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Abstract

Many-sorted algebras are used in Computer Science for abstract data
type specifications. It is widely believed that many-sorted algebras are
the appropriate mathematical tools to explain what abstract data types
are ([6]). In this paper we extend the approach to non-deterministic
hypersubstitutions and non-deterministic hyperidentities given in [4] to
the many-sorted case. The main result is the characterization of non-
deterministic solid varieties. This will be done by showing that on the
basis of non-deterministic hypersubstitutions one obtains a conjugate
pair of additive closure operators which allows to apply the theory of
conjugate pairs of additive closure operators also to this case (see [7]).
Our results form a universal-algebraic background of the theory of many-
sorted tree languages (see [8]).

1 Introduction

We follow the definition of terms for many-sorted algebras given in [1] and the
superposition of many-sorted terms from [3].
To describe terms over many-sorted algebras we need the following notation.
Let I be anon-empty set and n € Nt := N\ {0}, let I* := |J I", ¥ C I*xI.
n>1

Then we define ¥, := N (I" x I). Let £,(i) := {7 € S | v(m + 1) = i},
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188 Non-Deterministic Hyperidentities in Many-Sorted Algebras

i€l, meNT. Weset £(i) := |J X,(i). Let K, be a set of indices of each
meNt
v € X. If |[K,| =1, we will drop the index.

Definition 1.1 ([1]) Let X(™ := (Xi("))iel be an I-sorted set of variables, also
called an n-element I-sorted alphabet, with Xf") = {xi1,...,Tin},7 € I, and
let ((fy)k)kelq,yez be an indexed set of ¥-sorted operation symbols. Then a
set W,,(4) which is called the set of all n-ary 3-terms of sort 4, is inductively
defined as follows: For all ¢ € I we set

(i) Wy (i) = x".

(i) Wi (@) = WrE) U{(fY)eltr,.. . tm) | B € Ky,v € (i)}l € N,
t; € W(ij),1 < j <m,m € N whenever v = (i1, ...,0m, ).

Then W, (i) := [J W7(i) and we set W (i) := (J Wp(i). Let X; := |J X"
=0 neNt neNt

and X := (X;)ier. Let Wx(X) := (W(4))scr. The set Wy (X) is called I-sorted

set of all X-terms.

For « € 3, let a(j) be the j-th component of « for 1 < j < m. Then for
any n € NT i € I we set
A (i) = {(w,9) € I" x I | 3m € N*,3a € 5,35 (1 < j < m)(a(j) =19)}.
Let A(7) := | An(i) and we set A := |J A(4).
n=1 icl
Let P(W(i)) be the power set of W (). The elements of P(W (7)) are called
tree languages of sort i. Now we define superposition operations on many-

sorted sets of tree languages.

Definition 1.2 ([3]) Let T € P(W (7)), T; € P(W(k;)), 1 < j <n,n € N,
such that 7',7; are non-empty. Then the superposition operation

Snd P(W (i) x P(W (k1)) x - x P(W(kp)) — P(W(i))
with a = (k1,...,kn; %) € A, is inductively defined in the following way:
1) T = {x”} where Tij € X;, then
1.1) for i # k;,
Sgd({xlj}a Tla .- 7Tn) = {xlj};
1.2) for i = &y,
Sni({zy}, Th, ..., Ty) =T
2) T ={(fy)r(s1,---,5m)} € P(W(i)) where k € K,y = (i1,...,im;1) €

%, 84 € W(ig),1 < ¢ <m,m € N, and if we assume that S34({s,}, T},
., Ty) with ag = (k1, ..., kn;iq) € A, are already satisfied, then

Sgd({(f’y)k(sla SRR Sm)}a T, .. '7Tn)::{(f’y)k(rla - .,Tm)| Tq € ng({sq}a
T, T
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3) If T is an arbitrary subset of W (i), then
ST, Ty, ..., T,) :== |J Ste({t}, Tn, ..., Tp).
teT

If one of the sets T, Ty, ..., T, is empty, then we define S"*(T, T}, ...,T},) := 0.

Non-deterministic many-sorted hypersubstitutions map many-sorted oper-
ation symbols to sets of many-sorted terms and are defined as follows.

Definition 1.3 ([3]) Let ((fy)x)rek, ~ex be an indexed set of X-sorted oper-
ation symbols and P(Wx (X)) := (P(W(i)))icr. Any mapping

o () | k€ Koy € B(0)} — POW(0)),i € 1

with o?((fy)r) € W; C W(i) such that W; is the set of all -terms of sort i
which have arity |v|-1, is said to be a non-deterministic X-hypersubstitution of
sort i. Let ndX(i)-Hyp be the set of all non-deterministic X-hypersubstitutions
of sort i. The I-sorted mapping 0"¢ := (07%);cs is called an I-sorted non-

deterministic Y-hypersubstitution. Let nd%-Hyp be the set of all I-sorted
non-deterministic X-hypersubstitutions. Any I-sorted non-deterministic %-

hypersubstitution ¢™¢ can inductively be extended to an I-sorted mapping
6" .= (67);cr. The I-sorted mapping

" P(Ws(X)) — P(Wx(X))
is defined in the following way: For all ¢ € I, for every T C W (7),
(1) if T = 0, then 67T := 0,
(2) if T = {x;;},xi; € X;, then 674[T] := {wi;},

(3) if T = {(f;)u(t1,- .., tn)}, with k € K-, € $,(i) and t; € W(k;),1 <

j <n,n € Nwhenever v = (ki, ..., ky, i), and if we assume that 63:*[{;}]
are already defined, then '

74T = SN ((f)w), 6Tt} - 6 [t ),

(4) if T is an arbitrary subset of W (i), then 67¢[T)] := th &na{t}].

A many-sorted Y-algebra is a pair A := ((4;)icr; (f7')yex) consisting of an
I-sorted set and a Y-sorted set of I-sorted fundamental operations. Important
examples for I-sorted Y-algebras are vector spaces over a field F and deter-
ministic automata. Let Alg(X) be the class of all many-sorted X-algebras. The
connection between many-sorted terms and term operations of many-sorted
algebras of the same type is given by inducing term operations by terms.
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Definition 1.4 ([3]) Let X be an n-element I-sorted alphabet and let A be
an I-sorted set. Let A € Alg(X) be a X-algebra, and ¢ € W,,(i) be an n-ary
Y-term of sort ¢ € I. Let f := (fi)icsr where f; : Xf") — A; be an I-sorted
evaluation mapping of variables from X" by elements in A. Each mapping
fi can be extended in a canonical way to a mapping f; : W, (i) — A;. Then

tA+ AX™ 5 A; defined by
tA(f) = fit) forall fe AX™,

where f; is the extension of the evaluation mapping f; : X\ — A;. t4 is
called the n-ary X-term operation on A induced by the n-ary X-term t of sort
7.

Let W(i) be the set of all ¥-term operations on A induced by all ¥-terms
of sort i. Then we set W'(X) := (W(4))iesr and call this set I-sorted set of
Y-term operations induced on A by the Y-terms. This can be extended to sets
of terms.

Definition 1.5 Let A be a Y-algebra, and B € P(W(i)),s € I. Then we
define the set B4 of ¥-term operations on A induced by %-terms of sort i as
follows:

(1) If B = {x;;}, then BA := {xf} .

(2) If B={(fy)x(t1,...,tn)} where k € K,y € £,(%) and t; € W(i;),1 <
j < n,n € N whenever v = (i1, ...,i,,1), then BA := {((f,)r) At ...,
2} where ((f,)x)* is the fundamental operation of A corresponding to
the operation symbol (f,), and where t;-“ are the Y-term operations on
A which are induced in the usual way by the ¢; ’s.

(3) If B is an arbitrary non-empty subset of W (i), then we define B4 :=
U {p3.

beB

If B is empty, then we define B4 := ().

A superposition operation for sets of ¥-term operations on the many-sorted
algebra A can be defined in the following way:

Definition 1.6 Let A be a X-algebra and let T € P(W (7)), T; € P(W(k;)),
1 <j <n,n €N, such that 7,7} are non-empty. Then the superposition
operation

SrdA - PWA®G)) x P(WA(kL)) x --- x P(WA(ky)) — P(WA(3))
where « = (k1,...,kn;4) € A, is inductively defined in the following way:

1) T = {x”} where Ti5 € X;, then
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1.1) for i # k;,

St {zigy T - T o= {a
1.2) for i = k;,

SpAA{zi YA, T, ... TR =T

2) T ={(fy)r(s1,---,5m)} € P(W(i)) where k € K,y = (i1,...,im;1) €
Y, 84 € W(ig),1 <g<m,m €N, and if we assume that

Ssz({Sq}A’ TiAa T 7T1:24)

with ag = (k1,...,kn;iq) € A, are already defined, then

SgdA({(f’Y)k(Sla SRR Sm)}Aa TiAa - 7T1:24)
= {((F)A0 ) [ gt € SR {s 3 T, - T )

3) If T is an arbitrary subset of W (i), then
Sy TA T, T = U Se (A T, LT,
teT

If one of the sets T, T, . . ., T, is empty, then we define S?44(TA, TA, ..., TA) .=
0.

For illustration we consider the following example.

Example 1.7 Let I = {1,2}, ¥ = {(1,2,1),(2,1,1)} and A be a X-algebra.
Let T = {x12, f1,2,1)(711, 221) }, Ty = {f2,1,1)(x21, #11) } and Ty = {x22}. Then
Sﬁ%él)(TA’Tfél’T;l) = ?1071’2471)({%2, f(1,2,1)($11,$21)}“4, {f(2,1,1)($21,$11)}“4,

{z22}4)
= S?ff?’l ({z12}4, {fee,1,1) (w21, z11) P4, {ma2 U
Stisy {fazn (@i 2203 { e (@, z) 1A, {2214)
= {z12} P U{fG o0y (Pl msh) | ) € S ({14,
{fean (@, 21}, {za} ), r3i € Sile ) ({21},
{fean (@ a1}, {222}4))
= {$12}A U {f(éll7271)(7'ﬁa7"§41) | 7’141 € {f(2,1,1)(3321,$11)}“4,
31 € {za1}4}
= {2} U{f o (r1s 781) | 7 € {(fizn (@21, 211)) 7Y,
31 € {z1})

{x12}A U {f£7271)((f(2,1,1)($21, xn))A, 55541)}
{12} U{(fa.2.0)(fiea,1)(T21, 211), w21)A}
= {z12}AU {fa.2,0)(fien,1) (w21, 211), zo1) }A
= {5312, f(1,2,1)(f(2,1,1)(3321,xn),le)}A

Proposition 1.8 Let A be a X-algebra and let « = (i1, .. ., im; 1), 8= (k1, ...,
kn;i), B; = (i1, im; kj) € A withm < n,1 < j < n such that m,n €
N*t. Assume that i # ig,1 < ¢ < m ifi # k;. Let S € P(W(®i)),L; €
PW(k;)), Ty € P(W(iq)) such that Lj, T, are non-empty. Then we have
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TA, ..., T

SRAASHIA(SA, LY - L), TH,
= SpA(SA, SEIAL T, . T, SEENEL T - T)-

Proof If S is empty, then all is clear. If S is non-empty, then we will give a
proof by induction on the complexity of the ¥-term which is the only element
of the one-element set S.

1) If S = {x”} where Ti5 € X;, then

1.1) for i # k;,
SpAA(SpaA(SA LY, .. LY, T, .. T)
= Spa(Sp A (a3 LY L), T T
= SgdA({J?l‘j}“A, TiA, .. ,Tﬁ)
- {xng A dA(TA A A dA(TA A A
= SptA ({wi 1A, Syt LA, T, TR, - SR (LA T, . T)
= SpdA(SA, SEIA (LA, TA, . T, . SEAAL T, L Th)),

1.2) for i = k;,
Spdd(SyIA(SA LY, .. LY, T, .. Th)
= SnAA(SEIA {3, LE, . L), T, - T
= S LA T, .. T
= SEHA(LA T, . T)
= SptA({wi 1A, SRt LA, T, TR, - SR (LA T, . T)
= SpdA(SA, SR (LA, T, .. T, - SEAL T, . Th)).

’ m

DU S ={(f)r(s1,...,8p)} € P(W(i)) with k € K,y = (h1,...,hp; 1)

€Y, s € W(ht),1 <t <p,pe N and if we assume that the equations

S (SRIA{ s} L, o L), T - Try) = SRIA({se 34, SpeA (L,

T, T, SEEALL T, - T) with Ay = (ko ks he), =

(i1, -, im; he) € A, are satisfied, then Sp44(S344(SA, L, ..., L), T, ... T
= SRS ({1, sp) DA L o L), T, - T

= SpA ()R M ) [uft € SYMA {s A LE L LN T, -

)

= {((F)A 0t o) [t € SEA (| ut € Sy {s A LT LD
T, .. T}

= {((F At o) [t € S (s L LD, T T

- {((f’y)k)A(Tfa s '771;:74) | T;‘,A € S;LtdA({St}A’ SgldA(LfaTiAa s -7T£)a MR
SpIA (LA T, . T}

= SgdA(({( ’Y)k(sla o SP)})Aa SgldA(Lfa TiAa s '7T£)a MR ngA(Lﬁa TiAa ]
7))

= SEISA SEIAL T, . T, SEENEL T - T)-

3) If S is an arbitrary subset of W (i), then
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Spdd(Spad(SA LY, . LY, T, .. T)

=SnA (U S"“({s}f‘ LA, LY, TR, . T
ses

U Spdd (St ({s}A LA, . L), TH, . T

= U Syt ({s}4, S"“(Lf‘,Tf“,...,Tm...,ngA<Lﬁ,Tf“,...,T£>>

= S"dA(SA, SEIALA,TA, .. T, ., SR LA T, . Ta).
O

Proposition 1.9 Let A be a X-algebra, and let o = (k1,...,kn;i) € A. For
T € P(W(i)) and for any xk;; € Xy,;,1 < j <n,n €N we have

SrAA(TA Lo 3 {rpn ) = TA

Proof If T is empty, then all is clear. If T is non-empty, then we will give a
proof by induction on the complexity of the ¥-term which is the only element
of the one-element set T.

1) T = {x”} where Tij € X;, then

1.1) for i # k;,
Ssz(TAa {xkll}Aa R {xknn}A)
= SgdA({xij}Aa {xkll}Aa SKRE) {xknn}A)
= {zi; 1"
=TA

1.2) for i = k;,
Ssz(TAa {xkll}Aa R {xknn}A)
= SgdA({xij}Aa {xkll}Aa SRR {xknn}A)
= {xkjj}A

= {zy "
=TA

2) T ={(fy)r(s1,---,5m)} € P(W(i)) where k € K,y = (i1,...,im;1) €
Y, 850 € W(ig),1 < g <m,m €N and if we assume that the equations

Ssz({Sq}Aa {xkll}Aa e '7{xknn}A) = {Sq}A
with ag = (k1,...,kn;iq) € A, are satisfied, then
SgdA (TA, {xkll}Aa RRE) {xknn}A)
= SN {(f k51,0, 8 )}) Azra 14, {xknn}A)
= {((F)A 0 - rA) |yt e S"dA({Sq}A {zra 3 {zen )}
= {((F)A0 ) |7“ € {s,4)
= {((f’y)k)A(Tfla' 771;2) | € {SA}}
= {((F))A G sm))
= {((F)k(s1, -5 5m)) ™)
= {((F)k(s1, - s sm)) A
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3) If T is an arbitrary subset of W (i), then
SgdA (TA, {xkll}A’ SR {xknn}A)
- U SgdA({t}Aa {xkll}Aa R {xknn}A)
teT
= U {t*
teT
=T4
Lemma 1.10 Let A be a X-algebra, and o = (ki,...,kn,i) € A. Let T €
PW®I), T; € PW(k;)), 1 < j <n,n € N such that T,T; are non-empty.

Then
Ut o, 1)) = (| Se{th Th, ... Ta) ™

teT teT

O

Proof Let s € W(i). Then
Ac UMty Ty,....,To))A <  s*e(SH({t},Ty,...,T,))* for some

teT
teT
& seS({t},Th,...,T,) forsome t €T
& s€ U S}, Ty, ..., Ty)
teT

O

Lemma 1.11 Let A be a X-algebra, and let @« = (k1,...,kn;i) € A. Let
T € P(W(i)),T; € P(W(k;)), 1 < j <n,n €N such that T; is non-empty.
Then we have

(S"U(T, Ty, ..., T,))* = SMA(TA, TA, ..., TH).

n

Proof If T is empty, then all is clear. If T' is non-empty, then we will give a
proof by induction on the complexity of the ¥-term which is the only element
of the one-element set T.

1) T = {x”} where Tij € X;, then

1.1) for ¢ # k;,

(SH{(T, Ty,...,To))* = (SZd(ixu}a Ty, ..., T,))*
{zi;}
SgdA({xij}“A, TiA, .. ,T;‘)
= SgdA(TA’T]A)"'7T/I;4))

1.2) for i = &y,

(Sad(T,Th, .., T )t = (Sa'({zi}, T, - )
TA
SgdA({xij}“A, TiA, .. ,T;‘)
= SUATATA ... TA).

) n
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2) T ={(fy)r(s1,---,5m)} € P(W(i)) where k € K,y = (i1,...,im;1) €
Y, 84 € W(ig),1 < g <m,m € NT and if we assume that the equations

(S2¥({sg b, Toy - T)) = SEM (s )AL T, . T

with ag = (k1,...,kn;iq) € A, are satisfied, then

(SPUT, Ty, ..., Tp))A

= (Sgd({(f’y)k(sla SR Sm)}a Ty,..., Tn))A

= (k0o [rg € S28{se}, Th, - T) DA

= {((f)rlris e rm)) A [ gt € (S2E{se ), Thy - To)) Y
= {((f’y)k)A(Tfla T 7‘;2) | 7124 € ngA({sq}A’ TiAa T aT;l)}
= Ssz({(f’Y)k(sla R Sm)}Aa TlAa R T;l)

= SPAA(TATA ..., TA).

3) If T is an arbitrary subset of W (i), then
(Sa!(T,Try ., Tt = (U Sa?({th T, -, Ta)A
= UGS T T
U sp AT T
= fs*e(’;TdA(TA,T{‘, LT,

2 [-Sorted Nd-Identities and Nd-Model Classes

Let K be a subset of Alg(X) and we set P(X) := (P(X;))ier-

O

Definition 2.1 A non-deterministic X-equation of sort ¢ in P(X) is a pair
((B1)i, (Ba);) of elements from P(W (%)),7 € I: Such pairs are more commonly
written as (Bi); ~1¢ (Bg);. The non-deterministic Y-equation (By); =~ (Bs);
of sort 4 is said to be a non-deterministic 3-identity of sort ¢ in X-algebra A if
(B = (B2)f.

In this case we also say that the non-deterministic ¥-equation (By); ~1¢
)i is satisfied or modelled by the Y-algebra A, and write A =1 (By); ~¢

(BQ 3
(B2);. If the non-deterministic X-equation (By); %?d (B2); is satisfied by every
Y-algebra in K, we write K =7 (By); ~2¢ (By);, that is,

K =7 (B); =} (By)i & VA € K(A ! (Bu)i =7 (Ba)y).
Let K C P(Alg(X)). Then if the non-deterministic Y-equation (B ); =~ (Bs);
is satisfied by every class in K, we write K [=7'? (By); ~? (By);, that is,
KM (By); 14 (Bs); e VK € K(K =1 (By)i &1 (Ba)i).

K3

For a set PL(i) of non-deterministic X-equations of sort i we write K =14
PLG) if K =14 (By); ~nd (By); for all (By)s, (Ba)i) € PL(1). We write
K Er PLG) if K EP (By); &P (By); for all K € K, and ((B1);, (B2):) €
PL(1).
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For illustration we consider the following example.

Example 2.2 Let I = {1,2}, X® = (X?),c;, and let = {(1,1,1), (2, 1,1)}.
Let V be a real vector space, A1 = {fi2,1,1)(221, f1,1,1)(®11,712))}, B1 =
{fa1y
(fie,1,1) (21, 11), fr2,1,1)(x21, £12))}. Then the non-deterministic X-equation
A; =74 By of sort 1 is a non-deterministic X-identity of sort 1 in V), that is,
)% ':?d A1 %?d Bl. Then

A}} = {f(2,1,1)($21,f(1,1,1)($11,$12))}v
{(.f(Q,l,l)(thf(l,l,l)(xllaxu)))v}
{(fa 1.0 (fein(za, 1), froa,1)(T21,712)))V}
{f\gl,l,l)(f(Q,l,l)(thxll);f(2,1,1)(x21;x12))}v
By

Therefore V |:fd Ay a4 By
Let K C P(Alg(2)) and PL(i) € P(W (i))?. Then we define a mapping
nd%(i)-I1d : P(P(Alg(X))) — P(P(W(3))?)
by
nd%(i)-1dK := {((B1);, (B2)i) € P(W(0))* | VK € K(K [} (Bu)i =7 (B2))},
and a mapping
ndX(i)-Mod : P(P(W(4))?) — P(P(Alg(X)))

by
ndS(i)-ModPL(i) := {K € P(Alg(%)) | Y((B1)i, (B2):) € PLE) (K =
(B1)i =4 (B2)i)}-
In the next propositions we will show that these two mappings satisfy the
Galois-connection properties.

Proposition 2.3 Let i € I, and let P(Alg(X)) be the set of all subsets of
Alg(X2) and let K, K1, Ko C P(Alg(X)). Then

(1) If ICl g ICQ, then TldE(’L)-IdICQ g ndZ(i)—IdlCl,
(2) K C ndX(i)-ModndX(i)-1dK.

Proof (1) Assume that K1 C Ky and let (By); ~2¢ (Ba); € ndX(i)-I1dKCs.
Then for all K € Ko, K =7 (By); ~2¢ (Ba);, but we have K1 C Kz, so that
K ':?d (31)1 %?d (Bg)l for all K € ICl. It follows that (Bl)’L %?d (Bg)l S
ndX(i)-IdKy, and then ndX(i)-IdKe C ndX(i)-1dK;.

(2) Let K € K. Then K =P ndX(i)-1dK, means that K € ndX(i)-
Modnd%(i)-IdK, and then K C ndX(i)-Modnd>(i)-1dK. O
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Proposition 2.4 Leti € I, and let P(W(i)) be the set of all subsets of W (%)
and let PL(i), PL1(i) ,PL2(i) C P(W(i))?. Then

(1) If PL1(3) C PLo(7), then ndX(i)-ModPLo(i) C ndX(i)-ModPL1(7),
(2) PL(i) C nd>X(i)-IdndX(i)-ModPL(7).

Proof (1) Assume that PLy(i) C PLy(4) and let K € ndX(i)-ModPLa(i).
Then for all ((B1)s, (B2):) € PLa2(i), K ' (By); =" (Bs);, but we have
Pﬁl(l) - PEQ(’L), so that K ':?d (31)1 %?d (Bg)l for all ((Bl)“(BQ)fL) S
PL1(i), which means K € nd¥(i)-ModPLy (i), and then nd3(:)-ModP Ly (i) C
ndX(i)-ModPL1(1).

(2) Let ((B1)i, (B2);) € PL(i). Then ndX(i)-ModPL(i) = (By); ~n¢
(B2);, means that ((B1);, (B2)i) € ndX(i)-IdndX(i)-ModPL(i), and then PL(7)
C ndX(2)-IdndX(i)-ModPL(1). ]

From both propositions we have that (ndX(i)-Mod, nd%(i)-1d) is a Galois
connection between P(Alg(¥)) and P(W (i))? with respect to the relation

7= {(K, ((B)i, (B2)i)) € P(Alg(2)xP(W (i)* | K =7 (B): & (Ba)i}-

The fixed points with respect to the closure operator ndX(i)-ModndX.(i)-1d are
called non-deterministic Y-varieties of sort ¢ and the fixed points with respect
to the closure operator ndX(:)-IdndX(i)-Mod are called non-deterministic Y-
equational theories of sort i.

3 Application of Nd-Hypersubstitutions

Now we apply non-deterministic 3-hypersubstitutions to many-sorted algebras
and to many-sorted equations.

Definition 3.1 ([1])Let ((fy)r)rek, yex be an indexed set of ¥-sorted opera-
tion symbols. Any mapping

oi :{(fy )k | k€ Ky,yeB(i)} = W(i),iel

which preserves the arity, is said to be a X-hypersubstitution of sort i. Let
3(z)-Hyp be the set of all X-hypersubstitutions of sort 4. The I-sorted mapping
o = (04)ier is called an I-sorted X-hypersubstitution. Let 3-Hyp be the set
of all I-sorted Y-hypersubstitutions. Any I-sorted Y-hypersubstitution can
inductively be extended to an I-sorted mapping & := (6;)ic;- The I-sorted
mapping

b Wx(X) - Wx(X)

is inductively defined in the following way: For all i € I, for every ¢t € W (i),

1) ift = x;; € X; with 1 < j < n, then 6;[t] :== x;;,
J J
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(2) if t = (fy)r(tr, ..., tm) with k € Ky, v € 3,,(3) and t, € W(ky),1 < ¢ <
m whenever v = (ki, ..., ky, 1) and if we assume that 6y, [t,] are already
defined, then

&1[t] = S’Y(Ui((f’y)k)a a-k’l [tl]a SRR a-km[tm])'

Definition 3.2 ([3]) Let A = (4; (((f,)r)™")kek, ~ex) be a E-algebra and
o € 3X-Hyp. Then we define a X-algebra by

(A) = (4 (0i((f)6) ke, reseicn);
This algebra is called derived Y-algebra determined by o and A.

Definition 3.3 Let A be an I-sorted set, A = (A; (((fy)r) ke, vex) be a
Y-algebra and let 0"? € ndX-Hyp. Then we define a set of X-algebras by
U A) = {p(A) | p € -Hyp, (pi((J))A € (P U(f)i) Ak € Koy €
%(1),
iel}.
Here ¢ is a many-sorted deterministic hypersubstitution (see [1]). This set
of Y-algebras is called the set of derived Y-algebras determined by .4 and o™¢.

For illustration we consider the following example.

Example 3.4 Let I = {1,2}, A = (A4;)icr. Let ¥ ={(1,2,1),(2,1,2)}, A =
(A; f(“‘l‘7271).f(“‘2‘7172)), and p1, p2, p3 € B-Hyp. Let 0™ € ndX-Hyp and assume
that

((p2)1(fa 2,00 ((p3)1 (fa2y))™ € (014 (fa 2.0, ((p1)2(f21,2))%
((p2)2(f2 2™ ((p3)2(fiz1.2))* € (05 (f(2,1,2)))*. Then we have pa(A),
p3(A) € 0™(A) and p1(A) ¢ o™4(A), since (p1)1(f1,2,1)? & o1 (f1,2,1)™

Definition 3.5 Let B € P(W(i)) and let A be a X-algebra. Let 0" € nd%-
Hyp, 0"¥(A) be the set of derived algebras determined by A and o™?. Then
we define the set B"*(A) of S-term operations induced by the set 0"%(A) of
derived algebras as follows:

(1) If B= {x”} where Ti5 € X, then
BT = (o | pl(A) € o™ (A)}.

(2) f B={(fy)r(s1,...,8m)} where k € K,y € £,,(i) and s, € W (ig),1 <
g < m,m € N whenever v = (i1,...,%m,?), and if we assume that
{sq}""d(A) are already defined, then

nd nd nd
BT A=A ({((f2)) P p(A) g™ (A}, {5137 {5} ).

(3) If B is an arbitrary subset of W (i), then B (A) := U {b}""d(““).
beB
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If B is empty, then B (A) .= (.

Theorem 3.6 Let A be an I-sorted set and A = (A; ((fy)r)*)kek, ~ex) be a
S-algebra. Let o™ € ndS-Hyp and B € P(W(i)). Then B°"*(A) = (579[B])A.
Proof If B is empty, then all is clear. If B is non-empty, then we will give a

proof by induction on the complexity of the ¥-term which is the only element
of the one-element set B.

1) If B= {x”} where Tij € X, then
Bo"d(A) _ {xl }U"d(A)

= {ef Y [ p(A) € 0" I(A)}
= {(Pz[ i) | p(A) € a4 (A)}
= {afj | p(A) € a™(A)}
= {x
= {xw}A
= (6P {zi}DA
= (op'[BDA.
2) If B = {(fy)r(t1,...,tm)} € P(W(i)) where k € K,,v € %,,(i) and
ty € W(ig),1 < qg < m,m € N whenever v = (i1,...,%m, 1) and if we
assume that the equations

{t}7"" A = 6Pt

are satisfied, then
Bo,'n.d (A)

= {(f)r(tr, .., t0) A
= S0 | p(A) € ™A (1) A ) )

= S | (iU € @A AR
tn} ")

= S (7)) | (DA € (7, G D

(WWMH)

)
= S (o f)) A ;A"d[{tl}]) (@R {tm 37

{ta3); - (ff”d[{tm}])))

— (S71(o7 «fmmé ;
= (A"d[{( Skt tm) YDA
— (B,
3) If B is an arbitrary subset of W (i), then
BA = (b))
bER
= bg Gt
= (U e -
beB

= (aMBD.

K3
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Let K C Alg(X). Then we set 0"¢(K) := |J 0"¢(A). Let 01,09 € 2-Hyp.

Then we define o1 ¢ 02 := ((01); 0; (02):)ier-
Lemma 3.7 Let A be a X-algebra and o7, o5? be elements in ndS-Hyp. Then
o1¥(03%(A)) = (037 0" 574)(A).

Proof  Assume that k € K,y € 3(i),% € I. Then we have
ofl(oy4(A) = U otUp(A))
p(A)€oz?(A)

= U D) | al(£)r) Y € (07D)i((f7)1))7 0}

p(A)Eaye(A)

= U Lo | (aiN((f)0D™ € ((8Di((f7)0))" V)

p(A)€ay?(A)

= {(poNA) [ G € (@F((f)0)78 A}

= (oo N | G € (@3l

= oo N | (70 MI(F)) € (30 @D ((,))*)
= (o) | (o A(FINA € (037 02 (1D )((F))}
= (o3 o™ o} )(A).

O

Remark 3.8 Let K be a non-empty subset of Alg(X). Then
oal(K) = U opl(A)

AeK 4

= U {pia(A) [ pia(A) € o' (A)}
AeK 4

= U {AlAcoii(A)}
AeK

= K.

Definition 3.9 Let A € Alg(Y) said to hypersatisfy the non-deterministic -
identity (By); ~"? (By); of sort i € I if for every o?¢ € ndX(i)-Hyp, the
non- determlmstlc Y-identities 674[(By);] ~nd 614[(By); ] hold in A.

In this case we say that the non-deterministic Y-identity (By); ~*? (Bs);
of sort 7 is satisfied as a non-deterministic X-hyperidentity of sort 4 in A and

write A 4 (By); = (By);, that is,
nd-hyp
A B (By), g (By), v Vo € ndS(i)-Hyp (A =04 674(By);)
ndX-hyp

67 (Ba2)i]).

For illustration we consider the following example.

Example 3.10 Let I = {1,2}, X® = (X#);c;, £ = {(1,1,1)}. Let (By;01),
(B2; 02) be a band, and let DB be double bands where DB := ((B;);cr1; (04)icr)-

Let A1 = {f(17171)(x1j,x1j)}, Bl = {xlj}, 1 S] < 2. Then DB ':?d Al %?d
nd-hyp
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B;. Tt is easy to see that DB =74 Ay ~?? By. Let o7? € nd%(1)-Hyp and
p(DB) € o"4(DB) where p € ¥-Hyp. Then
{fan (@, 21)}PE = {(fa1n(@y,215)) PP}
= A lfa @y, z1))PP}
{(p1[z1,]) PP}

DB
= {57
= {xlj}p(DB),
nd nd
this means, 0"¢(DB) =04 A, ~Pd By, that is, A7 9 = BT (PB) 1

follows that (679[A4,])PP = (6734[B4])P5. Thus DB =7¢ Ay ~7¢ By.
nd-hyp

Now we define two mappings which give a second Galois connection.

Definition 3.11 Let K C P(Alg(X)) and PL(i) € P(W(i))?. Then we define
a mapping
ndHY(i)-1d : P(P(Alg(X))) — P(P(W(3))?)

by

ndHX(i)-IdK := {(B1); = (Ba); € P(W(i))? | VK € K(K [P

nd-hyp

(B1)i =7 (B2)i)},

and define a mapping

ndH(i)-Mod : P(P(W(i))?) — P(P(Alg(%)))

by
ndHS(i)-ModPL(i) := {K € P(Alg(2)) | Y((B1)i, (Ba):) € PL()K e

nd-hyp
(B1); = (Ba2):)}-
We see that (ndHX(i)-Mod, ndHX(i)-1d) is a Galois connection between
P(Alg(¥)) and P(W (i))? with respect to the relation
Frd = {(K, (B1)i =} (B2)i) € P(Alg(R)) x PW(©))* | K
nd-hyp nd-hyp
(B1);

(B2)i}-
Definition 3.12 Let K C P(Alg(X)) and PL(i) C P(W(i))2. Then we set
X" EO[(By); 2 (Bg)i] = {67 [(B1)i] =7 677[(B2)i] | o € ndS(i)-Hyp}

and
X"EAIK] = {0"U(K) | 0" € ndS-Hyp}.

We define two operators in the following way:

X"EEO CpPW(i)?) — P(P(W(i))?) by
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XndE—E(i) [PL(>I)] := U XndE—E(i)[(Bl)i %?d (Bs)i]
(B1)i~?(Bz); €PL(i)

and
XA P(P(Alg(z))) - P(P(Alg(z))) by

ndE A ndx- A
= U~
KeK

In the next propositions we will show that the both operators are closure
operators.

Proposition 3.13 Let PL(i), PL1(i), PL2(7) be subsets of P(W(i))%. Then
(i) PL() S x> POPLA),
(i) PLL(E) C PL2A(E) = X" POIPL(0)] C X" FO[PLy(0)],
(i) P EEO[PL()] = B EO [ EEO (P,

Proof (i) L (Bl)l ~14 (By); € PL(i). Then, since (By); = (679);4[(B1)]
and (Bz); = (57? )idl(B2)i], we have (67%)ial(B1)i] = (B1)i ~p¢ (B2)i =
(674);4[(Ba)] € x> E@O[PL(3)] and this means PL(i) C x> FO[PL(i)].

(i) Assume that PL1(i) C PL2(i) and let 674(By);] ~rd 624(Bg)i] €
\AEE)

['Pﬁl(l)] Then (31)1 %"d (BQ) S Pﬁl(l), but Pﬁl(l) g P;CQ('L), so that
(B1); =} (Bz); € PLy(i) and 67 (B1)i] = 679(Ba)s] € X" EO[PLy(i)).
We have "= E@[PLy(i)] C x" = EO [P Ly(i)).

(iil) By (i) we have x4 FO[PL(i)] C x"PEO [xnd=EO[PL(7)]]. On the
other hand, let 67¢[(By);] ~1?® 674(By);] € x>~ E@O[\d=-E@[PL(4)]]. Then
(By); ~pd (B )i € X" E(i) [PL(7)], and there exists p?? € ndX(i)-Hyp and
(C1)i =4 (C2); € PL(i) such that (B1); = pp¢[(C1):] and (Ba)i = p;*[(C2)il,
and we have

ori(Bri] = of [A"d[(Cl) ]
= a- © p’L [(Cl) ]
_ (A nd gnd snd)((Cy),]
= [(Cl) ], where A4 = g4 ond prd ¢ g% (i)-Hyp,and
o7(Ba)il = orp} [(02) 1l
= 670 pR(Cy)i]
= (f"d of p?)((C)il
= A(Ca).
Then we set AP“[(C1)i]=674(B1)i]~; 57 [(B2)i|=Ar[(Ca)ilex™ ™ O [PL()],
and then XndE—E(i)[ ndX-E(z) ['P,C(Z ]] Cx ndX-E(z) [,Pﬁ( )] O

Proposition 3.14 Let KC, K1, Ko C P(Alg(X)). Then
(i) £ S x" =K,



K. DENECKE AND S. LEKKOKSUNG 203

(ﬁ) /Cl - /CQ = XndE—A[ICl] - X"dE_A[/CQ],
(iii) XndE—A [/C] — XndE—A [XndE—A [/C]]

Proof (i) Let K € K. Then, since K = o™(K) € x"¥*4[K] we have
K - XndE—A [IC]

(ii) Assume that KC; C Kz and let o™%(K) € " 4[K;]. Then K € K; by
our assumption that we have K € Ky, with 0™¢(K) € x"¥* 4[], and then
XndE—A[ICl] c X"dE_A[/CQ].

(iii) By (i), we have x> 4[] C x> A[x"=4[K]]. We will show that

ndX-A
[XndE—A [/C]] - XndE—A [/C] Let a’"d(K) c XndE—A [XndE—A [/C]] Then K €
nd2-ATKC]and there exists p"? € ndX-Hyp and K; € K such that K =
p"4(K1) and we have
oK) = o™ (p"(Ky))
(pnd ond O.nd) (Kl)
= A\"(K;), where \"¢ = pnd ond gnd ¢ nd¥-Hyp.

Thus we have o"%(K) = \"(K;) € "™ 4[K], and is " A[x" = 4[K]] C

ndX-A [/C] . E

=

=

X

Definition 3.15 Let K be a subset of Alg(X), and (By);, (B2); be subsets of
W(i),i € I. Let o™¢ € nd%-Hyp. Then we define

" (K) =1 (By)s & (By)i 1 VA € K(o™(A) E} (By)s 7 (Ba)i).

Theorem 3.16 Let K be a subset of Alg(X) and (By); =" (Ba); € P(W(i))?,
o™ € ndX-Hyp. Then we have

oK) [P (Br)i &7 (Ba)i <= K 1 67[(B1)i] =7 677(Ba)i].

Proof  We obtain
" (K) =P (Br)i  ~pt (B <= VA € K(o™(A) =4 (By)i =4 (Ba)i)

—VAe K(B)] A = ()T A

VA e K((674(B1)i)* = (679](Ba)i])*)
— VA€ K(AEMM(By);] = 67(By)i))
= K = opd(Bu)i] =7 67 32)1‘]-

Theorem 3.17 The pair (x4, x> F() s a conjugate pair of completely
additive closure operators with respect to the relation =14

Proof By Definition 3.12, Propositions 3.13-3.14, and Theorem 3.16. O

Now we may apply the theory of conjugate pairs of additive closure opera-
tors (see e.g. [7]) and obtain the following propositions:

Lemma 3.18 ([7]) For all K C P(Alg(X)) and for all PL(i) € P(W(i))? the
following properties hold:



204 Non-Deterministic Hyperidentities in Many-Sorted Algebras

) ndHYX(i)-ModPL(i) = ndX(i)-Modx™™>EO[PL(i)],
) ndHX(i)-ModPL(i) C ndS(i)-ModPL(i),

(iii) X" AMdHY(i)-ModPL(i)] = nd HY(i)-ModPL(i),
) X" E@ nd% (i) -Tdnd HE (i) -ModPL(i)] = ndX(i)-Idnd H(i)-ModPL(i),
) ndHY(i)-Modnd HY(i)-IdK = nd¥(i)-Modnd%(i)-I1dx" > 4[K], and

(1) ndHX()-IdK = nd¥(i)-Idx"**A[K],
(i) ndHYX(i)-IdK C ndX(i)-IdK,
(i) " =EO[nd H(i)-1dK] = ndHY(i)-1dK,
(iv) X" A[nd2(i)-Modnd HY(i)-1dK) = nd%(i)-Modnd HX(i)-1dK,
(V) ndHX(i)-IdndH(i)-ModPL(i) = nd%(i)-Idnd%(i)-Modx = EWO [P L(i)].

4 [-Sorted Nd-Solid Varieties

Definition 4.1 Let K C P(Alg(X)) be a subclass of the set of all subsets of
Alg(¥) and let PL(i) € P(W(i))? be a subset of the set of all non-deterministic
Y-equations of sort i. Then K is called a non-determistic solid model class
of sort i or is called a non-deterministic solid X-variety of sort ¢ if every
non-deterministic Y-identity of sort i is satisfied as a non-deterministic -
hyperidentity of sort i :

K EM ndx(i)-IdK.
nd-hyp
K is called I-sorted non-deterministic solid model class if every non-deterministic
3-identity of sort 4 is satisfied as a non-deterministic ¥-hyperidentity of sort ¢
for all 7 € I, that is,

K EM ndx(i)-IdK, for allie 1.
ndX-hyp

PL(i),i € T is said to be a non-deterministic Y-equational theory of sort
i if there exists a class K C P(Alg(¥)) such that PL(:) = ndX(:)-IdK. Then
we set PL := (PL(7));cr- This I-sorted set is called I-sorted non-deterministic
Y-equational theory.

Using the propositions of Lemma 3.18 one obtains the following character-
ization of non-deterministic solid Y-varieties.

Theorem 4.2 ([7]) Let K be a non-deterministic L-variety of sorti € 1. Then
the following properties are equivalent:
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(i

) K = ndHX(i)-Modnd HS(i)-TdK,
(i) x =K = K,

)

)

(iii) ndX(4)-IdK = ndHX(i)-IdK,
(iv) X" FO[nd%(i)-1dK] = nd(i)-1dK.

Theorem 4.3 ([7]) Let PL(i) be a non-deterministic X-equational theory of
sort i € I. Then the following properties are equivalent:

(i

) PL(i) = ndHS(i)-Idnd H(5)-ModPL(i),
(it) X" POIPL(D)] = PLG),

)

)

(iii) nd%(i)-ModPL(i) = ndHX(i)-ModPL(3),
(iv) X" And(i)-ModPL(i)] = nd%(i)-ModPL(7).

5 I-sorted Nd-Complete Lattices

Let PH(i) be the class of all fixed points with respect to the closure operator
ndX(i)-ModndX(i)-1d:

PH(i) := {K CP(Alg(Y)) | K =ndX(i)-Modnd%(i)-IdK},

that is, PH(4) is the class of all non-deterministic X-varieties of sort i. Then
PH(i) forms a non-deterministic complete lattice of non-deterministic Y-varieties
of sort 7. Let PHy(i) be the class of all fixed points with respect to the closure
operator ndHX(i)-Modnd HX(3)-1d:

PHy(i) := {K C P(Alg(Y)) | K = ndHX(i)-Modnd HX(3)-1dK},

that is, PHy(i) is the class of all non-deterministic solid ¥-varieties of sort 4.
Then PHy(i) forms a non-deterministic complete lattice of non-deterministic
solid X-varieties of sort 4 and PHy(7) is a non-deterministic complete sublattice
of PH(i). We set PH := (PH(7))ier and PHy := (PHy(i))icr- PH is called
an I-sorted non-deterministic complete lattice. PHy is called an I-sorted non-
deterministic complete sublattice of PH, since for every i € I, PHy(i) is a
non-deterministic complete sublattice of PH(i). Dually, let PL(7) be the class
of all fixed points with respect to the closure operator ndX(i)-Idnd%(i)-M od:

PPL() = {PL3G) C PW())? | PL3G) = ndS(i)-IdndS(i)-ModPL(i)},

that is, PPL(i) is the class of all non-deterministic Y-equational theories of
sort 4. Then PPL(i) forms a nondeterministic complete lattice of X-equational
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theories of sort 7. Let PPLy(i) be the class of all fixed points with respect to
the closure operator nd HX(i)-Idnd HX(i)-Mod:

PPLy(i) := {PL3GE) C PW(i))? | PL>G) = ndHE(i)-Idnd H(i)-ModPL (i)},

that is, PPLy(i) is the class of all non-deterministic solid ¥-equational the-
ories of sort 4. Then PPLy(i) forms a non-deterministic complete lattice of
non-deterministic solid Y-equational theories of sort ¢ and PPLy(4) is a non-
deterministic complete sublattice of PPL(:). We set PPL := (PPL(%))icr and
PPLy := (PPLy(i))icr- PPL is called an I-sorted non-deterministic complete
lattice. PPLy is called an I-sorted non-deterministic complete sublattice of
PPL, since for every i € I, PPLy(i) is a non-deterministic complete sublattice
of PPL(3).

Our results show that the most results of [4] are valid also in the many-
sorted case if the superposition of many-sorted tree languages and of sets of
many-sorted terms are defined in the way in which we did.

References

[1] K. Denecke and S. Lekkoksung, Hypersubstitutions of Many-Sorted Al-
gebras, Asian-FEuropean J. Math. ,Vol. T 3 (2008) 337-346.

[2] K. Denecke and S. Lekkoksung, Hyperidentities in Many-Sorted Algebras,
preprint 2009.

[3] K. Denecke and S. Lekkoksung, Nd-Hypersubstitutions of Many-Sorted
Agebras, preprint 2009.

[4] K. Denecke and P. Glubudom, Nd-Solid Varieties, Discussiones Mathe-
maticae, General Algebra and Applications, 27 (2007) 245-262.

[5] K. Denecke and S. L. Wismath, Hyperidenties and Clones, Gordon and
Breach Science Publishers, 2000.

[6] H. Ehrig, B. Mahr, Fundamentals of algebraic spezification 1: Equations
and initial semantics, EATCS Monographs on Theoretical Computer Sci-
ence 6, Springer-Verlag, Berlin 1985.

[7] J. Koppilz and K. Denecke, M-Solid Varieties of Algebras, Springer 2006.

[8] S. Salehi, Varieties of Tree Languages, TUCS Dissertations No 64, July
2005.



