathcal{P} \mathcal{L}_{1}(i) \subseteq \mathcal{P} \mathcal{L}_{2}(i)$ and let $K \in n d \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}_{2}(i)$. Then for all $\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right) \in \mathcal{P} \mathcal{L}_{2}(i), K \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$, but we have $\mathcal{P} \mathcal{L}_{1}(i) \subseteq \mathcal{P} \mathcal{L}_{2}(i)$, so that $K=_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$ for all $\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right) \in$ $\mathcal{P} \mathcal{L}_{1}(i)$, which means $K \in n d \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}_{1}(i)$, and then $n d \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}_{2}(i) \subseteq$ $n d \Sigma(i)-M o d \mathcal{P} \mathcal{L}_{1}(i)$.
(2) Let $\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right) \in \mathcal{P} \mathcal{L}(i)$. Then $n d \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}(i) \neq_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}$ $\left(B_{2}\right)_{i}$, means that $\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right) \in n d \Sigma(i)-I d n d \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}(i)$, and then $\mathcal{P} \mathcal{L}(i)$ $\subseteq n d \Sigma(i)-I d n d \Sigma(i)-M o d \mathcal{P L}(i)$.

From both propositions we have that $(n d \Sigma(i)-M o d, n d \Sigma(i)-I d)$ is a Galois connection between $\mathcal{P}(\operatorname{Alg}(\Sigma))$ and $\mathcal{P}(W(i))^{2}$ with respect to the relation
$\not \models_{i}^{n d}:=\left\{\left(K,\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right)\right) \in \mathcal{P}(\operatorname{Alg}(\Sigma)) \times \mathcal{P}(W(i))^{2} \mid K \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right\}$.
The fixed points with respect to the closure operator $n d \Sigma(i)-M o d n d \Sigma(i)-I d$ are called non-deterministic Σ-varieties of sort i and the fixed points with respect to the closure operator $n d \Sigma(i)-I d n d \Sigma(i)$-Mod are called non-deterministic Σ equational theories of sort i.

3 Application of Nd-Hypersubstitutions

Now we apply non-deterministic Σ-hypersubstitutions to many-sorted algebras and to many-sorted equations.

Definition 3.1 ([1])Let $\left(\left(f_{\gamma}\right)_{k}\right)_{k \in K_{\gamma}, \gamma \in \Sigma}$ be an indexed set of Σ-sorted operation symbols. Any mapping

$$
\left.\sigma_{i}:\left\{\left(f_{\gamma}\right)\right)_{k} \mid k \in K_{\gamma}, \gamma \in \Sigma(i)\right\} \rightarrow W(i), i \in I
$$

which preserves the arity, is said to be a Σ-hypersubstitution of sort i. Let $\Sigma(i)-H y p$ be the set of all Σ-hypersubstitutions of sort i. The I-sorted mapping $\sigma:=\left(\sigma_{i}\right)_{i \in I}$ is called an I-sorted Σ-hypersubstitution. Let Σ-Hyp be the set of all I-sorted Σ-hypersubstitutions. Any I-sorted Σ-hypersubstitution can inductively be extended to an I-sorted mapping $\hat{\sigma}:=\left(\hat{\sigma}_{i}\right)_{i \in I}$. The I-sorted mapping

$$
\hat{\sigma}: W_{\Sigma}(X) \rightarrow W_{\Sigma}(X)
$$

is inductively defined in the following way: For all $i \in I$, for every $t \in W(i)$,
(1) if $t=x_{i j} \in X_{i}$ with $1 \leq j \leq n$, then $\hat{\sigma}_{i}[t]:=x_{i j}$,
(2) if $t=\left(f_{\gamma}\right)_{k}\left(t_{1}, \ldots, t_{m}\right)$ with $k \in K_{\gamma}, \gamma \in \Sigma_{m}(i)$ and $t_{q} \in W\left(k_{q}\right), 1 \leq q \leq$ m whenever $\gamma=\left(k_{1}, \ldots, k_{m}, i\right)$ and if we assume that $\hat{\sigma}_{k_{q}}\left[t_{q}\right]$ are already defined, then

$$
\hat{\sigma}_{i}[t]:=S_{\gamma}\left(\sigma_{i}\left(\left(f_{\gamma}\right)_{k}\right), \hat{\sigma}_{k_{1}}\left[t_{1}\right], \ldots, \hat{\sigma}_{k_{m}}\left[t_{m}\right]\right)
$$

Definition 3.2 ([3]) Let $\mathcal{A}=\left(A ;\left(\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\right)_{k \in K_{\gamma}, \gamma \in \Sigma}\right)$ be a Σ-algebra and $\sigma \in \Sigma$-Hyp. Then we define a Σ-algebra by

$$
\sigma(\mathcal{A}):=\left(A ;\left(\left(\sigma_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}}\right)_{k \in K_{\gamma}, \gamma \in \Sigma(i), i \in I}\right)
$$

This algebra is called derived Σ-algebra determined by σ and \mathcal{A}.
Definition 3.3 Let A be an I-sorted set, $\mathcal{A}=\left(A ;\left(\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\right)_{k \in K_{\gamma}, \gamma \in \Sigma}\right)$ be a Σ-algebra and let $\sigma^{n d} \in n d \Sigma$-Hyp. Then we define a set of Σ-algebras by
$\sigma^{n d}(\mathcal{A}):=\left\{\rho(\mathcal{A}) \mid \rho \in \Sigma-\right.$ Hyp $,\left(\rho_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}} \in\left(\sigma_{i}^{n d}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}}, k \in K_{\gamma}, \gamma \in$ $\Sigma(i)$,

$$
i \in I\}
$$

Here ϱ is a many-sorted deterministic hypersubstitution (see [1]). This set of Σ-algebras is called the set of derived Σ-algebras determined by \mathcal{A} and $\sigma^{n d}$.

For illustration we consider the following example.
Example 3.4 Let $I=\{1,2\}, A=\left(A_{i}\right)_{i \in I}$. Let $\Sigma=\{(1,2,1),(2,1,2)\}, \mathcal{A}=$ $\left(A ; f_{(1,2,1)}^{\mathcal{A}} \cdot f_{(2,1,2)}^{\mathcal{A}}\right)$, and $\rho_{1}, \rho_{2}, \rho_{3} \in \Sigma-H y p$. Let $\sigma^{n d} \in n d \Sigma-H y p$ and assume that
$\left(\left(\rho_{2}\right)_{1}\left(f_{(1,2,1)}\right)\right)^{\mathcal{A}},\left(\left(\rho_{3}\right)_{1}\left(f_{(1,2,1)}\right)\right)^{\mathcal{A}} \in\left(\sigma_{1}^{n d}\left(f_{(1,2,1)}\right)\right)^{\mathcal{A}},\left(\left(\rho_{1}\right)_{2}\left(f_{(2,1,2)}\right)\right)^{\mathcal{A}}$,
$\left(\left(\rho_{2}\right)_{2}\left(f_{(2,1,2)}\right)\right)^{\mathcal{A}},\left(\left(\rho_{3}\right)_{2}\left(f_{(2,1,2)}\right)\right)^{\mathcal{A}} \in\left(\sigma_{2}^{n d}\left(f_{(2,1,2)}\right)\right)^{\mathcal{A}}$. Then we have $\rho_{2}(\mathcal{A})$, $\rho_{3}(\mathcal{A}) \in \sigma^{n d}(\mathcal{A})$ and $\rho_{1}(\mathcal{A}) \notin \sigma^{n d}(\mathcal{A})$, since $\left(\rho_{1}\right)_{1}\left(f_{(1,2,1)}\right)^{\mathcal{A}} \notin \sigma_{1}^{n d}\left(f_{(1,2,1)}\right)^{\mathcal{A}}$.

Definition 3.5 Let $B \in \mathcal{P}(W(i))$ and let \mathcal{A} be a Σ-algebra. Let $\sigma^{n d} \in n d \Sigma$ $H y p, \sigma^{n d}(\mathcal{A})$ be the set of derived algebras determined by \mathcal{A} and $\sigma^{n d}$. Then we define the set $B^{\sigma^{n d}(\mathcal{A})}$ of Σ-term operations induced by the set $\sigma^{n d}(\mathcal{A})$ of derived algebras as follows:
(1) If $B=\left\{x_{i j}\right\}$ where $x_{i j} \in X_{i}$, then
$B^{\sigma^{n d}(\mathcal{A})}:=\left\{x_{i j}^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma^{n d}(\mathcal{A})\right\}$.
(2) If $B=\left\{\left(f_{\gamma}\right)_{k}\left(s_{1}, \ldots, s_{m}\right)\right\}$ where $k \in K_{\gamma}, \gamma \in \Sigma_{m}(i)$ and $s_{q} \in W\left(i_{q}\right), 1 \leq$ $q \leq m, m \in \mathbb{N}$ whenever $\gamma=\left(i_{1}, \ldots, i_{m}, i\right)$, and if we assume that $\left\{s_{q}\right\}^{\sigma^{n d}(\mathcal{A})}$ are already defined, then
$B^{\sigma^{n d}(\mathcal{A})}:=S_{\gamma}^{n d A}\left(\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma^{n d}(\mathcal{A})\right\},\left\{s_{1}\right\}^{\sigma^{n d}(\mathcal{A})}, \ldots,\left\{s_{m}\right\}^{\sigma^{n d}(\mathcal{A})}\right)$.
(3) If B is an arbitrary subset of $W(i)$, then $B^{\sigma^{n d}(\mathcal{A})}:=\bigcup_{b \in B}\{b\}^{\sigma^{n d}(\mathcal{A})}$.

If B is empty, then $B^{\sigma^{n d}(\mathcal{A})}:=\emptyset$.
Theorem 3.6 Let A be an I-sorted set and $\left.\mathcal{A}=\left(A ;\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\right)_{k \in K_{\gamma}, \gamma \in \Sigma}\right)$ be a Σ-algebra. Let $\sigma^{n d} \in n d \Sigma$-Hyp and $B \in \mathcal{P}(W(i))$. Then $B^{\sigma^{n d}(\mathcal{A})}=\left(\hat{\sigma}_{i}^{n d}[B]\right)^{\mathcal{A}}$.
Proof If B is empty, then all is clear. If B is non-empty, then we will give a proof by induction on the complexity of the Σ-term which is the only element of the one-element set B.

1) If $B=\left\{x_{i j}\right\}$ where $x_{i j} \in X_{i}$, then

$$
\begin{aligned}
& B^{\sigma^{n d}}(\mathcal{A})=\left\{x_{i j}\right\}^{\sigma^{n d}(\mathcal{A})} \\
&=\left\{x_{i j}^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma^{n d}(\mathcal{A})\right\} \\
&=\left\{\left(\hat{\rho}_{i}\left[x_{i j}\right]\right)^{\mathcal{A}} \mid \rho(\mathcal{A}) \in \sigma^{n d}(\mathcal{A})\right\} \\
&=\left\{x_{i j}^{\mathcal{A}} \mid \rho(\mathcal{A}) \in \sigma^{n d}(\mathcal{A})\right\} \\
&=\left\{x_{i j}^{\mathcal{A}}\right\} \\
&=\left\{x_{i j}\right\} \\
&=\left(\hat{\sigma}_{i}^{n d}\left[\left\{x_{i j}\right\}\right]\right)^{\mathcal{A}} \\
&=\left(\hat{\sigma}_{i}^{n d}[B]\right)^{\mathcal{A}} .
\end{aligned}
$$

2) If $B=\left\{\left(f_{\gamma}\right)_{k}\left(t_{1}, \ldots, t_{m}\right)\right\} \in \mathcal{P}(W(i))$ where $k \in K_{\gamma}, \gamma \in \Sigma_{m}(i)$ and $t_{q} \in W\left(i_{q}\right), 1 \leq q \leq m, m \in \mathbb{N}$ whenever $\gamma=\left(i_{1}, \ldots, i_{m}, i\right)$ and if we assume that the equations

$$
\left\{t_{q}\right\}^{\sigma^{n d}(\mathcal{A})}=\left(\hat{\sigma}_{i_{q}}^{n d}\left[\left\{t_{q}\right\}\right]\right)^{\mathcal{A}}
$$

are satisfied, then

$$
\begin{aligned}
& B^{\sigma^{n d}}(\mathcal{A}) \\
&=\left\{\left(f_{\gamma}\right)_{k}\left(t_{1}, \ldots, t_{n}\right)\right\}^{\sigma^{n d}}(\mathcal{A}) \\
&= S_{\gamma}^{n d A}\left(\left\{\left(\left(f_{\gamma}\right)_{k}\right)^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma^{n d}(\mathcal{A})\right\},\left\{t_{1}\right\}^{\sigma^{n d}(\mathcal{A})}, \ldots,\left\{t_{m}\right\}^{\sigma^{n d}(\mathcal{A})}\right) \\
&= S_{\gamma}^{n d A}\left(\left\{\left(\rho_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}} \mid\left(\rho_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}} \in\left(\sigma_{i}^{n d}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}}\right\},\left\{t_{1}\right\}^{\sigma^{n d}(\mathcal{A})}, \ldots,\right. \\
&\left.\left.\left\{t_{m}\right\}\right\}^{\sigma^{n d}(\mathcal{A})}\right) \\
&= S_{\gamma}^{n d A}\left(\left\{\left(\rho_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}} \mid\left(\rho_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}} \in\left(\sigma_{i}^{n d}\left(\left(f_{\gamma}\right)\right)_{k}\right)\right)^{\mathcal{A}}\right\},\left(\hat{\sigma}_{i_{1}}^{n d}\left[\left\{t_{1}\right\}\right]\right)^{\mathcal{A}}, \ldots, \\
&\left.\left(\hat{\sigma}_{i}^{n d}\left[\left\{t_{m}\right\}\right]\right)^{\mathcal{A}}\right) \\
&= S_{\gamma}^{n d A}\left(\left(\sigma_{i}^{n d}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}},\left(\hat{\sigma}_{i_{1}}^{n d}\left[\left\{t_{1}\right\}\right]\right)^{\mathcal{A}}, \ldots,\left(\hat{\sigma}_{i_{m}}^{n d}\left[\left\{t_{m}\right\}\right]\right)^{\mathcal{A}}\right) \\
&=\left(S_{\gamma}^{n d}\left(\sigma_{i}^{n d}\left(\left(f_{\gamma}\right)_{k}\right),\left(\hat{\sigma}_{i_{1}}^{n d}\left[\left\{t_{1}\right\}\right]\right), \ldots,\left(\hat{\sigma}_{i_{m}}^{n d}\left[\left\{t_{m}\right\}\right]\right)\right)\right)^{\mathcal{A}} \\
&=\left(\hat{\sigma}_{i}^{n d}\left[\left\{\left(f_{\gamma}\right)_{k}\left(t_{1}, \ldots, t_{m}\right)\right\}\right]\right)^{\mathcal{A}} \\
&=\left(\hat{\sigma}_{i}^{n d}[B]\right)^{\mathcal{A}} .
\end{aligned}
$$

3) If B is an arbitrary subset of $W(i)$, then

$$
\begin{aligned}
B^{\sigma^{n d}(\mathcal{A})} & =\bigcup_{b \in B}\{b\}^{\sigma^{n d}}(\mathcal{A}) \\
& =\bigcup_{b \in B}\left(\hat{\sigma}_{i}^{n d}[\{b\}]\right)^{\mathcal{A}} \\
& =\left(\bigcup_{b \in B} \hat{\sigma}_{i}^{n d}[\{b\}]\right)^{\mathcal{A}} \\
& =\left(\hat{\sigma}_{i}^{n d}[B]\right)^{\mathcal{A}} .
\end{aligned}
$$

Let $K \subseteq \operatorname{Alg}(\Sigma)$. Then we set $\sigma^{n d}(K):=\bigcup_{\mathcal{A} \in K} \sigma^{n d}(\mathcal{A})$. Let $\sigma_{1}, \sigma_{2} \in \Sigma$-Hyp. Then we define $\sigma_{1} \diamond \sigma_{2}:=\left(\left(\sigma_{1}\right)_{i} \circ_{i}\left(\sigma_{2}\right)_{i}\right)_{i \in I}$.

Lemma 3.7 Let \mathcal{A} be a Σ-algebra and $\sigma_{1}^{\text {nd }}, \sigma_{2}^{\text {nd }}$ be elements in nd Σ-Hyp. Then

$$
\sigma_{1}^{n d}\left(\sigma_{2}^{n d}(\mathcal{A})\right)=\left(\sigma_{2}^{n d} \circ{ }^{n d} \sigma_{1}^{n d}\right)(\mathcal{A})
$$

Proof Assume that $k \in K_{\gamma}, \gamma \in \Sigma(i), i \in I$. Then we have

$$
\begin{aligned}
\sigma_{1}^{n d}\left(\sigma_{2}^{n d}(\mathcal{A})\right)= & \bigcup_{\rho(\mathcal{A}) \in \sigma_{2}^{n d}(\mathcal{A})} \sigma_{1}^{n d}(\rho(\mathcal{A})) \\
& =\bigcup_{\rho(\mathcal{A}) \in \sigma_{2}^{n d}(\mathcal{A})}\left\{\lambda(\rho(\mathcal{A})) \mid\left(\lambda_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\rho(\mathcal{A})} \in\left(\left(\sigma_{1}^{n d}\right)_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\rho(\mathcal{A})}\right\} \\
& =\bigcup_{\rho(\mathcal{A}) \in \sigma_{2}^{n d}(\mathcal{A})}\left\{(\rho \diamond \lambda)(\mathcal{A}) \mid\left(\hat{\rho}_{i}\left[\lambda_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right]\right)^{\mathcal{A}} \in\left(\left(\sigma_{1}^{n d}\right)_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\rho(\mathcal{A})}\right\} \\
& =\left\{(\rho \diamond \lambda)(\mathcal{A}) \mid\left(\hat{\rho}_{i}\left[\lambda_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right]\right)^{\mathcal{A}} \in\left(\left(\sigma_{1}^{n d}\right)_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\left.\sigma_{2}^{n d}(\mathcal{A})\right\}}\right\} \\
= & \left\{(\rho \diamond \lambda)(\mathcal{A}) \mid\left(\hat{\rho}_{i}\left[\lambda_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right]\right)^{\mathcal{A}} \in\left(\left(\hat{\sigma}_{2}^{n d}\right)_{i}\left[\left(\sigma_{1}^{n d}\right)_{i}\left(\left(f_{\gamma}\right)_{k}\right)\right]\right)^{\mathcal{A}}\right\} \\
& =\left\{(\rho \diamond \lambda)(\mathcal{A}) \mid\left(\left(\hat{\rho}_{i} \circ \lambda_{i}\right)\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}} \in\left(\left(\left(\hat{\sigma}_{2}^{n d}\right)_{i} \circ\left(\sigma_{1}^{n d}\right)_{i}\right)\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}}\right\} \\
= & \left\{(\rho \diamond \lambda)(\mathcal{A}) \mid\left(\left(\rho_{i} \circ_{i} \lambda_{i}\right)\left(\left(f_{\gamma}\right)_{k}\right)\right)^{\mathcal{A}} \in\left(\left(\left(\sigma_{2}^{n d}\right)_{i} \circ_{i}^{n d}\left(\sigma_{1}^{n d}\right)_{i}\right)\left(\left(f_{\gamma}\right)\right)_{k}\right)\right)^{\mathcal{A}\}} \\
= & \left(\sigma_{2}^{n d} \circ^{n d} \sigma_{1}^{n d}\right)(\mathcal{A}) .
\end{aligned}
$$

Remark 3.8 Let K be a non-empty subset of $\operatorname{Alg}(\Sigma)$. Then

$$
\begin{aligned}
\sigma_{i d}^{n d}(K) & =\bigcup_{\mathcal{A} \in K} \sigma_{i d}^{n d}(\mathcal{A}) \\
& =\bigcup_{\mathcal{A} \in K}\left\{\rho_{i d}(\mathcal{A}) \mid \rho_{i d}(\mathcal{A}) \in \sigma_{i d}^{n d}(\mathcal{A})\right\} \\
& =\bigcup_{\mathcal{A} \in K}\left\{\mathcal{A} \mid \mathcal{A} \in \sigma_{i d}^{n d}(\mathcal{A})\right\} \\
& =K
\end{aligned}
$$

Definition 3.9 Let $\mathcal{A} \in \operatorname{Alg}(\Sigma)$ said to hypersatisfy the non-deterministic Σ identity $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$ of sort $i \in I$ if for every $\sigma_{i}^{n d} \in n d \Sigma(i)$-Hyp, the non-deterministic Σ-identities $\hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] \approx_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right]$ hold in \mathcal{A}.

In this case we say that the non-deterministic Σ-identity $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$ of sort i is satisfied as a non-deterministic Σ-hyperidentity of sort i in \mathcal{A} and write $\mathcal{A}=_{i}^{n d} \quad\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}$, that is,

$$
\mathcal{A} \underset{\substack{n d \Sigma-h y p}}{=n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}: \Leftrightarrow \forall \sigma_{i}^{n d} \in n d \Sigma(i)-H y p\left(\mathcal{A} \mid={ }_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] \approx_{i}^{n d}\right.
$$ $\left.\hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right]\right)$.

For illustration we consider the following example.
Example 3.10 Let $I=\{1,2\}, X^{(2)}=\left(X_{i}^{(2)}\right)_{i \in I}, \Sigma=\{(1,1,1)\}$. Let $\left(B_{1} ; \circ_{1}\right)$, $\left(B_{2} ; \circ_{2}\right)$ be a band, and let $\mathcal{D B}$ be double bands where $\mathcal{D B}:=\left(\left(B_{i}\right)_{i \in I} ;\left(\circ_{i}\right)_{i \in I}\right)$. Let $A_{1}=\left\{f_{(1,1,1)}\left(x_{1 j}, x_{1 j}\right)\right\}, B_{1}=\left\{x_{1 j}\right\}, 1 \leq j \leq 2$. Then $\mathcal{D B} \underset{n d \Sigma-h y p}{\neq 1_{1}^{n d}} A_{1} \approx_{1}^{n d}$
B_{1}. It is easy to see that $\mathcal{D B} \vDash{ }_{1}^{n d} A_{1} \approx_{1}^{n d} B_{1}$. Let $\sigma_{1}^{n d} \in n d \Sigma(1)$-Hyp and $\rho(\mathcal{D B}) \in \sigma^{n d}(\mathcal{D B})$ where $\rho \in \Sigma$-Hyp. Then

$$
\begin{aligned}
\left\{f_{(1,1,1)}\left(x_{1 j}, x_{1 j}\right)\right\}^{\rho(\mathcal{D B})} & =\left\{\left(f_{(1,1,1)}\left(x_{1 j}, x_{1 j}\right)\right)^{\rho(\mathcal{D B})}\right\} \\
& =\left\{\left(\hat{\rho}_{1}\left[f_{(1,1,1)}\left(x_{1 j}, x_{1 j}\right)\right]\right)^{\mathcal{D B}}\right\} \\
& =\left\{\left(\hat{\rho}_{1}\left(x_{1 j}\right]\right)^{\mathcal{D} \mathcal{B}}\right\} \\
& =\left\{x_{1 j}^{\rho(\mathcal{D B})}\right\} \\
& =\left\{x_{1 j}\right\}^{\rho(\mathcal{D B})},
\end{aligned}
$$

this means, $\sigma^{n d}(\mathcal{D B}) \neq_{1}^{n d} A_{1} \approx_{1}^{n d} B_{1}$, that is, $A_{1}^{\sigma^{n d}(\mathcal{D B})}=B_{1}^{\sigma^{n d}(\mathcal{D B})}$. It follows that $\left(\hat{\sigma}_{1}^{n d}\left[A_{1}\right]\right)^{\mathcal{D B}}=\left(\hat{\sigma}_{1}^{n d}\left[B_{1}\right]\right)^{\mathcal{D B}}$. Thus $\mathcal{D B} \underset{\substack{ \\n d \Sigma-h y p}}{1} A_{1}^{n d} \approx_{1}^{n d} B_{1}$.

Now we define two mappings which give a second Galois connection.
Definition 3.11 Let $\mathcal{K} \subseteq \mathcal{P}(\operatorname{Alg}(\Sigma))$ and $\mathcal{P} \mathcal{L}(i) \subseteq \mathcal{P}(W(i))^{2}$. Then we define a mapping

$$
n d H \Sigma(i)-I d: \mathcal{P}(\mathcal{P}(A l g(\Sigma))) \rightarrow \mathcal{P}\left(\mathcal{P}(W(i))^{2}\right)
$$

by
$n d H \Sigma(i)-I d \mathcal{K}:=\left\{\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i} \in \mathcal{P}(W(i))^{2} \mid \forall K \in \mathcal{K}(K \underset{n d \Sigma-h y p}{\mid=n d}\right.$ $\left.\left.\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right)\right\}$,
and define a mapping

$$
n d H \Sigma(i)-M o d: \mathcal{P}\left(\mathcal{P}(W(i))^{2}\right) \rightarrow \mathcal{P}(\mathcal{P}(\operatorname{Alg}(\Sigma)))
$$

by

$$
n d H \Sigma(i)-M o d \mathcal{P} \mathcal{L}(i):=\left\{K \in \mathcal{P}(\operatorname{Alg}(\Sigma)) \mid \forall\left(\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}\right) \in \mathcal{P} \mathcal{L}(i)\left(K \underset{i}{=i_{i}} \underset{n d \Sigma-h y p}{n d}\right.\right.
$$ $\left.\left.\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right)\right\}$.

We see that $(n d H \Sigma(i)-M o d, n d H \Sigma(i)-I d)$ is a Galois connection between $\mathcal{P}(A l g(\Sigma))$ and $\mathcal{P}(W(i))^{2}$ with respect to the relation

$$
\underset{n d \Sigma-h y p}{\mid=n d}:=\left\{\left(K,\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right) \in \mathcal{P}(A l g(\Sigma)) \times \mathcal{P}(W(i))^{2} \mid K \underset{\substack{n d \Sigma-h y p}}{\substack{n d \\ n d}}\right.
$$

$\left(B_{1}\right)_{i} \approx_{i}^{n d}$
$\left.\left(B_{2}\right)_{i}\right\}$.
Definition 3.12 Let $\mathcal{K} \subseteq \mathcal{P}(A l g(\Sigma))$ and $\mathcal{P} \mathcal{L}(i) \subseteq \mathcal{P}(W(i))^{2}$. Then we set $\chi^{n d \Sigma-E(i)}\left[\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right]:=\left\{\hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] \approx_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right] \mid \sigma_{i}^{n d} \in n d \Sigma(i)-H y p\right\}$
and

$$
\chi^{n d \Sigma-A}[K]:=\left\{\sigma^{n d}(K) \mid \sigma^{n d} \in n d \Sigma-H y p\right\} .
$$

We define two operators in the following way:

$$
\chi^{n d \Sigma-E(i)}: \mathcal{P}\left(\mathcal{P}(W(i))^{2}\right) \rightarrow \mathcal{P}\left(\mathcal{P}(W(i))^{2}\right) \text { by }
$$

$$
\chi^{n d \Sigma-E(i)}[\mathcal{P L}(i)]:=\bigcup_{\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i} \in \mathcal{P L}(i)} \chi^{n d \Sigma-E(i)}\left[\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right]
$$

and

$$
\begin{gathered}
\chi^{n d \Sigma-A}: \mathcal{P}(\mathcal{P}(A l g(\Sigma))) \rightarrow \mathcal{P}(\mathcal{P}(A l g(\Sigma))) \text { by } \\
\chi^{n d \Sigma-A}[\mathcal{K}]:=\bigcup_{K \in \mathcal{K}} \chi^{n d \Sigma-A}[K] .
\end{gathered}
$$

In the next propositions we will show that the both operators are closure operators.

Proposition 3.13 Let $\mathcal{P} \mathcal{L}(i), \mathcal{P} \mathcal{L}_{1}(i), \mathcal{P} \mathcal{L}_{2}(i)$ be subsets of $\mathcal{P}(W(i))^{2}$. Then
(i) $\mathcal{P L}(i) \subseteq \chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]$,
(ii) $\mathcal{P} \mathcal{L}_{1}(i) \subseteq \mathcal{P} \mathcal{L}_{2}(i) \Rightarrow \chi^{n d \Sigma-E(i)}\left[\mathcal{P} \mathcal{L}_{1}(i)\right] \subseteq \chi^{n d \Sigma-E(i)}\left[\mathcal{P} \mathcal{L}_{2}(i)\right]$,
(iii) $\chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]=\chi^{n d \Sigma-E(i)}\left[\chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]\right]$.

Proof (i) Let $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i} \in \mathcal{P} \mathcal{L}(i)$. Then, since $\left(B_{1}\right)_{i}=\left(\hat{\sigma}_{i}^{n d}\right)_{i d}\left[\left(B_{1}\right)_{i}\right]$ and $\left(B_{2}\right)_{i}=\left(\hat{\sigma}_{i}^{n d}\right)_{i d}\left[\left(B_{2}\right)_{i}\right]$, we have $\left(\hat{\sigma}_{i}^{n d}\right)_{i d}\left[\left(B_{1}\right)_{i}\right]=\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}=$ $\left(\hat{\sigma}_{i}^{n d}\right)_{i d}\left[\left(B_{2}\right)_{i}\right] \in \chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]$ and this means $\mathcal{P} \mathcal{L}(i) \subseteq \chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]$.
(ii) Assume that $\mathcal{P} \mathcal{L}_{1}(i) \subseteq \mathcal{P} \mathcal{L}_{2}(i)$ and let $\hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] \approx_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right] \in$ $\chi^{n d \Sigma-E(i)}$
$\left[\mathcal{P} \mathcal{L}_{1}(i)\right]$. Then $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i} \in \mathcal{P} \mathcal{L}_{1}(i)$, but $\mathcal{P} \mathcal{L}_{1}(i) \subseteq \mathcal{P} \mathcal{L}_{2}(i)$, so that $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i} \in \mathcal{P} \mathcal{L}_{2}(i)$ and $\hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] \approx_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right] \in \chi^{n d \Sigma-E(i)}\left[\mathcal{P} \mathcal{L}_{2}(i)\right]$. We have $\chi^{n d \Sigma-E(i)}\left[\mathcal{P} \mathcal{L}_{1}(i)\right] \subseteq \chi^{n d \Sigma-E(i)}\left[\mathcal{P} \mathcal{L}_{2}(i)\right]$.
(iii) By (i) we have $\chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)] \subseteq \chi^{n d \Sigma-E(i)}\left[\chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]\right]$. On the other hand, let $\hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] \approx_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right] \in \chi^{n d \Sigma-E(i)}\left[\chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]\right]$. Then $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i} \in \chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]$, and there exists $\rho_{i}^{n d} \in n d \Sigma(i)-H y p$ and $\left(C_{1}\right)_{i} \approx_{i}^{n d}\left(C_{2}\right)_{i} \in \mathcal{P} \mathcal{L}(i)$ such that $\left(B_{1}\right)_{i}=\hat{\rho}_{i}^{n d}\left[\left(C_{1}\right)_{i}\right]$ and $\left(B_{2}\right)_{i}=\hat{\rho}_{i}^{n d}\left[\left(C_{2}\right)_{i}\right]$, and we have

$$
\begin{aligned}
\hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] & =\hat{\sigma}_{i}^{n d}\left[\hat{\rho}_{i}^{n d}\left[\left(C_{1}\right)_{i}\right]\right] \\
& =\hat{\sigma}_{i}^{n d} \circ \hat{\rho}_{i}^{n d}\left[\left(C_{1}\right)_{i}\right] \\
& =\left(\sigma_{i}^{n d} \circ_{i}^{n d} \rho_{i}^{n d}\right)^{\wedge}\left[\left(C_{1}\right)_{i}\right] \\
& =\hat{\lambda}_{i}^{n d}\left[\left(C_{1}\right)_{i}\right], \text { where } \lambda_{i}^{n d}=\sigma_{i}^{n d} \circ_{i}^{n d} \rho_{i}^{n d} \in n d \Sigma(i) \text {-Hyp }, \text { and } \\
\hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right] & =\hat{\sigma}_{i}^{n d}\left[\hat{\rho}_{i}^{n d}\left[\left(C_{2}\right)_{i}\right]\right] \\
& =\hat{\sigma}_{i}^{n d} \circ \hat{\rho}_{i}^{n d}\left[\left(C_{2}\right)_{i}\right] \\
& =\left(\sigma_{i}^{n d} \circ_{i}^{n d} \rho_{i}^{n d}\right)^{\wedge}\left[\left(C_{2}\right)_{i}\right] \\
& =\hat{\lambda}_{i}^{n d}\left[\left(C_{2}\right)_{i}\right] .
\end{aligned}
$$

Then we set $\hat{\lambda}_{i}^{n d}\left[\left(C_{1}\right)_{i}\right]=\hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] \approx_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right]=\hat{\lambda}_{i}^{n d}\left[\left(C_{2}\right)_{i}\right] \in \chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]$, and then $\chi^{n d \Sigma-E(i)}\left[\chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]\right] \subseteq \chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]$.

Proposition 3.14 Let $\mathcal{K}, \mathcal{K}_{1}, \mathcal{K}_{2} \subseteq \mathcal{P}(\operatorname{Alg}(\Sigma))$. Then
(i) $\mathcal{K} \subseteq \chi^{n d \Sigma-A}[\mathcal{K}]$,
(ii) $\mathcal{K}_{1} \subseteq \mathcal{K}_{2} \Rightarrow \chi^{n d \Sigma-A}\left[\mathcal{K}_{1}\right] \subseteq \chi^{n d \Sigma-A}\left[\mathcal{K}_{2}\right]$,
(iii) $\chi^{n d \Sigma-A}[\mathcal{K}]=\chi^{n d \Sigma-A}\left[\chi^{n d \Sigma-A}[\mathcal{K}]\right]$.

Proof (i) Let $K \in \mathcal{K}$. Then, since $K=\sigma_{i d}^{n d}(K) \in \chi^{n d \Sigma-A}[\mathcal{K}]$ we have $\mathcal{K} \subseteq \chi^{n d \Sigma-A}[\mathcal{K}]$.
(ii) Assume that $\mathcal{K}_{1} \subseteq \mathcal{K}_{2}$ and let $\sigma^{n d}(K) \in \chi^{n d \Sigma-A}\left[\mathcal{K}_{1}\right]$. Then $K \in \mathcal{K}_{1}$ by our assumption that we have $K \in \mathcal{K}_{2}$, with $\sigma^{n d}(K) \in \chi^{n d \Sigma-A}\left[\mathcal{K}_{2}\right]$, and then $\chi^{n d \Sigma-A}\left[\mathcal{K}_{1}\right] \subseteq \chi^{n d \Sigma-A}\left[\mathcal{K}_{2}\right]$.
(iii) By (i), we have $\chi^{n d \Sigma-A}[\mathcal{K}] \subseteq \chi^{n d \Sigma-A}\left[\chi^{n d \Sigma-A}[\mathcal{K}]\right]$. We will show that $\chi^{n d \Sigma-A}$
$\left[\chi^{n d \Sigma-A}[\mathcal{K}]\right] \subseteq \chi^{n d \Sigma-A}[\mathcal{K}]$. Let $\sigma^{n d}(K) \in \chi^{n d \Sigma-A}\left[\chi^{n d \Sigma-A}[\mathcal{K}]\right]$. Then $K \in$ $\chi^{n d \Sigma-A}[\mathcal{K}]$, and there exists $\rho^{n d} \in n d \Sigma-H y p$ and $K_{1} \in \mathcal{K}$ such that $K=$ $\rho^{n d}\left(K_{1}\right)$ and we have
$\sigma^{n d}(K)=\sigma^{n d}\left(\rho^{n d}\left(K_{1}\right)\right)$
$=\left(\rho^{n d}{ }_{\circ}{ }^{n d} \sigma^{n d}\right)\left(K_{1}\right)$
$=\quad \lambda^{n d}\left(K_{1}\right)$, where $\lambda^{n d}=\rho^{n d} \circ^{n d} \sigma^{n d} \in n d \Sigma$-Hyp.
Thus we have $\sigma^{n d}(K)=\lambda^{n d}\left(K_{1}\right) \in \chi^{n d \Sigma-A}[\mathcal{K}]$, and is $\chi^{n d \Sigma-A}\left[\chi^{n d \Sigma-A}[\mathcal{K}]\right] \subseteq$ $\chi^{n d \Sigma-A}[\mathcal{K}]$.

Definition 3.15 Let K be a subset of $\operatorname{Alg}(\Sigma)$, and $\left(B_{1}\right)_{i},\left(B_{2}\right)_{i}$ be subsets of $W(i), i \in I$. Let $\sigma^{n d} \in n d \Sigma$-Hyp. Then we define

$$
\sigma^{n d}(K) \neq=_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}: \Leftrightarrow \forall \mathcal{A} \in K\left(\sigma^{n d}(\mathcal{A}) \neq_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right)
$$

Theorem 3.16 Let K be a subset of $\operatorname{Alg}(\Sigma)$ and $\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i} \in \mathcal{P}(W(i))^{2}$, $\sigma^{n d} \in n d \Sigma-H y p$. Then we have

$$
\sigma^{n d}(K) \mid={ }_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i} \Longleftrightarrow K \neq_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] \approx_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right]
$$

Proof We obtain

$$
\begin{aligned}
\sigma^{n d}(K) \models_{i}^{n d}\left(B_{1}\right)_{i} & \approx_{i}^{n d}\left(B_{2}\right)_{i} \Longleftrightarrow \forall \mathcal{A} \in K\left(\sigma^{n d}(\mathcal{A}) \models_{i}^{n d}\left(B_{1}\right)_{i} \approx_{i}^{n d}\left(B_{2}\right)_{i}\right) \\
& \Longleftrightarrow \forall \mathcal{A} \in K\left(\left(B_{1}\right)_{i}^{\sigma^{n d}}(\mathcal{A})=\left(B_{2}\right)_{i}^{\sigma^{n d}}(\mathcal{A})\right. \\
& \Longleftrightarrow \forall \mathcal{A} \in K\left(\left(\hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right]\right)=\left(\hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right]\right) \mathcal{A}\right) \\
& \Longleftrightarrow \forall \mathcal{A} \in K\left(\mathcal{A} \models{ }_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] \approx_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right]\right) \\
& \Longleftrightarrow K=_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{1}\right)_{i}\right] \approx_{i}^{n d} \hat{\sigma}_{i}^{n d}\left[\left(B_{2}\right)_{i}\right] .
\end{aligned}
$$

Theorem 3.17 The pair ($\chi^{n d \Sigma-A}$, $\left.\chi^{n d \Sigma-E(i)}\right)$ is a conjugate pair of completely additive closure operators with respect to the relation $\models_{i}^{n d}$

Proof By Definition 3.12, Propositions 3.13-3.14, and Theorem 3.16.
Now we may apply the theory of conjugate pairs of additive closure operators (see e.g. [7]) and obtain the following propositions:

Lemma 3.18 ([7]) For all $\mathcal{K} \subseteq \mathcal{P}(\operatorname{Alg}(\Sigma))$ and for all $\mathcal{P} \mathcal{L}(i) \subseteq \mathcal{P}(W(i))^{2}$ the following properties hold:
(i) $n d H \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}(i)=n d \Sigma(i)-\operatorname{Mod} \chi^{n d \Sigma-E(i)}[\mathcal{P L}(i)]$,
(ii) $n d H \Sigma(i)-M o d \mathcal{P} \mathcal{L}(i) \subseteq n d \Sigma(i)-\operatorname{ModPL} \mathcal{L}(i)$,
(iii) $\chi^{n d \Sigma-A}[n d H \Sigma(i)-M o d \mathcal{P}(i)]=n d H \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}(i)$,
(iv) $\chi^{n d \Sigma-E(i)}[n d \Sigma(i)-\operatorname{IdndH} \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}(i)]=n d \Sigma(i)-I d n d H \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}(i)$,
(v) $n d H \Sigma(i)-M o d n d H \Sigma(i)-I d \mathcal{K}=n d \Sigma(i)-M o d n d \Sigma(i)-I d \chi^{n d \Sigma-A}[\mathcal{K}]$, and
(i) ${ }^{\prime} n d H \Sigma(i)-I d \mathcal{K}=n d \Sigma(i)-I d \chi^{n d \Sigma-A}[\mathcal{K}]$,
(ii) ${ }^{\prime} n d H \Sigma(i)-I d \mathcal{K} \subseteq n d \Sigma(i)-I d \mathcal{K}$,
$(\text { (iii })^{\prime} \chi^{n d \Sigma-E(i)}[n d H \Sigma(i)-I d \mathcal{K}]=n d H \Sigma(i)-I d \mathcal{K}$,
(iv) $\chi^{n d \Sigma-A}[n d \Sigma(i)-M o d n d H \Sigma(i)-I d \mathcal{K}]=n d \Sigma(i)-M o d n d H \Sigma(i)-I d \mathcal{K}$,
$(\mathrm{v})^{\prime} n d H \Sigma(i)-I d n d H \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}(i)=n d \Sigma(i)-\operatorname{Idnd\Sigma }(i)-\operatorname{Mod} \chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]$.

$4 \quad I$-Sorted Nd-Solid Varieties

Definition 4.1 Let $\mathcal{K} \subseteq \mathcal{P}(\operatorname{Alg}(\Sigma))$ be a subclass of the set of all subsets of $\operatorname{Alg}(\Sigma)$ and let $\mathcal{P} \mathcal{L}(i) \subseteq \mathcal{P}(W(i))^{2}$ be a subset of the set of all non-deterministic Σ-equations of sort i. Then \mathcal{K} is called a non-determistic solid model class of sort i or is called a non-deterministic solid Σ-variety of sort i if every non-deterministic Σ-identity of sort i is satisfied as a non-deterministic Σ hyperidentity of sort i :

$$
\mathcal{K} \underset{n d \Sigma-h y p}{\substack{i n d \\ i n d}} n d \Sigma(i)-I d \mathcal{K} .
$$

\mathcal{K} is called I-sorted non-deterministic solid model class if every non-deterministic Σ-identity of sort i is satisfied as a non-deterministic Σ-hyperidentity of sort i for all $i \in I$, that is,

$$
\mathcal{K} \underset{\substack{i \\ n d \Sigma-h y p}}{=_{i} d} n d \Sigma(i)-I d \mathcal{K} \text {, for all } i \in I .
$$

$\mathcal{P} \mathcal{L}(i), i \in I$ is said to be a non-deterministic Σ-equational theory of sort i if there exists a class $\mathcal{K} \subseteq \mathcal{P}(A \lg (\Sigma))$ such that $\mathcal{P} \mathcal{L}(i)=n d \Sigma(i)-I d \mathcal{K}$. Then we set $\mathcal{P L}:=(\mathcal{P L}(i))_{i \in I}$. This I-sorted set is called I-sorted non-deterministic Σ-equational theory.

Using the propositions of Lemma 3.18 one obtains the following characterization of non-deterministic solid Σ-varieties.

Theorem 4.2 ([7]) Let \mathcal{K} be a non-deterministic Σ-variety of sort $i \in I$. Then the following properties are equivalent:
(i) $\mathcal{K}=n d H \Sigma(i)-M o d n d H \Sigma(i)-I d \mathcal{K}$,
(ii) $\chi^{n d \Sigma-A}[\mathcal{K}]=\mathcal{K}$,
(iii) $n d \Sigma(i)-I d \mathcal{K}=n d H \Sigma(i)-I d \mathcal{K}$,
(iv) $\chi^{n d \Sigma-E(i)}[n d \Sigma(i)-I d \mathcal{K}]=n d \Sigma(i)-I d \mathcal{K}$.

Theorem 4.3 ([7]) Let $\mathcal{P} \mathcal{L}(i)$ be a non-deterministic Σ-equational theory of sort $i \in I$. Then the following properties are equivalent:
(i) $\mathcal{P} \mathcal{L}(i)=n d H \Sigma(i)-I d n d H \Sigma(i)-M o d \mathcal{P} \mathcal{L}(i)$,
(ii) $\chi^{n d \Sigma-E(i)}[\mathcal{P} \mathcal{L}(i)]=\mathcal{P} \mathcal{L}(i)$,
(iii) $n d \Sigma(i)-M o d \mathcal{P} \mathcal{L}(i)=n d H \Sigma(i)-M o d \mathcal{P} \mathcal{L}(i)$,
(iv) $\chi^{n d \Sigma-A}[n d \Sigma(i)-M o d \mathcal{P} \mathcal{L}(i)]=n d \Sigma(i)-\operatorname{Mod} \mathcal{P} \mathcal{L}(i)$.

$5 \quad I$-sorted $N d$-Complete Lattices

Let $\mathcal{P H}(i)$ be the class of all fixed points with respect to the closure operator $n d \Sigma(i)-M o d n d \Sigma(i)-I d$:

$$
\mathcal{P H}(i):=\{\mathcal{K} \subseteq \mathcal{P}(\operatorname{Alg}(\Sigma)) \mid \mathcal{K}=n d \Sigma(i)-M o d n d \Sigma(i)-I d \mathcal{K}\}
$$

that is, $\mathcal{P} \mathcal{H}(i)$ is the class of all non-deterministic Σ-varieties of sort i. Then $\mathcal{P H}(i)$ forms a non-deterministic complete lattice of non-deterministic Σ-varieties of sort i. Let $\mathcal{P H} y(i)$ be the class of all fixed points with respect to the closure operator $n d H \Sigma(i)-M o d n d H \Sigma(i)-I d$:

$$
\mathcal{P H} y(i):=\{\mathcal{K} \subseteq \mathcal{P}(\operatorname{Alg}(\Sigma)) \mid \mathcal{K}=n d H \Sigma(i)-M o d n d H \Sigma(i)-I d \mathcal{K}\}
$$

that is, $\mathcal{P H} y(i)$ is the class of all non-deterministic solid Σ-varieties of sort i. Then $\mathcal{P H} y(i)$ forms a non-deterministic complete lattice of non-deterministic solid Σ-varieties of sort i and $\mathcal{P H} y(i)$ is a non-deterministic complete sublattice of $\mathcal{P H}(i)$. We set $\mathcal{P H}:=(\mathcal{P} \mathcal{H}(i))_{i \in I}$ and $\mathcal{P H} y:=(\mathcal{P H} y(i))_{i \in I} . \mathcal{P H}$ is called an I-sorted non-deterministic complete lattice. $\mathcal{P H} y$ is called an I-sorted nondeterministic complete sublattice of $\mathcal{P H}$, since for every $i \in I, \mathcal{P H} y(i)$ is a non-deterministic complete sublattice of $\mathcal{P H}(i)$. Dually, let $\mathcal{P} \mathcal{L}(i)$ be the class of all fixed points with respect to the closure operator $n d \Sigma(i)-I d n d \Sigma(i)-M o d$:

$$
\mathcal{P} \mathcal{P} \mathcal{L}(i):=\left\{\mathcal{P} \mathcal{L}(i) \subseteq \mathcal{P}(W(i))^{2} \mid \mathcal{P} \mathcal{L}(i)=n d \Sigma(i)-\operatorname{Idnd}(i)-M o d \mathcal{P} \mathcal{L}(i)\right\}
$$

that is, $\mathcal{P} \mathcal{P} \mathcal{L}(i)$ is the class of all non-deterministic Σ-equational theories of sort i. Then $\mathcal{P} \mathcal{P} \mathcal{L}(i)$ forms a nondeterministic complete lattice of Σ-equational
theories of sort i. Let $\mathcal{P} \mathcal{P} \mathcal{L} y(i)$ be the class of all fixed points with respect to the closure operator $n d H \Sigma(i)-I d n d H \Sigma(i)$-Mod:

$$
\mathcal{P} \mathcal{P} \mathcal{L} y(i):=\left\{\mathcal{P} \mathcal{L}(i) \subseteq \mathcal{P}(W(i))^{2} \mid \mathcal{P} \mathcal{L}(i)=n d H \Sigma(i)-I d n d H \Sigma(i)-M o d \mathcal{P} \mathcal{L}(i)\right\}
$$

that is, $\mathcal{P} \mathcal{P} \mathcal{L} y(i)$ is the class of all non-deterministic solid Σ-equational theories of sort i. Then $\mathcal{P} \mathcal{P} \mathcal{L} y(i)$ forms a non-deterministic complete lattice of non-deterministic solid Σ-equational theories of sort i and $\mathcal{P} \mathcal{P} \mathcal{L} y(i)$ is a nondeterministic complete sublattice of $\mathcal{P} \mathcal{P} \mathcal{L}(i)$. We set $\mathcal{P} \mathcal{P} \mathcal{L}:=(\mathcal{P} \mathcal{P} \mathcal{L}(i))_{i \in I}$ and $\mathcal{P} \mathcal{P} \mathcal{L} y:=(\mathcal{P} \mathcal{P} \mathcal{L} y(i))_{i \in I} . \mathcal{P} \mathcal{P} \mathcal{L}$ is called an I-sorted non-deterministic complete lattice. $\mathcal{P} \mathcal{P} \mathcal{L} y$ is called an I-sorted non-deterministic complete sublattice of $\mathcal{P} \mathcal{P} \mathcal{L}$, since for every $i \in I, \mathcal{P} \mathcal{P} \mathcal{L} y(i)$ is a non-deterministic complete sublattice of $\mathcal{P} \mathcal{P} \mathcal{L}(i)$.

Our results show that the most results of [4] are valid also in the manysorted case if the superposition of many-sorted tree languages and of sets of many-sorted terms are defined in the way in which we did.

References

[1] K. Denecke and S. Lekkoksung, Hypersubstitutions of Many-Sorted Algebras, Asian-European J. Math. ,Vol. I 3 (2008) 337-346.
[2] K. Denecke and S. Lekkoksung, Hyperidentities in Many-Sorted Algebras, preprint 2009.
[3] K. Denecke and S. Lekkoksung, Nd-Hypersubstitutions of Many-Sorted Agebras, preprint 2009.
[4] K. Denecke and P. Glubudom, Nd-Solid Varieties, Discussiones Mathematicae, General Algebra and Applications, 27 (2007) 245-262.
[5] K. Denecke and S. L. Wismath, Hyperidenties and Clones, Gordon and Breach Science Publishers, 2000.
[6] H. Ehrig, B. Mahr, Fundamentals of algebraic spezification 1: Equations and initial semantics, EATCS Monographs on Theoretical Computer Science 6, Springer-Verlag, Berlin 1985.
[7] J. Koppilz and K. Denecke, M-Solid Varieties of Algebras, Springer 2006.
[8] S. Salehi, Varieties of Tree Languages, TUCS Dissertations No 64, July 2005.

[^0]: * Correspoding author

 Key words: Many-sorted algebras, non-deterministic hypersubstitutions, non-deterministic solid variety, many-sorted tree language.
 2000 AMS Mathematics Subject Classification: 08A68, 03C05

