NON-DETERMINISTIC HYPERIDENTITIES IN MANY-SORTED ALGEBRAS

Klaus Denecke* and Somsak Lekkoksung

Universität Potsdam Institute of Mathematics Am Neuen Palais, 14415 Potsdam, Germany. E-mail: kdenecke@rz.uni-potsdam.de

Abstract

Many-sorted algebras are used in Computer Science for abstract data type specifications. It is widely believed that many-sorted algebras are the appropriate mathematical tools to explain what abstract data types are ([6]). In this paper we extend the approach to non-deterministic hypersubstitutions and non-deterministic hyperidentities given in [4] to the many-sorted case. The main result is the characterization of non-deterministic solid varieties. This will be done by showing that on the basis of non-deterministic hypersubstitutions one obtains a conjugate pair of additive closure operators which allows to apply the theory of conjugate pairs of additive closure operators also to this case (see [7]). Our results form a universal-algebraic background of the theory of many-sorted tree languages (see [8]).

1 Introduction

We follow the definition of terms for many-sorted algebras given in [1] and the superposition of many-sorted terms from [3].

To describe terms over many-sorted algebras we need the following notation. Let I be a non-empty set and $n \in \mathbb{N}^+ := \mathbb{N} \setminus \{0\}$, let $I^* := \bigcup_{n \geq 1} I^n$, $\Sigma \subseteq I^* \times I$.

Then we define $\Sigma_n := \Sigma \cap (I^n \times I)$. Let $\Sigma_m(i) := \{ \gamma \in \Sigma_m \mid \gamma(m+1) = i \}$,

Key words: Many-sorted algebras, non-deterministic hypersubstitutions, non-deterministic solid variety, many-sorted tree language.

2000 AMS Mathematics Subject Classification: 08A68, 03C05

^{*} Correspoding author

 $i \in I$, $m \in \mathbb{N}^+$. We set $\Sigma(i) := \bigcup_{m \in \mathbb{N}^+} \Sigma_m(i)$. Let K_{γ} be a set of indices of each $\gamma \in \Sigma$. If $|K_{\gamma}| = 1$, we will drop the index.

Definition 1.1 ([1]) Let $X^{(n)} := (X_i^{(n)})_{i \in I}$ be an I-sorted set of variables, also called an n-element I-sorted alphabet, with $X_i^{(n)} := \{x_{i1}, \ldots, x_{in}\}, i \in I$, and let $((f_{\gamma})_k)_{k \in K_{\gamma}, \gamma \in \Sigma}$ be an indexed set of Σ -sorted operation symbols. Then a set $W_n(i)$ which is called the set of all n-ary Σ -terms of sort i, is inductively defined as follows: For all $i \in I$ we set

- (i) $W_0^n(i) := X_i^{(n)}$
- (ii) $W_{l+1}^n(i) := W_l^n(i) \cup \{(f_\gamma)_k(t_1, \ldots, t_m) \mid k \in K_\gamma, \gamma \in \Sigma_m(i)\}, l \in \mathbb{N}, t_j \in W_l^n(i_j), 1 \leq j \leq m, m \in \mathbb{N} \text{ whenever } \gamma = (i_1, \ldots, i_m, i).$

Then $W_n(i) := \bigcup_{l=0}^{\infty} W_l^n(i)$ and we set $W(i) := \bigcup_{n \in \mathbb{N}^+} W_n(i)$. Let $X_i := \bigcup_{n \in \mathbb{N}^+} X_i^{(n)}$ and $X := (X_i)_{i \in I}$. Let $W_{\Sigma}(X) := (W(i))_{i \in I}$. The set $W_{\Sigma}(X)$ is called I-sorted set of all Σ -terms.

For $\alpha \in \Sigma_m$ let $\alpha(j)$ be the j-th component of α for $1 \leq j \leq m$. Then for any $n \in \mathbb{N}^+$, $i \in I$ we set

$$\Lambda_n(i) := \{ (w, i) \in I^n \times I \mid \exists m \in \mathbb{N}^+, \exists \alpha \in \Sigma_m, \exists j \ (1 \le j \le m) (\alpha(j) = i) \}.$$

Let $\Lambda(i) := \bigcup_{n=1}^{\infty} \Lambda_n(i)$ and we set $\Lambda := \bigcup_{i \in I} \Lambda(i)$.

Let $\mathcal{P}(W(i))$ be the power set of W(i). The elements of $\mathcal{P}(W(i))$ are called tree languages of sort i. Now we define superposition operations on many-sorted sets of tree languages.

Definition 1.2 ([3]) Let $T \in \mathcal{P}(W(i))$, $T_j \in \mathcal{P}(W(k_j))$, $1 \leq j \leq n, n \in \mathbb{N}$, such that T, T_j are non-empty. Then the superposition operation

$$S^{nd}_{\alpha}: \mathcal{P}(W(i)) \times \mathcal{P}(W(k_1)) \times \cdots \times \mathcal{P}(W(k_n)) \to \mathcal{P}(W(i))$$

with $\alpha = (k_1, \dots, k_n; i) \in \Lambda$, is inductively defined in the following way:

- 1) If $T = \{x_{ij}\}$ where $x_{ij} \in X_i$, then
 - 1.1) for $i \neq k_j$, $S_{\alpha}^{nd}(\{x_{ij}\}, T_1, \dots, T_n) := \{x_{ij}\},$
 - 1.2) for $i = k_j$, $S_{\alpha}^{nd}(\{x_{ij}\}, T_1, \dots, T_n) := T_j$.
- 2) If $T = \{(f_{\gamma})_k(s_1, ..., s_m)\} \in \mathcal{P}(W(i))$ where $k \in K_{\gamma}, \gamma = (i_1, ..., i_m; i) \in \Sigma$, $s_q \in W(i_q), 1 \leq q \leq m, m \in \mathbb{N}$, and if we assume that $S_{\alpha_q}^{nd}(\{s_q\}, T_1, ..., T_n)$ with $\alpha_q = (k_1, ..., k_n; i_q) \in \Lambda$, are already satisfied, then $S_{\alpha}^{nd}(\{(f_{\gamma})_k(s_1, ..., s_m)\}, T_1, ..., T_n) := \{(f_{\gamma})_k(r_1, ..., r_m) | r_q \in S_{\alpha_q}^{nd}(\{s_q\}, T_1, ..., T_n)\}.$

3) If T is an arbitrary subset of W(i), then $S^{nd}_{\alpha}(T, T_1, \dots, T_n) := \bigcup_{t \in T} S^{nd}_{\alpha}(\{t\}, T_1, \dots, T_n).$

If one of the sets T, T_1, \ldots, T_n is empty, then we define $S^{nd}_{\alpha}(T, T_1, \ldots, T_n) := \emptyset$.

Non-deterministic many-sorted hypersubstitutions map many-sorted operation symbols to sets of many-sorted terms and are defined as follows.

Definition 1.3 ([3]) Let $((f_{\gamma})_k)_{k \in K_{\gamma}, \gamma \in \Sigma}$ be an indexed set of Σ -sorted operation symbols and $\mathcal{P}(W_{\Sigma}(X)) := (\mathcal{P}(W(i)))_{i \in I}$. Any mapping

$$\sigma_i^{nd}: \{(f_\gamma)_k \mid k \in K_\gamma, \gamma \in \Sigma(i)\} \to \mathcal{P}(W(i)), i \in I$$

with $\sigma_i^{nd}((f_{\gamma})_k) \subseteq W_i \subseteq W(i)$ such that W_i is the set of all Σ -terms of sort i which have arity $|\gamma|-1$, is said to be a non-deterministic Σ -hypersubstitution of sort i. Let $nd\Sigma(i)$ -Hyp be the set of all non-deterministic Σ -hypersubstitutions of sort i. The I-sorted mapping $\sigma^{nd} := (\sigma_i^{nd})_{i \in I}$ is called an I-sorted non-deterministic Σ -hypersubstitution. Let $nd\Sigma$ -Hyp be the set of all I-sorted non-deterministic Σ -hypersubstitutions. Any I-sorted non-deterministic Σ -hypersubstitution σ^{nd} can inductively be extended to an I-sorted mapping $\hat{\sigma}^{nd} := (\hat{\sigma}_i^{nd})_{i \in I}$. The I-sorted mapping

$$\hat{\sigma}^{nd}: \mathcal{P}(W_{\Sigma}(X)) \to \mathcal{P}(W_{\Sigma}(X))$$

is defined in the following way: For all $i \in I$, for every $T \subseteq W(i)$,

- (1) if $T = \emptyset$, then $\hat{\sigma}_i^{nd}[T] := \emptyset$,
- (2) if $T = \{x_{ij}\}, x_{ij} \in X_i$, then $\hat{\sigma}_i^{nd}[T] := \{x_{ij}\},$
- (3) if $T = \{(f_{\gamma})_k(t_1, \ldots, t_n)\}$, with $k \in K_{\gamma}, \gamma \in \Sigma_n(i)$ and $t_j \in W(k_j), 1 \le j \le n, n \in \mathbb{N}$ whenever $\gamma = (k_1, \ldots, k_n, i)$, and if we assume that $\hat{\sigma}_{k_j}^{nd}[\{t_j\}]$ are already defined, then

$$\hat{\sigma}_i^{nd}[T] := S_{\gamma}^{nd}(\sigma_i^{nd}((f_{\gamma})_k), \hat{\sigma}_{k_1}^{nd}[\{t_1\}], \dots, \hat{\sigma}_{k_n}^{nd}[\{t_n\}]),$$

(4) if T is an arbitrary subset of W(i), then $\hat{\sigma}_i^{nd}[T] := \bigcup_{t \in T} \hat{\sigma}_i^{nd}[\{t\}].$

A many-sorted Σ -algebra is a pair $\mathcal{A} := ((A_i)_{i \in I}; (f_{\gamma}^{\mathcal{A}})_{\gamma \in \Sigma})$ consisting of an I-sorted set and a Σ -sorted set of I-sorted fundamental operations. Important examples for I-sorted Σ -algebras are vector spaces over a field \mathcal{F} and deterministic automata. Let $Alg(\Sigma)$ be the class of all many-sorted Σ -algebras. The connection between many-sorted terms and term operations of many-sorted algebras of the same type is given by inducing term operations by terms.

Definition 1.4 ([3]) Let $X^{(n)}$ be an n-element I-sorted alphabet and let A be an I-sorted set. Let $A \in Alg(\Sigma)$ be a Σ -algebra, and $t \in W_n(i)$ be an n-ary Σ -term of sort $i \in I$. Let $f := (f_i)_{i \in I}$ where $f_i : X_i^{(n)} \to A_i$ be an I-sorted evaluation mapping of variables from $X^{(n)}$ by elements in A. Each mapping f_i can be extended in a canonical way to a mapping $\bar{f}_i : W_n(i) \to A_i$. Then $t^A : A^{X^{(n)}} \to A_i$ defined by

$$t^{\mathcal{A}}(f) := \bar{f}_i(t) \text{ for all } f \in A^{X^{(n)}},$$

where \bar{f}_i is the extension of the evaluation mapping $f_i: X_i^{(n)} \to A_i$. t^A is called the *n*-ary Σ -term operation on A induced by the *n*-ary Σ -term t of sort i.

Let $W^{\mathcal{A}}(i)$ be the set of all Σ -term operations on \mathcal{A} induced by all Σ -terms of sort i. Then we set $W^{\mathcal{A}}_{\Sigma}(X) := (W^{\mathcal{A}}(i))_{i \in I}$ and call this set I-sorted set of Σ -term operations induced on \mathcal{A} by the Σ -terms. This can be extended to sets of terms.

Definition 1.5 Let \mathcal{A} be a Σ -algebra, and $B \in \mathcal{P}(W(i)), i \in I$. Then we define the set $B^{\mathcal{A}}$ of Σ -term operations on \mathcal{A} induced by Σ -terms of sort i as follows:

- (1) If $B = \{x_{ij}\}$, then $B^{\mathcal{A}} := \{x_{ij}^{\mathcal{A}}\}$.
- (2) If $B = \{(f_{\gamma})_k(t_1, \ldots, t_n)\}$ where $k \in K_{\gamma}, \gamma \in \Sigma_n(i)$ and $t_j \in W(i_j), 1 \le j \le n, n \in \mathbb{N}$ whenever $\gamma = (i_1, \ldots, i_n, i)$, then $B^{\mathcal{A}} := \{((f_{\gamma})_k)^{\mathcal{A}}(t_1^{\mathcal{A}}, \ldots, t_n^{\mathcal{A}})\}$ where $((f_{\gamma})_k)^{\mathcal{A}}$ is the fundamental operation of \mathcal{A} corresponding to the operation symbol $(f_{\gamma})_k$ and where $t_j^{\mathcal{A}}$ are the Σ -term operations on \mathcal{A} which are induced in the usual way by the t_j 's.
- (3) If B is an arbitrary non-empty subset of W(i), then we define $B^{\mathcal{A}} := \bigcup_{b \in B} \{b\}^{\mathcal{A}}$.

If B is empty, then we define $B^{\mathcal{A}} := \emptyset$.

A superposition operation for sets of Σ -term operations on the many-sorted algebra \mathcal{A} can be defined in the following way:

Definition 1.6 Let \mathcal{A} be a Σ -algebra and let $T \in \mathcal{P}(W(i)), T_j \in \mathcal{P}(W(k_j)), 1 \leq j \leq n, n \in \mathbb{N}$, such that T, T_j are non-empty. Then the superposition operation

$$S_{\alpha}^{ndA}: \mathcal{P}(W^{\mathcal{A}}(i)) \times \mathcal{P}(W^{\mathcal{A}}(k_1)) \times \cdots \times \mathcal{P}(W^{\mathcal{A}}(k_n)) \to \mathcal{P}(W^{\mathcal{A}}(i))$$

where $\alpha = (k_1, \dots, k_n; i) \in \Lambda$, is inductively defined in the following way:

1) If $T = \{x_{ij}\}$ where $x_{ij} \in X_i$, then

1.1) for
$$i \neq k_j$$
,
 $S_{\alpha}^{ndA}(\{x_{ij}\}^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}}) := \{x_{ij}\}^{\mathcal{A}},$

1.2) for
$$i = k_j$$
,
 $S_{\alpha}^{ndA}(\{x_{ij}\}^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}}) := T_j^{\mathcal{A}}.$

2) If $T = \{(f_{\gamma})_k(s_1, \ldots, s_m)\} \in \mathcal{P}(W(i))$ where $k \in K_{\gamma}, \gamma = (i_1, \ldots, i_m; i) \in \Sigma$, $s_q \in W(i_q), 1 \leq q \leq m, m \in \mathbb{N}$, and if we assume that

$$S_{\alpha_q}^{ndA}(\{s_q\}^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}})$$

with $\alpha_q = (k_1, \dots, k_n; i_q) \in \Lambda$, are already defined, then $S^{ndA}(\{(f_2)_k(s_1, \dots, s_m)\}^{\mathcal{A}}, T^{\mathcal{A}}, \dots, T^{\mathcal{A}})$

$$S_{\alpha}^{ndA}(\{(f_{\gamma})_{k}(s_{1},\ldots,s_{m})\}^{\mathcal{A}},T_{1}^{\mathcal{A}},\ldots,T_{n}^{\mathcal{A}}) := \{((f_{\gamma})_{k})^{\mathcal{A}}(r_{1}^{\mathcal{A}},\ldots,r_{m}^{\mathcal{A}}) \mid r_{q}^{\mathcal{A}} \in S_{\alpha_{q}}^{ndA}(\{s_{q}\}^{\mathcal{A}},T_{1}^{\mathcal{A}},\ldots,T_{n}^{\mathcal{A}})\}.$$

3) If T is an arbitrary subset of W(i), then $S_{\alpha}^{ndA}(T^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}}) := \bigcup_{t \in T} S_{\alpha}^{ndA}(\{t\}^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}}).$

If one of the sets T, T_1, \ldots, T_n is empty, then we define $S_{\alpha}^{ndA}(T^{\mathcal{A}}, T_1^{\mathcal{A}}, \ldots, T_n^{\mathcal{A}}) := \emptyset$.

For illustration we consider the following example.

Example 1.7 Let $I = \{1,2\}, \Sigma = \{(1,2,1),(2,1,1)\}$ and \mathcal{A} be a Σ-algebra. Let $T = \{x_{12}, f_{(1,2,1)}(x_{11}, x_{21})\}, T_1 = \{f_{(2,1,1)}(x_{21}, x_{11})\}$ and $T_2 = \{x_{22}\}$. Then $S_{(1,2,1)}^{ndA}(T^A, T_1^A, T_2^A) = S_{(1,2,1)}^{ndA}(\{x_{12}, f_{(1,2,1)}(x_{11}, x_{21})\}^A, \{f_{(2,1,1)}(x_{21}, x_{11})\}^A, \{x_{22}\}^A)$ $= S_{(1,2,1)}^{ndA}(\{x_{12}\}^A, \{f_{(2,1,1)}(x_{21}, x_{11})\}^A, \{x_{22}\}^A) \cup S_{(1,2,1)}^{ndA}(\{f_{(1,2,1)}(x_{11}, x_{21})\}^A, \{f_{(2,1,1)}(x_{21}, x_{11})\}^A, \{x_{22}\}^A)$ $= \{x_{12}\}^A \cup \{f_{(1,2,1)}^A(r_{11}^A, r_{21}^A) \mid r_{11}^A \in S_{(1,2,1)}^{ndA}(\{x_{21}\}^A, \{f_{(2,1,1)}(x_{21}, x_{11})\}^A, \{x_{22}\}^A)\}$ $= \{x_{12}\}^A \cup \{f_{(1,2,1)}^A(r_{11}^A, r_{21}^A) \mid r_{11}^A \in \{f_{(2,1,1)}(x_{21}, x_{11})\}^A, \{x_{22}\}^A\}$ $= \{x_{12}\}^A \cup \{f_{(1,2,1)}^A(r_{11}^A, r_{21}^A) \mid r_{11}^A \in \{(f_{(2,1,1)}(x_{21}, x_{11}))^A\}, r_{21}^A \in \{x_{21}\}^A\}$ $= \{x_{12}\}^A \cup \{f_{(1,2,1)}^A((f_{(2,1,1)}(x_{21}, x_{11}), x_{21})^A\}$ $= \{x_{12}\}^A \cup \{f_{(1,2,1)}(f_{(2,1,1)}(x_{21}, x_{11}), x_{21})^A\}$

Proposition 1.8 Let A be a Σ -algebra and let $\alpha = (i_1, \ldots, i_m; i)$, $\beta = (k_1, \ldots, k_n; i)$, $\beta_j = (i_1, \ldots, i_m; k_j) \in \Lambda$ with $m \leq n, 1 \leq j \leq n$ such that $m, n \in \mathbb{N}^+$. Assume that $i \neq i_q, 1 \leq q \leq m$ if $i \neq k_j$. Let $S \in \mathcal{P}(W(i)), L_j \in \mathcal{P}(W(k_j)), T_q \in \mathcal{P}(W(i_q))$ such that L_j, T_q are non-empty. Then we have

$$S_{\alpha}^{ndA}(S_{\beta}^{ndA}(S^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \dots, L_{n}^{\mathcal{A}}), T_{1}^{\mathcal{A}}, \dots, T_{m}^{\mathcal{A}}) = S_{\beta}^{ndA}(S^{\mathcal{A}}, S_{\beta_{1}}^{ndA}(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \dots, T_{m}^{\mathcal{A}}), \dots, S_{\beta_{n}}^{ndA}(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \dots, T_{m}^{\mathcal{A}})).$$

If S is empty, then all is clear. If S is non-empty, then we will give a proof by induction on the complexity of the Σ -term which is the only element of the one-element set S.

1) If
$$S = \{x_{ij}\}$$
 where $x_{ij} \in X_i$, then

1.1) for
$$i \neq k_j$$
,

$$\begin{split} S_{\alpha}^{ndA}(S_{\beta}^{ndA}(S^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \dots, L_{n}^{\mathcal{A}}), T_{1}^{\mathcal{A}}, \dots, T_{m}^{\mathcal{A}}) \\ &= S_{\alpha}^{ndA}(S_{\beta}^{ndA}(\{x_{ij}\}^{\mathcal{A}}, L_{1}^{\mathcal{A}}, \dots, L_{n}^{\mathcal{A}}), T_{1}^{\mathcal{A}}, \dots, T_{m}^{\mathcal{A}}) \\ &= S_{\alpha}^{ndA}(\{x_{ij}\}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \dots, T_{m}^{\mathcal{A}}) \\ &= \{x_{ij}\}^{\mathcal{A}} \\ &= S_{\beta}^{ndA}(\{x_{ij}\}^{\mathcal{A}}, S_{\beta_{1}}^{ndA}(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \dots, T_{m}^{\mathcal{A}}), \dots, S_{\beta_{n}}^{ndA}(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \dots, T_{m}^{\mathcal{A}})) \\ &= S_{\beta}^{ndA}(S^{\mathcal{A}}, S_{\beta_{1}}^{ndA}(L_{1}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \dots, T_{m}^{\mathcal{A}}), \dots, S_{\beta_{n}}^{ndA}(L_{n}^{\mathcal{A}}, T_{1}^{\mathcal{A}}, \dots, T_{m}^{\mathcal{A}})), \end{split}$$

1.2) for $i = k_i$,

$$\begin{split} S^{ndA}_{\alpha} \big(S^{ndA}_{\beta} \big(S^{\mathcal{A}}, L^{\mathcal{A}}_{1}, \dots, L^{\mathcal{A}}_{n} \big), T^{\mathcal{A}}_{1}, \dots, T^{\mathcal{A}}_{m} \big) \\ &= S^{ndA}_{\alpha} \big(S^{ndA}_{\beta} \big(\{ x_{ij} \}^{\mathcal{A}}, L^{\mathcal{A}}_{1}, \dots, L^{\mathcal{A}}_{n} \big), T^{\mathcal{A}}_{1}, \dots, T^{\mathcal{A}}_{m} \big) \\ &= S^{ndA}_{\alpha} \big(L^{\mathcal{A}}_{\beta}, T^{\mathcal{A}}_{1}, \dots, T^{\mathcal{A}}_{m} \big) \\ &= S^{ndA}_{\beta_{j}} \big(L^{\mathcal{A}}_{j}, T^{\mathcal{A}}_{1}, \dots, T^{\mathcal{A}}_{m} \big) \\ &= S^{ndA}_{\beta_{j}} \big(\{ x_{ij} \}^{\mathcal{A}}, S^{ndA}_{\beta_{1}} \big(L^{\mathcal{A}}_{1}, T^{\mathcal{A}}_{1}, \dots, T^{\mathcal{A}}_{m} \big), \dots, S^{ndA}_{\beta_{n}} \big(L^{\mathcal{A}}_{n}, T^{\mathcal{A}}_{1}, \dots, T^{\mathcal{A}}_{m} \big) \big) \\ &= S^{ndA}_{\beta} \big(S^{\mathcal{A}}, S^{ndA}_{\beta_{1}} \big(L^{\mathcal{A}}_{1}, T^{\mathcal{A}}_{1}, \dots, T^{\mathcal{A}}_{m} \big), \dots, S^{ndA}_{\beta_{n}} \big(L^{\mathcal{A}}_{n}, T^{\mathcal{A}}_{1}, \dots, T^{\mathcal{A}}_{m} \big) \big). \end{split}$$

2) If $S = \{(f_{\gamma})_k(s_1, ..., s_p)\} \in \mathcal{P}(W(i))$ with $k \in K_{\gamma}, \gamma = (h_1, ..., h_p; i)$ $\in \Sigma, s_t \in W(h_t), 1 \le t \le p, p \in \mathbb{N}$ and if we assume that the equations $S_{\alpha_t}^{ndA}(S_{\lambda_t}^{ndA}(\{s_t\}^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}}), T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}}) = S_{\lambda_t}^{ndA}(\{s_t\}^{\mathcal{A}}, S_{\beta_1}^{ndA}(L_1^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}}), T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}}) = S_{\lambda_t}^{ndA}(\{s_t\}^{\mathcal{A}}, S_{\beta_1}^{ndA}(L_1^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}}), \dots, S_{\beta_n}^{ndA}(L_n^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}})) \text{ with } \lambda_t = (k_1, \dots, k_n; h_t), \alpha_t = (i_1, \dots, i_m; h_t) \in \Lambda, \text{ are satisfied, then } S_{\alpha}^{ndA}(S_{\beta}^{ndA}(S^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}}), T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}}) = S_{\alpha}^{ndA}(S_{\beta}^{ndA}(\{(f_{\gamma})_k(s_1, \dots, s_p)\})^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}}), T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}}) = S_{\alpha}^{ndA}(\{((f_{\gamma})_k)^{\mathcal{A}}(u_1^{\mathcal{A}}, \dots, u_p^{\mathcal{A}}) \mid u_t^{\mathcal{A}} \in S_{\lambda_t}^{ndA}(\{s_t\}^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}})\}, T_1^{\mathcal{A}}, \dots, S_{\alpha}^{ndA}, S_{\beta}^{ndA}(\{s_t\}^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}})\}, T_1^{\mathcal{A}}, \dots, S_{\alpha}^{ndA}, S_{\beta}^{ndA}(\{s_t\}^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}})\}, T_1^{\mathcal{A}}, \dots, S_{\alpha}^{ndA}, S_{\beta}^{ndA}(\{s_t\}^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal$ $= \{((f_{\gamma})_k)^{\mathcal{A}}(r_1^{\mathcal{A}}, \dots, r_p^{\mathcal{A}}) \mid r_t^{\mathcal{A}} \in S_{\alpha_t}^{ndA}(\{u_t^{\mathcal{A}} \mid u_t^{\mathcal{A}} \in S_{\lambda_t}^{ndA}(\{s_t\}^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}})\},$
$$\begin{split} & = \{((f_{\gamma})_k), (r_1, \dots, r_p) \mid r_t \in \mathcal{S}_{\alpha_t}, ((a_t + a_t \in \mathcal{S}_{\lambda_t}, ((c_t), \mathcal{I}_1, \dots, \mathcal{I}_n)), \\ & = \{((f_{\gamma})_k)^{\mathcal{A}}(r_1^{\mathcal{A}}, \dots, r_p^{\mathcal{A}}) \mid r_t^{\mathcal{A}} \in S_{\alpha_t}^{ndA}(S_{\lambda_t}^{ndA}(\{s_t\}^{\mathcal{A}}, L_1^{\mathcal{A}}, \dots, L_n^{\mathcal{A}}), T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}})\} \\ & = \{((f_{\gamma})_k)^{\mathcal{A}}(r_1^{\mathcal{A}}, \dots, r_p^{\mathcal{A}}) \mid r_t^{\mathcal{A}} \in S_{\lambda_t}^{ndA}(\{s_t\}^{\mathcal{A}}, S_{\beta_1}^{ndA}(L_1^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}}), \dots, \\ & S_{\beta_n}^{ndA}(L_n^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}}))\} \\ & = S_{\beta}^{ndA}((\{(f_{\gamma})_k(s_1, \dots, s_p)\})^{\mathcal{A}}, S_{\beta_1}^{ndA}(L_1^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}}), \dots, S_{\beta_n}^{ndA}(L_n^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}}), \dots, S_{\beta_n}^{ndA}(L_n^{\mathcal{A$$
 $=S_{\beta}^{nndA}(S^{\mathcal{A}}, S_{\beta_1}^{ndA}(L_1^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}}), \dots, S_{\beta_n}^{ndA}(L_n^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_m^{\mathcal{A}})).$ 3) If S is an arbitrary subset of W(i), then

$$\begin{split} &S^{ndA}_{\alpha}(S^{ndA}_{\beta}(S^{A},L^{A}_{1},\ldots,L^{A}_{n}),T^{A}_{1},\ldots,T^{A}_{m})\\ &=S^{ndA}_{\alpha}(\bigcup_{s\in S}S^{ndA}_{\beta}(\{s\}^{A},L^{A}_{1},\ldots,L^{A}_{n}),T^{A}_{1},\ldots,T^{A}_{m})\\ &=\bigcup_{s\in S}S^{ndA}_{\alpha}(S^{ndA}_{\beta}(\{s\}^{A},L^{A}_{1},\ldots,L^{A}_{n}),T^{A}_{1},\ldots,T^{A}_{m})\\ &=\bigcup_{s\in S}S^{ndA}_{\beta}(\{s\}^{A},S^{ndA}_{\beta_{1}}(L^{A}_{1},T^{A}_{1},\ldots,T^{A}_{m}),\ldots,S^{ndA}_{\beta_{n}}(L^{A}_{n},T^{A}_{1},\ldots,T^{A}_{m}))\\ &=S^{ndA}_{\beta}(S^{A},S^{ndA}_{\beta_{1}}(L^{A}_{1},T^{A}_{1},\ldots,T^{A}_{m}),\ldots,S^{ndA}_{\beta_{n}}(L^{A}_{n},T^{A}_{1},\ldots,T^{A}_{m})). \end{split}$$

Proposition 1.9 Let A be a Σ -algebra, and let $\alpha = (k_1, \ldots, k_n; i) \in \Lambda$. For $T \in \mathcal{P}(W(i))$ and for any $x_{k_i j} \in X_{k_i}, 1 \leq j \leq n, n \in \mathbb{N}$ we have

$$S_{\alpha}^{ndA}(T^{\mathcal{A}}, \{x_{k_11}\}^{\mathcal{A}}, \dots, \{x_{k_nn}\}^{\mathcal{A}}) = T^{\mathcal{A}}.$$

Proof If T is empty, then all is clear. If T is non-empty, then we will give a proof by induction on the complexity of the Σ -term which is the only element of the one-element set T.

- 1) If $T = \{x_{ij}\}$ where $x_{ij} \in X_i$, then
 - 1.1) for $i \neq k_j$, $S_{\alpha}^{ndA}(T^{\mathcal{A}}, \{x_{k_11}\}^{\mathcal{A}}, \dots, \{x_{k_nn}\}^{\mathcal{A}})$ $= S_{\alpha}^{ndA}(\{x_{ij}\}^{\mathcal{A}}, \{x_{k_11}\}^{\mathcal{A}}, \dots, \{x_{k_nn}\}^{\mathcal{A}})$ $= \{x_{ij}\}^{\mathcal{A}}$ $= T^{\mathcal{A}},$
 - 1.2) for $i = k_j$, $S_{\alpha}^{ndA}(T^{\mathcal{A}}, \{x_{k_{1}1}\}^{\mathcal{A}}, \dots, \{x_{k_{n}n}\}^{\mathcal{A}})$ $= S_{\alpha}^{ndA}(\{x_{ij}\}^{\mathcal{A}}, \{x_{k_{1}1}\}^{\mathcal{A}}, \dots, \{x_{k_{n}n}\}^{\mathcal{A}})$ $= \{x_{k_{j}j}\}^{\mathcal{A}}$ $= \{x_{ij}\}^{\mathcal{A}}$ $= T^{\mathcal{A}}$.
- 2) If $T = \{(f_{\gamma})_k(s_1, \ldots, s_m)\} \in \mathcal{P}(W(i))$ where $k \in K_{\gamma}, \gamma = (i_1, \ldots, i_m; i) \in \Sigma, s_q \in W(i_q), 1 \leq q \leq m, m \in \mathbb{N}$ and if we assume that the equations

$$S_{\alpha_q}^{ndA}(\{s_q\}^{\mathcal{A}}, \{x_{k_11}\}^{\mathcal{A}}, \dots, \{x_{k_nn}\}^{\mathcal{A}}) = \{s_q\}^{\mathcal{A}}$$

with $\alpha_q = (k_1, \dots, k_n; i_q) \in \Lambda$, are satisfied, then $S_{\alpha}^{ndA}(T^A, \{x_{k_{11}}\}^A, \dots, \{x_{k_{nn}}\}^A) = S_{\alpha}^{ndA}(\{(\{f_{\gamma}\}_k(s_1, \dots, s_m)\})^A, \{x_{k_{11}}\}^A, \dots, \{x_{k_{nn}}\}^A) = \{((f_{\gamma})_k)^A(r_1^A, \dots, r_m^A) \mid r_q^A \in S_{\alpha_q}^{ndA}(\{s_q\}^A, \{x_{k_{11}}\}^A, \dots, \{x_{k_{nn}}\}^A)\} = \{((f_{\gamma})_k)^A(r_1^A, \dots, r_m^A) \mid r_q^A \in \{s_q\}^A\} = \{((f_{\gamma})_k)^A(r_1^A, \dots, r_m^A) \mid r_q^A \in \{s_q^A\}\} = \{((f_{\gamma})_k)^A(s_1^A, \dots, s_m^A)\} = \{((f_{\gamma})_k(s_1, \dots, s_m))^A\} = \{((f_{\gamma})_k(s_1, \dots, s_m))^A\} = T^A$

3) If T is an arbitrary subset of W(i), then

$$S_{\alpha}^{ndA}(T^{A}, \{x_{k_{1}1}\}^{A}, \dots, \{x_{k_{n}n}\}^{A})$$

$$= \bigcup_{t \in T} S_{\alpha}^{ndA}(\{t\}^{A}, \{x_{k_{1}1}\}^{A}, \dots, \{x_{k_{n}n}\}^{A})$$

$$= \bigcup_{t \in T} \{t\}^{A}$$

$$= T^{A}.$$

Lemma 1.10 Let \mathcal{A} be a Σ -algebra, and $\alpha = (k_1, \ldots, k_n, i) \in \Lambda$. Let $T \in \mathcal{P}(W(i)), T_j \in \mathcal{P}(W(k_j)), 1 \leq j \leq n, n \in \mathbb{N}$ such that T, T_j are non-empty. Then

$$\bigcup_{t \in T} (S_{\alpha}^{nd}(\{t\}, T_1, \dots, T_n))^{\mathcal{A}} = (\bigcup_{t \in T} S_{\alpha}^{nd}(\{t\}, T_1, \dots, T_n))^{\mathcal{A}}.$$

Proof Let
$$s \in W(i)$$
. Then $s^{\mathcal{A}} \in \bigcup_{t \in T} (S^{nd}_{\alpha}(\{t\}, T_{1}, \dots, T_{n}))^{\mathcal{A}} \Leftrightarrow s^{\mathcal{A}} \in (S^{nd}_{\alpha}(\{t\}, T_{1}, \dots, T_{n}))^{\mathcal{A}} \text{ for some } t \in T$

$$\Leftrightarrow s \in S^{nd}_{\alpha}(\{t\}, T_{1}, \dots, T_{n}) \text{ for some } t \in T$$

$$\Leftrightarrow s \in \bigcup_{t \in T} S^{nd}_{\alpha}(\{t\}, T_{1}, \dots, T_{n})$$

$$\Leftrightarrow s^{\mathcal{A}} \in (\bigcup_{t \in T} S^{nd}_{\alpha}(\{t\}, T_{1}, \dots, T_{n}))^{\mathcal{A}}.$$

Lemma 1.11 Let \mathcal{A} be a Σ -algebra, and let $\alpha = (k_1, \ldots, k_n; i) \in \Lambda$. Let $T \in \mathcal{P}(W(i)), T_j \in \mathcal{P}(W(k_j)), 1 \leq j \leq n, n \in \mathbb{N}$ such that T_j is non-empty. Then we have

$$(S_{\alpha}^{nd}(T,T_1,\ldots,T_n))^{\mathcal{A}}=S_{\alpha}^{ndA}(T^{\mathcal{A}},T_1^{\mathcal{A}},\ldots,T_n^{\mathcal{A}}).$$

Proof If T is empty, then all is clear. If T is non-empty, then we will give a proof by induction on the complexity of the Σ -term which is the only element of the one-element set T.

1) If $T = \{x_{ij}\}$ where $x_{ij} \in X_i$, then

1.1) for
$$i \neq k_j$$
,

$$(S_{\alpha}^{nd}(T, T_1, \dots, T_n))^{\mathcal{A}} = (S_{\alpha}^{nd}(\{x_{ij}\}, T_1, \dots, T_n))^{\mathcal{A}}$$

$$= \{x_{ij}\}^{\mathcal{A}}$$

$$= S_{\alpha}^{ndA}(\{x_{ij}\}^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}})$$

$$= S_{\alpha}^{ndA}(T^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}}),$$

1.2) for
$$i = k_j$$
,

$$(S^{nd}_{\alpha}(T, T_1, \dots, T_n))^{\mathcal{A}} = (S^{nd}_{\alpha}(\{x_{ij}\}, T_1, \dots, T_n))^{\mathcal{A}}$$

$$= T^{\mathcal{A}}_{j}$$

$$= S^{ndA}_{\alpha}(\{x_{ij}\}^{\mathcal{A}}, T^{\mathcal{A}}_{1}, \dots, T^{\mathcal{A}}_{n})$$

$$= S^{ndA}_{\alpha}(T^{\mathcal{A}}, T^{\mathcal{A}}_{1}, \dots, T^{\mathcal{A}}_{n}).$$

2) If $T = \{(f_{\gamma})_k(s_1, \ldots, s_m)\} \in \mathcal{P}(W(i))$ where $k \in K_{\gamma}, \gamma = (i_1, \ldots, i_m; i) \in \Sigma$, $s_q \in W(i_q), 1 \leq q \leq m, m \in \mathbb{N}^+$ and if we assume that the equations

$$(S_{\alpha_g}^{nd}(\{s_q\}, T_1, \dots, T_n))^{\mathcal{A}} = S_{\alpha_g}^{ndA}(\{s_q\}^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}})$$

with $\alpha_q = (k_1, \dots, k_n; i_q) \in \Lambda$, are satisfied, then

$$\begin{split} &(S^{nd}_{\alpha}(T,T_{1},\ldots,T_{n}))^{\mathcal{A}} \\ &= (S^{nd}_{\alpha}(\{(f_{\gamma})_{k}(s_{1},\ldots,s_{m})\},T_{1},\ldots,T_{n}))^{\mathcal{A}} \\ &= (\{(f_{\gamma})_{k}(r_{1},\ldots,r_{m}) \mid r_{q} \in S^{nd}_{\alpha_{q}}(\{s_{q}\},T_{1},\ldots,T_{n})\})^{\mathcal{A}} \\ &= \{((f_{\gamma})_{k}(r_{1},\ldots,r_{m}))^{\mathcal{A}} \mid r^{\mathcal{A}}_{q} \in (S^{nd}_{\alpha_{q}}(\{s_{q}\},T_{1},\ldots,T_{n}))^{\mathcal{A}}\} \\ &= \{((f_{\gamma})_{k})^{\mathcal{A}}(r^{\mathcal{A}}_{1},\ldots,r^{\mathcal{A}}_{m}) \mid r^{\mathcal{A}}_{q} \in S^{ndA}_{\alpha_{q}}(\{s_{q}\}^{\mathcal{A}},T^{\mathcal{A}}_{1},\ldots,T^{\mathcal{A}}_{n})\} \\ &= S^{ndA}_{\alpha}(\{(f_{\gamma})_{k}(s_{1},\ldots,s_{m})\}^{\mathcal{A}},T^{\mathcal{A}}_{1},\ldots,T^{\mathcal{A}}_{n}) \\ &= S^{ndA}_{\alpha}(T^{\mathcal{A}},T^{\mathcal{A}}_{1},\ldots,T^{\mathcal{A}}_{n}). \end{split}$$

3) If T is an arbitrary subset of W(i), then

$$(S_{\alpha}^{nd}(T, T_1, \dots, T_n))^{\mathcal{A}} = (\bigcup_{t \in T} S_{\alpha}^{nd}(\{t\}, T_1, \dots, T_n))^{\mathcal{A}}$$

$$= \bigcup_{t \in T} (S_{\alpha}^{nd}(\{t\}, T_1, \dots, T_n))^{\mathcal{A}}$$

$$= \bigcup_{t \in T} S_{\alpha}^{ndA}(\{t\}^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}})$$

$$= S_{\alpha}^{ndA}(T^{\mathcal{A}}, T_1^{\mathcal{A}}, \dots, T_n^{\mathcal{A}}).$$

2 I-Sorted Nd-Identities and Nd-Model Classes

Let K be a subset of $Alg(\Sigma)$ and we set $\mathcal{P}(X) := (\mathcal{P}(X_i))_{i \in I}$.

Definition 2.1 A non-deterministic Σ-equation of sort i in $\mathcal{P}(X)$ is a pair $((B_1)_i, (B_2)_i)$ of elements from $\mathcal{P}(W(i)), i \in I$: Such pairs are more commonly written as $(B_1)_i \approx_i^{nd} (B_2)_i$. The non-deterministic Σ-equation $(B_1)_i \approx_i^{nd} (B_2)_i$ of sort i is said to be a non-deterministic Σ-identity of sort i in Σ-algebra \mathcal{A} if $(B_1)_i^{\mathcal{A}} = (B_2)_i^{\mathcal{A}}$.

In this case we also say that the non-deterministic Σ -equation $(B_1)_i \approx_i^{nd} (B_2)_i$ is satisfied or modelled by the Σ -algebra \mathcal{A} , and write $\mathcal{A} \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$. If the non-deterministic Σ -equation $(B_1)_i \approx_i^{nd} (B_2)_i$ is satisfied by every Σ -algebra in K, we write $K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$, that is,

$$K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i : \Leftrightarrow \forall \mathcal{A} \in K(\mathcal{A} \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i).$$

Let $\mathcal{K} \subseteq \mathcal{P}(Alg(\Sigma))$. Then if the non-deterministic Σ -equation $(B_1)_i \approx_i^{nd} (B_2)_i$ is satisfied by every class in \mathcal{K} , we write $\mathcal{K} \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$, that is,

$$\mathcal{K} \models_{i}^{nd} (B_{1})_{i} \approx_{i}^{nd} (B_{2})_{i} : \Leftrightarrow \forall K \in \mathcal{K}(K \models_{i}^{nd} (B_{1})_{i} \approx_{i}^{nd} (B_{2})_{i}).$$

For a set $\mathcal{PL}(i)$ of non-deterministic Σ -equations of sort i we write $K \models_i^{nd} \mathcal{PL}(i)$ if $K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$ for all $((B_1)_i, (B_2)_i) \in \mathcal{PL}(i)$. We write $\mathcal{K} \models_i^{nd} \mathcal{PL}(i)$ if $K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$ for all $K \in \mathcal{K}$, and $((B_1)_i, (B_2)_i) \in \mathcal{PL}(i)$.

For illustration we consider the following example.

Example 2.2 Let $I = \{1, 2\}, X^{(2)} = (X_i^{(2)})_{i \in I}$, and let $\Sigma = \{(1, 1, 1), (2, 1, 1)\}$. Let \mathcal{V} be a real vector space, $A_1 = \{f_{(2,1,1)}(x_{21}, f_{(1,1,1)}(x_{11}, x_{12}))\}, B_1 = \{f_{(2,1,1)}(x_{21}, f_{(2,1,1)}(x_{21}, f_{$

 $(f_{(2,1,1)}(x_{21},x_{11}),f_{(2,1,1)}(x_{21},x_{12}))$. Then the non-deterministic Σ -equation $A_1 \approx_1^{nd} B_1$ of sort 1 is a non-deterministic Σ -identity of sort 1 in \mathcal{V} , that is, $\mathcal{V} \models_1^{nd} A_1 \approx_1^{nd} B_1$. Then

$$\begin{array}{rcl} A_{1}^{\mathcal{V}} & = & \{f_{(2,1,1)}(x_{21},f_{(1,1,1)}(x_{11},x_{12}))\}^{\mathcal{V}} \\ & = & \{(f_{(2,1,1)}(x_{21},f_{(1,1,1)}(x_{11},x_{12})))^{\mathcal{V}}\} \\ & = & \{(f_{(1,1,1)}(f_{(2,1,1)}(x_{21},x_{11}),f_{(2,1,1)}(x_{21},x_{12})))^{\mathcal{V}}\} \\ & = & \{f_{(1,1,1)}(f_{(2,1,1)}(x_{21},x_{11}),f_{(2,1,1)}(x_{21},x_{12}))\}^{\mathcal{V}} \\ & = & B_{1}^{\mathcal{V}}. \end{array}$$

Therefore $\mathcal{V} \models_{1}^{nd} A_{1} \approx_{1}^{nd} B_{1}$

Let $\mathcal{K} \subseteq \mathcal{P}(Alg(\Sigma))$ and $\mathcal{PL}(i) \subseteq \mathcal{P}(W(i))^2$. Then we define a mapping

$$nd\Sigma(i)$$
- $Id: \mathcal{P}(\mathcal{P}(Alg(\Sigma))) \to \mathcal{P}(\mathcal{P}(W(i))^2)$

by

$$nd\Sigma(i)\text{-}Id\mathcal{K} := \{((B_1)_i, (B_2)_i) \in \mathcal{P}(W(i))^2 \mid \forall K \in \mathcal{K}(K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i)\},$$

and a mapping

$$nd\Sigma(i)$$
- $Mod: \mathcal{P}(\mathcal{P}(W(i))^2) \to \mathcal{P}(\mathcal{P}(Alg(\Sigma)))$

by

$$nd\Sigma(i)-Mod\mathcal{PL}(i) := \{K \in \mathcal{P}(Alg(\Sigma)) \mid \forall ((B_1)_i, (B_2)_i) \in \mathcal{PL}(i)(K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i)\}.$$

In the next propositions we will show that these two mappings satisfy the Galois-connection properties.

Proposition 2.3 Let $i \in I$, and let $\mathcal{P}(Alg(\Sigma))$ be the set of all subsets of $Alg(\Sigma)$ and let $K, K_1, K_2 \subseteq \mathcal{P}(Alg(\Sigma))$. Then

- (1) If $\mathcal{K}_1 \subseteq \mathcal{K}_2$, then $nd\Sigma(i)$ - $Id\mathcal{K}_2 \subseteq nd\Sigma(i)$ - $Id\mathcal{K}_1$,
- (2) $\mathcal{K} \subseteq nd\Sigma(i)\text{-}Modnd\Sigma(i)\text{-}Id\mathcal{K}$.
- **Proof** (1) Assume that $\mathcal{K}_1 \subseteq \mathcal{K}_2$ and let $(B_1)_i \approx_i^{nd} (B_2)_i \in nd\Sigma(i)$ - $Id\mathcal{K}_2$. Then for all $K \in \mathcal{K}_2$, $K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$, but we have $\mathcal{K}_1 \subseteq \mathcal{K}_2$, so that $K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$ for all $K \in \mathcal{K}_1$. It follows that $(B_1)_i \approx_i^{nd} (B_2)_i \in \mathcal{K}_1$. $nd\Sigma(i)$ - $Id\mathcal{K}_1$, and then $nd\Sigma(i)$ - $Id\mathcal{K}_2 \subseteq nd\Sigma(i)$ - $Id\mathcal{K}_1$. (2) Let $K \in \mathcal{K}$. Then $K \models_i^{nd} nd\Sigma(i)$ - $Id\mathcal{K}$, means that $K \in nd\Sigma(i)$ -
- $Modnd\Sigma(i)$ - $Id\mathcal{K}$, and then $\mathcal{K} \subseteq nd\Sigma(i)$ - $Modnd\Sigma(i)$ - $Id\mathcal{K}$.

Proposition 2.4 Let $i \in I$, and let $\mathcal{P}(W(i))$ be the set of all subsets of W(i) and let $\mathcal{PL}(i)$, $\mathcal{PL}_1(i)$, $\mathcal{PL}_2(i) \subseteq \mathcal{P}(W(i))^2$. Then

- (1) If $\mathcal{PL}_1(i) \subseteq \mathcal{PL}_2(i)$, then $nd\Sigma(i)$ - $Mod\mathcal{PL}_2(i) \subseteq nd\Sigma(i)$ - $Mod\mathcal{PL}_1(i)$,
- (2) $\mathcal{PL}(i) \subseteq nd\Sigma(i)\text{-}Idnd\Sigma(i)\text{-}Mod\mathcal{PL}(i)$.

Proof (1) Assume that $\mathcal{PL}_1(i) \subseteq \mathcal{PL}_2(i)$ and let $K \in nd\Sigma(i)\text{-}Mod\mathcal{PL}_2(i)$. Then for all $((B_1)_i, (B_2)_i) \in \mathcal{PL}_2(i), K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$, but we have $\mathcal{PL}_1(i) \subseteq \mathcal{PL}_2(i)$, so that $K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$ for all $((B_1)_i, (B_2)_i) \in \mathcal{PL}_1(i)$, which means $K \in nd\Sigma(i)\text{-}Mod\mathcal{PL}_1(i)$, and then $nd\Sigma(i)\text{-}Mod\mathcal{PL}_2(i) \subseteq nd\Sigma(i)\text{-}Mod\mathcal{PL}_1(i)$.

(2) Let $((B_1)_i, (B_2)_i) \in \mathcal{PL}(i)$. Then $nd\Sigma(i)$ - $Mod\mathcal{PL}(i) \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$, means that $((B_1)_i, (B_2)_i) \in nd\Sigma(i)$ - $Idnd\Sigma(i)$ - $Mod\mathcal{PL}(i)$, and then $\mathcal{PL}(i)$ $\subseteq nd\Sigma(i)$ - $Idnd\Sigma(i)$ - $Mod\mathcal{PL}(i)$.

From both propositions we have that $(nd\Sigma(i)-Mod, nd\Sigma(i)-Id)$ is a Galois connection between $\mathcal{P}(Alg(\Sigma))$ and $\mathcal{P}(W(i))^2$ with respect to the relation

$$\models_{i}^{nd} := \{ (K, ((B_{1})_{i}, (B_{2})_{i})) \in \mathcal{P}(Alg(\Sigma)) \times \mathcal{P}(W(i))^{2} \mid K \models_{i}^{nd} (B_{1})_{i} \approx_{i}^{nd} (B_{2})_{i} \}.$$

The fixed points with respect to the closure operator $nd\Sigma(i)$ - $Modnd\Sigma(i)$ -Id are called non-deterministic Σ -varieties of sort i and the fixed points with respect to the closure operator $nd\Sigma(i)$ - $Idnd\Sigma(i)$ -Mod are called non-deterministic Σ -equational theories of sort i.

3 Application of Nd-Hypersubstitutions

Now we apply non-deterministic Σ -hypersubstitutions to many-sorted algebras and to many-sorted equations.

Definition 3.1 ([1])Let $((f_{\gamma})_k)_{k \in K_{\gamma}, \gamma \in \Sigma}$ be an indexed set of Σ-sorted operation symbols. Any mapping

$$\sigma_i : \{(f_{\gamma})\}_k \mid k \in K_{\gamma}, \gamma \in \Sigma(i)\} \to W(i), i \in I$$

which preserves the arity, is said to be a Σ -hypersubstitution of sort i. Let $\Sigma(i)$ -Hyp be the set of all Σ -hypersubstitutions of sort i. The I-sorted mapping $\sigma := (\sigma_i)_{i \in I}$ is called an I-sorted Σ -hypersubstitution. Let Σ -Hyp be the set of all I-sorted Σ -hypersubstitutions. Any I-sorted Σ -hypersubstitution can inductively be extended to an I-sorted mapping $\hat{\sigma} := (\hat{\sigma}_i)_{i \in I}$. The I-sorted mapping

$$\hat{\sigma}: W_{\Sigma}(X) \to W_{\Sigma}(X)$$

is inductively defined in the following way: For all $i \in I$, for every $t \in W(i)$,

(1) if
$$t = x_{ij} \in X_i$$
 with $1 \le j \le n$, then $\hat{\sigma}_i[t] := x_{ij}$,

(2) if $t = (f_{\gamma})_k(t_1, \ldots, t_m)$ with $k \in K_{\gamma}, \gamma \in \Sigma_m(i)$ and $t_q \in W(k_q), 1 \leq q \leq m$ whenever $\gamma = (k_1, \ldots, k_m, i)$ and if we assume that $\hat{\sigma}_{k_q}[t_q]$ are already defined, then

$$\hat{\sigma}_i[t] := S_{\gamma}(\sigma_i((f_{\gamma})_k), \hat{\sigma}_{k_1}[t_1], \dots, \hat{\sigma}_{k_m}[t_m]).$$

Definition 3.2 ([3]) Let $\mathcal{A} = (A; (((f_{\gamma})_k)^{\mathcal{A}})_{k \in K_{\gamma}, \gamma \in \Sigma})$ be a Σ -algebra and $\sigma \in \Sigma$ -Hyp. Then we define a Σ -algebra by

$$\sigma(\mathcal{A}) := (A; ((\sigma_i((f_{\gamma})_k))^{\mathcal{A}})_{k \in K_{\gamma}, \gamma \in \Sigma(i), i \in I}),$$

This algebra is called derived Σ -algebra determined by σ and A.

Definition 3.3 Let A be an I-sorted set, $\mathcal{A} = (A; (((f_{\gamma})_k)^{\mathcal{A}})_{k \in K_{\gamma}, \gamma \in \Sigma})$ be a Σ -algebra and let $\sigma^{nd} \in nd\Sigma$ -Hyp. Then we define a set of Σ -algebras by $\sigma^{nd}(\mathcal{A}) := \{\rho(\mathcal{A}) \mid \rho \in \Sigma$ -Hyp, $(\rho_i((f_{\gamma})_k))^{\mathcal{A}} \in (\sigma_i^{nd}((f_{\gamma})_k))^{\mathcal{A}}, k \in K_{\gamma}, \gamma \in \Sigma(i),$ $i \in I\}.$

Here ϱ is a many-sorted deterministic hypersubstitution (see [1]). This set of Σ -algebras is called the set of derived Σ -algebras determined by \mathcal{A} and σ^{nd} .

For illustration we consider the following example.

Example 3.4 Let $I = \{1, 2\}$, $A = (A_i)_{i \in I}$. Let $\Sigma = \{(1, 2, 1), (2, 1, 2)\}$, $\mathcal{A} = (A; f_{(1,2,1)}^{\mathcal{A}}.f_{(2,1,2)}^{\mathcal{A}})$, and $\rho_1, \rho_2, \rho_3 \in \Sigma$ -Hyp. Let $\sigma^{nd} \in nd\Sigma$ -Hyp and assume that

$$((\rho_2)_1(f_{(1,2,1)}))^{\mathcal{A}}, ((\rho_3)_1(f_{(1,2,1)}))^{\mathcal{A}} \in (\sigma_1^{nd}(f_{(1,2,1)}))^{\mathcal{A}}, ((\rho_1)_2(f_{(2,1,2)}))^{\mathcal{A}}, ((\rho_2)_2(f_{(2,1,2)}))^{\mathcal{A}}, ((\rho_3)_2(f_{(2,1,2)}))^{\mathcal{A}} \in (\sigma_2^{nd}(f_{(2,1,2)}))^{\mathcal{A}}. \text{ Then we have } \rho_2(\mathcal{A}), \\ \rho_3(\mathcal{A}) \in \sigma^{nd}(\mathcal{A}) \text{ and } \rho_1(\mathcal{A}) \notin \sigma^{nd}(\mathcal{A}), \text{ since } (\rho_1)_1(f_{(1,2,1)})^{\mathcal{A}} \notin \sigma_1^{nd}(f_{(1,2,1)})^{\mathcal{A}}.$$

Definition 3.5 Let $B \in \mathcal{P}(W(i))$ and let \mathcal{A} be a Σ -algebra. Let $\sigma^{nd} \in nd\Sigma$ -Hyp, $\sigma^{nd}(\mathcal{A})$ be the set of derived algebras determined by \mathcal{A} and σ^{nd} . Then we define the set $B^{\sigma^{nd}(\mathcal{A})}$ of Σ -term operations induced by the set $\sigma^{nd}(\mathcal{A})$ of derived algebras as follows:

- (1) If $B = \{x_{ij}\}$ where $x_{ij} \in X_i$, then $B^{\sigma^{nd}(\mathcal{A})} := \{x_{ij}^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma^{nd}(\mathcal{A})\}.$
- (2) If $B = \{(f_{\gamma})_k(s_1, \ldots, s_m)\}$ where $k \in K_{\gamma}, \gamma \in \Sigma_m(i)$ and $s_q \in W(i_q), 1 \le q \le m, m \in \mathbb{N}$ whenever $\gamma = (i_1, \ldots, i_m, i)$, and if we assume that $\{s_q\}^{\sigma^{nd}(\mathcal{A})}$ are already defined, then $B^{\sigma^{nd}(\mathcal{A})} := S^{ndA}_{\gamma}(\{((f_{\gamma})_k)^{\rho(\mathcal{A})} | \rho(\mathcal{A}) \in \sigma^{nd}(\mathcal{A})\}, \{s_1\}^{\sigma^{nd}(\mathcal{A})}, \ldots, \{s_m\}^{\sigma^{nd}(\mathcal{A})}).$
- (3) If B is an arbitrary subset of W(i), then $B^{\sigma^{nd}(A)} := \bigcup_{b \in B} \{b\}^{\sigma^{nd}(A)}$.

If B is empty, then $B^{\sigma^{nd}(A)} := \emptyset$.

Theorem 3.6 Let A be an I-sorted set and $A = (A; ((f_{\gamma})_k)^A)_{k \in K_{\gamma}, \gamma \in \Sigma})$ be a Σ -algebra. Let $\sigma^{nd} \in nd\Sigma$ -Hyp and $B \in \mathcal{P}(W(i))$. Then $B^{\sigma^{nd}(A)} = (\hat{\sigma}_i^{nd}[B])^A$.

Proof If B is empty, then all is clear. If B is non-empty, then we will give a proof by induction on the complexity of the Σ -term which is the only element of the one-element set B.

- 1) If $B = \{x_{ij}\}$ where $x_{ij} \in X_i$, then $B^{\sigma^{nd}(\mathcal{A})} = \{x_{ij}\}^{\sigma^{nd}(\mathcal{A})}$ $= \{x_{ij}^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma^{nd}(\mathcal{A})\}$ $= \{(\hat{\rho}_i[x_{ij}])^{\mathcal{A}} \mid \rho(\mathcal{A}) \in \sigma^{nd}(\mathcal{A})\}$ $= \{x_{ij}^{\mathcal{A}} \mid \rho(\mathcal{A}) \in \sigma^{nd}(\mathcal{A})\}$ $= \{x_{ij}^{\mathcal{A}}\}$ $= \{x_{ij}^{\mathcal{A}}\}$ $= (\hat{\sigma}_i^{nd}[\{x_{ij}\}])^{\mathcal{A}}$ $= (\hat{\sigma}_i^{nd}[B])^{\mathcal{A}}.$
- 2) If $B = \{(f_{\gamma})_k(t_1, \ldots, t_m)\} \in \mathcal{P}(W(i))$ where $k \in K_{\gamma}, \gamma \in \Sigma_m(i)$ and $t_q \in W(i_q), 1 \leq q \leq m, m \in \mathbb{N}$ whenever $\gamma = (i_1, \ldots, i_m, i)$ and if we assume that the equations

$$\{t_q\}^{\sigma^{nd}(\mathcal{A})} = (\hat{\sigma}_{i_q}^{nd}[\{t_q\}])^{\mathcal{A}}$$

are satisfied, then

$$\begin{split} &B^{\sigma^{nd}}(\mathcal{A}) \\ &= \{(f_{\gamma})_k(t_1, \dots, t_n)\}^{\sigma^{nd}}(\mathcal{A}) \\ &= S_{\gamma}^{ndA}(\{((f_{\gamma})_k)^{\rho(\mathcal{A})} \mid \rho(\mathcal{A}) \in \sigma^{nd}(\mathcal{A})\}, \{t_1\}^{\sigma^{nd}(\mathcal{A})}, \dots, \{t_m\}^{\sigma^{nd}(\mathcal{A})}) \\ &= S_{\gamma}^{ndA}(\{(\rho_i((f_{\gamma})_k))^{\mathcal{A}} \mid (\rho_i((f_{\gamma})_k))^{\mathcal{A}} \in (\sigma_i^{nd}((f_{\gamma})_k))^{\mathcal{A}}\}, \{t_1\}^{\sigma^{nd}(\mathcal{A})}, \dots, \{t_m\}^{\sigma^{nd}(\mathcal{A})}) \\ &= S_{\gamma}^{ndA}(\{(\rho_i((f_{\gamma})_k))^{\mathcal{A}} \mid (\rho_i((f_{\gamma})_k))^{\mathcal{A}} \in (\sigma_i^{nd}((f_{\gamma})_k))^{\mathcal{A}}\}, (\hat{\sigma}_{i_1}^{nd}[\{t_1\}])^{\mathcal{A}}, \dots, (\hat{\sigma}_{i_m}^{nd}[\{t_m\}])^{\mathcal{A}}) \\ &= S_{\gamma}^{ndA}((\sigma_i^{nd}((f_{\gamma})_k))^{\mathcal{A}}, (\hat{\sigma}_{i_1}^{nd}[\{t_1\}])^{\mathcal{A}}, \dots, (\hat{\sigma}_{i_m}^{nd}[\{t_m\}])^{\mathcal{A}}) \\ &= (S_{\gamma}^{nd}(\sigma_i^{nd}((f_{\gamma})_k), (\hat{\sigma}_{i_1}^{nd}[\{t_1\}]), \dots, (\hat{\sigma}_{i_m}^{nd}[\{t_m\}])))^{\mathcal{A}} \\ &= (\hat{\sigma}_i^{nd}[\{(f_{\gamma})_k(t_1, \dots, t_m)\}])^{\mathcal{A}} \\ &= (\hat{\sigma}_i^{nd}[B])^{\mathcal{A}}. \end{split}$$

3) If B is an arbitrary subset of W(i), then

$$B^{\sigma^{nd}(A)} = \bigcup_{b \in B} \{b\}^{\sigma^{nd}(A)}$$

$$= \bigcup_{b \in B} (\hat{\sigma}_i^{nd}[\{b\}])^A$$

$$= (\bigcup_{b \in B} \hat{\sigma}_i^{nd}[\{b\}])^A$$

$$= (\hat{\sigma}_i^{nd}[B])^A.$$

Let $K \subseteq Alg(\Sigma)$. Then we set $\sigma^{nd}(K) := \bigcup_{A \in K} \sigma^{nd}(A)$. Let $\sigma_1, \sigma_2 \in \Sigma$ -Hyp. Then we define $\sigma_1 \diamond \sigma_2 := ((\sigma_1)_i \circ_i (\sigma_2)_i)_{i \in I}$.

Lemma 3.7 Let A be a Σ -algebra and σ_1^{nd} , σ_2^{nd} be elements in $nd\Sigma$ -Hyp. Then

$$\sigma_1^{nd}(\sigma_2^{nd}(\mathcal{A})) = (\sigma_2^{nd} \circ^{nd} \sigma_1^{nd})(\mathcal{A}).$$

Assume that $k \in K_{\gamma}, \gamma \in \Sigma(i), i \in I$. Then we have Then Assume that $k \in \mathcal{H}_{\gamma}$, $f \in \mathcal{D}(t)$, $t \in \mathcal{T}$. Then we have $\sigma_1^{nd}(\sigma_2^{nd}(\mathcal{A})) = \bigcup_{\rho(\mathcal{A}) \in \sigma_2^{nd}(\mathcal{A})} \sigma_1^{nd}(\rho(\mathcal{A}))$ $= \bigcup_{\rho(\mathcal{A}) \in \sigma_2^{nd}(\mathcal{A})} \{\lambda(\rho(\mathcal{A})) \mid (\lambda_i((f_{\gamma})_k))^{\rho(\mathcal{A})} \in ((\sigma_1^{nd})_i((f_{\gamma})_k))^{\rho(\mathcal{A})}\}$ $= \bigcup_{\rho(\mathcal{A}) \in \sigma_2^{nd}(\mathcal{A})} \{(\rho \diamond \lambda)(\mathcal{A}) \mid (\hat{\rho}_i[\lambda_i((f_{\gamma})_k)])^{\mathcal{A}} \in ((\sigma_1^{nd})_i((f_{\gamma})_k))^{\rho(\mathcal{A})}\}$ $= \bigcap_{\rho(\mathcal{A}) \in \sigma_2^{nd}(\mathcal{A})} \{(\rho \diamond \lambda)(\mathcal{A}) \mid (\hat{\rho}_i[\lambda_i((f_{\gamma})_k)])^{\mathcal{A}} \in ((\sigma_1^{nd})_i((f_{\gamma})_k))^{\rho(\mathcal{A})}\}$ $= \{ (\rho \diamond \lambda)(\mathcal{A}) \mid (\hat{\rho}_i[\lambda_i((f_{\gamma})_k)])^{\mathcal{A}} \in ((\sigma_1^{nd})_i((f_{\gamma})_k))^{\sigma_2^{nd}(\mathcal{A})} \}$ $= \{ (\rho \diamond \lambda)(\mathcal{A}) \mid (\hat{\rho}_i[\lambda_i((f_{\gamma})_k)])^{\mathcal{A}} \in ((\hat{\sigma}_2^{nd})_i[(\sigma_1^{nd})_i((f_{\gamma})_k)])^{\mathcal{A}} \}$ $= \{(\rho \diamond \lambda)(A) \mid ((\hat{\rho}_{i} \circ \lambda_{i})((f_{\gamma})_{k}))^{A} \in (((\hat{\sigma}_{2}^{nd})_{i} \circ (\sigma_{1}^{nd})_{i})((f_{\gamma})_{k}))^{A}\}$ $= \{(\rho \diamond \lambda)(A) \mid ((\rho_{i} \circ_{i} \lambda_{i})((f_{\gamma})_{k}))^{A} \in (((\sigma_{2}^{nd})_{i} \circ (\sigma_{1}^{nd})_{i})((f_{\gamma})_{k}))^{A}\}$ $= (\sigma_{2}^{nd} \circ^{nd} \sigma_{1}^{nd})(A).$

Remark 3.8 Let K be a non-empty subset of $Alg(\Sigma)$. Then

$$\sigma_{id}^{nd}(K) = \bigcup_{\substack{\mathcal{A} \in K \\ \mathcal{A} \in K}} \sigma_{id}^{nd}(\mathcal{A})$$

$$= \bigcup_{\substack{\mathcal{A} \in K \\ \mathcal{A} \in K}} \{\rho_{id}(\mathcal{A}) \mid \rho_{id}(\mathcal{A}) \in \sigma_{id}^{nd}(\mathcal{A})\}$$

$$= \bigcup_{\substack{\mathcal{A} \in K \\ \mathcal{A} \in K}} \{\mathcal{A} \mid \mathcal{A} \in \sigma_{id}^{nd}(\mathcal{A})\}$$

$$= K.$$

Definition 3.9 Let $A \in Alg(\Sigma)$ said to hypersatisfy the non-deterministic Σ identity $(B_1)_i \approx_i^{nd} (B_2)_i$ of sort $i \in I$ if for every $\sigma_i^{nd} \in nd\Sigma(i)$ -Hyp, the non-deterministic Σ-identities $\hat{\sigma}_i^{nd}[(B_1)_i] \approx_i^{nd} \hat{\sigma}_i^{nd}[(B_2)_i]$ hold in \mathcal{A} .

In this case we say that the non-deterministic Σ -identity $(B_1)_i \approx_i^{nd} (B_2)_i$ of sort i is satisfied as a non-deterministic Σ -hyperidentity of sort i in \mathcal{A} and write $\mathcal{A} \models_{nd\Sigma-hyp}^{nd} (B_1)_i \approx_i^{nd} (B_2)_i$, that is,

 $\mathcal{A} \models_{i}^{nd\Sigma-hyp} (B_{1})_{i} \approx_{i}^{nd} (B_{2})_{i} :\Leftrightarrow \forall \sigma_{i}^{nd} \in nd\Sigma(i) \text{-}Hyp \ (\mathcal{A} \models_{i}^{nd} \hat{\sigma}_{i}^{nd}[(B_{1})_{i}] \approx_{i}^{nd} \mathcal{A}_{i}^{nd}[(B_{1})_{i}] \approx_{i}^{nd} \mathcal{A}_{i}^{nd}[(B_{1})_{i}] \approx_{i}^{nd} \mathcal{A}_{i}^{nd}[(B_{1})_{i}] \approx_{i}^{nd} \mathcal{A}_{i}^{nd}[(B_{1})_{i}] \otimes_{i}^{nd} \mathcal{A}_{i}^{nd}[(B_{1})_{i}] \otimes_{i}^{nd}[(B_{1})_{i}] \otimes_{i}^{nd}[(B_{1})_{i}]$ $\hat{\sigma}_i^{nd}[(B_2)_i]).$

For illustration we consider the following example.

Example 3.10 Let $I = \{1, 2\}, X^{(2)} = (X_i^{(2)})_{i \in I}, \Sigma = \{(1, 1, 1)\}.$ Let $(B_1; \circ_1),$ $(B_2; \circ_2)$ be a band, and let \mathcal{DB} be double bands where $\mathcal{DB} := ((B_i)_{i \in I}; (\circ_i)_{i \in I})$. Let $A_1 = \{f_{(1,1,1)}(x_{1j}, x_{1j})\}, B_1 = \{x_{1j}\}, 1 \leq j \leq 2$. Then $\mathcal{DB} \models_{\mathbb{R}}^{nd} A_1 \approx_1^{nd}$

 B_1 . It is easy to see that $\mathcal{DB} \models_1^{nd} A_1 \approx_1^{nd} B_1$. Let $\sigma_1^{nd} \in nd\Sigma(1)$ -Hyp and $\rho(\mathcal{DB}) \in \sigma^{nd}(\mathcal{DB})$ where $\rho \in \Sigma$ -Hyp. Then

$$\{f_{(1,1,1)}(x_{1j}, x_{1j})\}^{\rho(\mathcal{DB})} = \{(f_{(1,1,1)}(x_{1j}, x_{1j}))^{\rho(\mathcal{DB})}\}$$

$$= \{(\hat{\rho}_1[f_{(1,1,1)}(x_{1j}, x_{1j})])^{\mathcal{DB}}\}$$

$$= \{(\hat{\rho}_1[x_{1j}])^{\mathcal{DB}}\}$$

$$= \{x_{1j}^{\rho(\mathcal{DB})}\}$$

$$= \{x_{1j}\}^{\rho(\mathcal{DB})},$$

this means, $\sigma^{nd}(\mathcal{DB}) \models_1^{nd} A_1 \approx_1^{nd} B_1$, that is, $A_1^{\sigma^{nd}(\mathcal{DB})} = B_1^{\sigma^{nd}(\mathcal{DB})}$. It follows that $(\hat{\sigma}_1^{nd}[A_1])^{\mathcal{DB}} = (\hat{\sigma}_1^{nd}[B_1])^{\mathcal{DB}}$. Thus $\mathcal{DB} \models_1^{nd} A_1 \approx_1^{nd} B_1$.

Now we define two mappings which give a second Galois connection.

Definition 3.11 Let $\mathcal{K} \subseteq \mathcal{P}(Alg(\Sigma))$ and $\mathcal{PL}(i) \subseteq \mathcal{P}(W(i))^2$. Then we define a mapping

$$ndH\Sigma(i)$$
- $Id: \mathcal{P}(\mathcal{P}(Alg(\Sigma))) \to \mathcal{P}(\mathcal{P}(W(i))^2)$

by $ndH\Sigma(i)\text{-}Id\mathcal{K} := \{(B_1)_i \approx_i^{nd} (B_2)_i \in \mathcal{P}(W(i))^2 \mid \forall K \in \mathcal{K}(K \models_i^{nd} (B_1)_i \approx_i^{nd} (B_2)_i)\},$ and define a mapping

$$ndH\Sigma(i)$$
- $Mod: \mathcal{P}(\mathcal{P}(W(i))^2) \to \mathcal{P}(\mathcal{P}(Alg(\Sigma)))$

by $ndH\Sigma(i)\text{-}Mod\mathcal{PL}(i) := \{K \in \mathcal{P}(Alg(\Sigma)) \mid \forall ((B_1)_i, (B_2)_i) \in \mathcal{PL}(i)(K \models_i^{nd}_{nd\Sigma\text{-}hyp}(B_1)_i \approx_i^{nd} (B_2)_i)\}.$

We see that $(ndH\Sigma(i)-Mod, ndH\Sigma(i)-Id)$ is a Galois connection between $\mathcal{P}(Alg(\Sigma))$ and $\mathcal{P}(W(i))^2$ with respect to the relation

Definition 3.12 Let $\mathcal{K} \subseteq \mathcal{P}(Alg(\Sigma))$ and $\mathcal{PL}(i) \subseteq \mathcal{P}(W(i))^2$. Then we set

$$\chi^{nd\Sigma-E(i)}[(B_1)_i\approx_i^{nd}(B_2)_i]:=\{\hat{\sigma}_i^{nd}[(B_1)_i]\approx_i^{nd}\hat{\sigma}_i^{nd}[(B_2)_i]\mid \sigma_i^{nd}\in nd\Sigma(i)\text{-}Hyp\}$$

and

$$\chi^{nd\Sigma\text{-}A}[K]:=\{\sigma^{nd}(K)\mid \sigma^{nd}\in nd\Sigma\text{-}Hyp\}.$$

We define two operators in the following way:

$$\chi^{nd\Sigma-E(i)}: \mathcal{P}(\mathcal{P}(W(i))^2) \to \mathcal{P}(\mathcal{P}(W(i))^2)$$
 by

$$\chi^{nd\Sigma-E(i)}[\mathcal{PL}(i)] := \bigcup_{(B_1)_i \approx_i^{nd}(B_2)_i \in \mathcal{PL}(i)} \chi^{nd\Sigma-E(i)}[(B_1)_i \approx_i^{nd} (B_2)_i]$$

and

$$\chi^{nd\Sigma-A}: \mathcal{P}(\mathcal{P}(Alg(\Sigma))) \to \mathcal{P}(\mathcal{P}(Alg(\Sigma)))$$
 by
$$\chi^{nd\Sigma-A}[\mathcal{K}]:=\bigcup_{K\in\mathcal{K}}\chi^{nd\Sigma-A}[K].$$

In the next propositions we will show that the both operators are closure operators.

Proposition 3.13 Let $\mathcal{PL}(i)$, $\mathcal{PL}_1(i)$, $\mathcal{PL}_2(i)$ be subsets of $\mathcal{P}(W(i))^2$. Then

- (i) $\mathcal{PL}(i) \subseteq \chi^{nd\Sigma E(i)}[\mathcal{PL}(i)],$
- (ii) $\mathcal{PL}_1(i) \subseteq \mathcal{PL}_2(i) \Rightarrow \chi^{nd\Sigma E(i)}[\mathcal{PL}_1(i)] \subseteq \chi^{nd\Sigma E(i)}[\mathcal{PL}_2(i)],$
- (iii) $\chi^{nd\Sigma-E(i)}[\mathcal{PL}(i)] = \chi^{nd\Sigma-E(i)}[\chi^{nd\Sigma-E(i)}[\mathcal{PL}(i)]].$

(i) Let $(B_1)_i \approx_i^{nd} (B_2)_i \in \mathcal{PL}(i)$. Then, since $(B_1)_i = (\hat{\sigma}_i^{nd})_{id}[(B_1)_i]$ and $(B_2)_i = (\hat{\sigma}_i^{nd})_{id}[(B_2)_i]$, we have $(\hat{\sigma}_i^{nd})_{id}[(B_1)_i] = (B_1)_i \approx_i^{nd} (B_2)_i = (\hat{\sigma}_i^{nd})_{id}[(B_2)_i] \in \chi^{nd\Sigma-E(i)}[\mathcal{PL}(i)]$ and this means $\mathcal{PL}(i) \subseteq \chi^{nd\Sigma-E(i)}[\mathcal{PL}(i)]$.

(ii) Assume that $\mathcal{PL}_1(i) \subseteq \mathcal{PL}_2(i)$ and let $\hat{\sigma}_i^{nd}[(B_1)_i] \approx_i^{nd} \hat{\sigma}_i^{nd}[(B_2)_i] \in \mathcal{PL}_2(i)$

 $\chi^{nd\Sigma} E(i)$ $[\mathcal{PL}_1(i)].$ Then $(B_1)_i \approx_i^{nd} (B_2)_i \in \mathcal{PL}_1(i)$, but $\mathcal{PL}_1(i) \subseteq \mathcal{PL}_2(i)$, so that $(B_1)_i \approx_i^{nd} (B_2)_i \in \mathcal{PL}_2(i)$ and $\hat{\sigma}_i^{nd}[(B_1)_i] \approx_i^{nd} \hat{\sigma}_i^{nd}[(B_2)_i] \in \chi^{nd\Sigma-E(i)}[\mathcal{PL}_2(i)].$ We have $\chi^{nd\Sigma-E(i)}[\mathcal{PL}_1(i)] \subseteq \chi^{nd\Sigma-E(i)}[\mathcal{PL}_2(i)].$ (iii) By (i) we have $\chi^{nd\Sigma-E(i)}[\mathcal{PL}(i)] \subseteq \chi^{nd\Sigma-E(i)}[\chi^{nd\Sigma-E(i)}[\mathcal{PL}(i)]].$ On the other hand, let $\hat{\sigma}_i^{nd}[(B_1)_i] \approx_i^{nd} \hat{\sigma}_i^{nd}[(B_2)_i] \in \chi^{nd\Sigma-E(i)}[\chi^{nd\Sigma-E(i)}[\mathcal{PL}(i)]].$ Then $(B_1)_i \approx_i^{nd} (B_2)_i \in \chi^{nd\Sigma-E(i)}[\chi^{nd\Sigma-E(i)}[\mathcal{PL}(i)]].$ and there exists $\rho_i^{nd} \in nd\Sigma(i)$ -Hyp and $(B_1)_i \approx_i^{nd} (B_2)_i \in \chi^{nd\Sigma-E(i)}[\chi^{$ $(C_1)_i \approx_i^{nd} (C_2)_i \in \mathcal{PL}(i)$ such that $(B_1)_i = \hat{\rho}_i^{nd}[(C_1)_i]$ and $(B_2)_i = \hat{\rho}_i^{nd}[(C_2)_i]$, and we have $\hat{\sigma}_i^{nd}[(B_1)_i]$

$$\hat{\sigma}_{i}^{nd}[(B_{1})_{i}] = \hat{\sigma}_{i}^{nd}[\hat{\rho}_{i}^{nd}[(C_{1})_{i}]] \\
= \hat{\sigma}_{i}^{nd} \circ \hat{\rho}_{i}^{nd}[(C_{1})_{i}] \\
= (\sigma_{i}^{nd} \circ_{i}^{nd} \rho_{i}^{nd})^{\hat{}}[(C_{1})_{i}] \\
= (\hat{\sigma}_{i}^{nd} \circ_{i}^{nd} \rho_{i}^{nd})^{\hat{}}[(C_{1})_{i}] \\
= \hat{\lambda}_{i}^{nd}[(C_{1})_{i}], \text{ where } \lambda_{i}^{nd} = \sigma_{i}^{nd} \circ_{i}^{nd} \rho_{i}^{nd} \in nd\Sigma(i)\text{-}Hyp, \text{and} \\
\hat{\sigma}_{i}^{nd}[(B_{2})_{i}] = \hat{\sigma}_{i}^{nd}[\hat{\rho}_{i}^{nd}[(C_{2})_{i}]] \\
= \hat{\sigma}_{i}^{nd} \circ \hat{\rho}_{i}^{nd}[(C_{2})_{i}] \\
= (\sigma_{i}^{nd} \circ_{i}^{nd} \rho_{i}^{nd})^{\hat{}}[(C_{2})_{i}] \\
= \hat{\lambda}_{i}^{nd}[(C_{2})_{i}].$$

Then we set $\hat{\lambda}_i^{nd}[(C_1)_i] = \hat{\sigma}_i^{nd}[(B_1)_i] \approx_i^{nd} \hat{\sigma}_i^{nd}[(B_2)_i] = \hat{\lambda}_i^{nd}[(C_2)_i] \in \chi^{nd\Sigma - E(i)}[\mathcal{PL}(i)],$ and then $\chi^{nd\Sigma - E(i)}[\chi^{nd\Sigma - E(i)}[\mathcal{PL}(i)]] \subseteq \chi^{nd\Sigma - E(i)}[\mathcal{PL}(i)].$

Proposition 3.14 Let $K, K_1, K_2 \subseteq \mathcal{P}(Alg(\Sigma))$. Then

(i)
$$\mathcal{K} \subseteq \chi^{nd\Sigma-A}[\mathcal{K}],$$

(ii)
$$\mathcal{K}_1 \subseteq \mathcal{K}_2 \Rightarrow \chi^{nd\Sigma - A}[\mathcal{K}_1] \subseteq \chi^{nd\Sigma - A}[\mathcal{K}_2],$$

(iii)
$$\chi^{nd\Sigma-A}[\mathcal{K}] = \chi^{nd\Sigma-A}[\chi^{nd\Sigma-A}[\mathcal{K}]].$$

Proof (i) Let $K \in \mathcal{K}$. Then, since $K = \sigma_{id}^{nd}(K) \in \chi^{nd\Sigma-A}[\mathcal{K}]$ we have $\mathcal{K} \subseteq \chi^{nd\Sigma-A}[\mathcal{K}]$.

- (ii) Assume that $\mathcal{K}_1 \subseteq \mathcal{K}_2$ and let $\sigma^{nd}(K) \in \chi^{nd\Sigma-A}[\mathcal{K}_1]$. Then $K \in \mathcal{K}_1$ by our assumption that we have $K \in \mathcal{K}_2$, with $\sigma^{nd}(K) \in \chi^{nd\Sigma-A}[\mathcal{K}_2]$, and then $\chi^{nd\Sigma-A}[\mathcal{K}_1] \subseteq \chi^{nd\Sigma-A}[\mathcal{K}_2]$.
- (iii) By (i), we have $\chi^{nd\Sigma-A}[\mathcal{K}] \subseteq \chi^{nd\Sigma-A}[\chi^{nd\Sigma-A}[\mathcal{K}]]$. We will show that

 $[\chi^{nd\Sigma-A}[\mathcal{K}]] \subseteq \chi^{nd\Sigma-A}[\mathcal{K}]$. Let $\sigma^{nd}(K) \in \chi^{nd\Sigma-A}[\chi^{nd\Sigma-A}[\mathcal{K}]]$. Then $K \in \chi^{nd\Sigma-A}[\mathcal{K}]$, and there exists $\rho^{nd} \in nd\Sigma$ -Hyp and $K_1 \in \mathcal{K}$ such that $K = \rho^{nd}(K_1)$ and we have

$$\begin{array}{lll} \sigma^{nd}(K) & = & \sigma^{nd}(\rho^{nd}(K_1)) \\ & = & (\rho^{nd} \circ^{nd} \sigma^{nd})(K_1) \\ & = & \lambda^{nd}(K_1), \text{ where } \lambda^{nd} = \rho^{nd} \circ^{nd} \sigma^{nd} \in nd\Sigma\text{-}Hyp. \end{array}$$

Thus we have $\sigma^{nd}(K) = \lambda^{nd}(K_1) \in \chi^{nd\Sigma-A}[\mathcal{K}]$, and is $\chi^{nd\Sigma-A}[\chi^{nd\Sigma-A}[\mathcal{K}]] \subseteq \chi^{nd\Sigma-A}[\mathcal{K}]$.

Definition 3.15 Let K be a subset of $Alg(\Sigma)$, and $(B_1)_i, (B_2)_i$ be subsets of $W(i), i \in I$. Let $\sigma^{nd} \in nd\Sigma - Hyp$. Then we define

$$\sigma^{nd}(K) \models^{nd}_{i} (B_{1})_{i} \approx^{nd}_{i} (B_{2})_{i} :\Leftrightarrow \forall \mathcal{A} \in K(\sigma^{nd}(\mathcal{A}) \models^{nd}_{i} (B_{1})_{i} \approx^{nd}_{i} (B_{2})_{i}).$$

Theorem 3.16 Let K be a subset of $Alg(\Sigma)$ and $(B_1)_i \approx_i^{nd} (B_2)_i \in \mathcal{P}(W(i))^2$, $\sigma^{nd} \in nd\Sigma$ -Hyp. Then we have

$$\sigma^{nd}(K) \models^{nd}_i (B_1)_i \approx^{nd}_i (B_2)_i \Longleftrightarrow K \models^{nd}_i \hat{\sigma}^{nd}_i [(B_1)_i] \approx^{nd}_i \hat{\sigma}^{nd}_i [(B_2)_i].$$

 $\begin{array}{l} \mathbf{Proof} \quad & \text{We obtain} \\ \sigma^{nd}(K) \models^{nd}_{i}(B_{1})_{i} \quad \approx^{nd}_{i}(B_{2})_{i} \Longleftrightarrow \forall \mathcal{A} \in K(\sigma^{nd}(\mathcal{A}) \models^{nd}_{i}(B_{1})_{i} \approx^{nd}_{i}(B_{2})_{i}) \\ & \iff \forall \mathcal{A} \in K((B_{1})_{i}^{\sigma^{nd}(\mathcal{A})} = (B_{2})_{i}^{\sigma^{nd}(\mathcal{A})}) \\ & \iff \forall \mathcal{A} \in K((\hat{\sigma}^{nd}_{i}[(B_{1})_{i}])^{\mathcal{A}} = (\hat{\sigma}^{nd}_{i}[(B_{2})_{i}])^{\mathcal{A}}) \\ & \iff \forall \mathcal{A} \in K(\mathcal{A} \models^{nd}_{i}\hat{\sigma}^{nd}_{i}[(B_{1})_{i}] \approx^{nd}_{i}\hat{\sigma}^{nd}_{i}[(B_{2})_{i}]) \\ & \iff K \models^{nd}_{i}\hat{\sigma}^{nd}_{i}[(B_{1})_{i}] \approx^{nd}_{i}\hat{\sigma}^{nd}_{i}[(B_{2})_{i}]. \end{array}$

Theorem 3.17 The pair $(\chi^{nd\Sigma-A}, \chi^{nd\Sigma-E(i)})$ is a conjugate pair of completely additive closure operators with respect to the relation \models_i^{nd}

Proof By Definition 3.12, Propositions 3.13-3.14, and Theorem 3.16.

Now we may apply the theory of conjugate pairs of additive closure operators (see e.g. [7]) and obtain the following propositions:

Lemma 3.18 ([7]) For all $K \subseteq \mathcal{P}(Alg(\Sigma))$ and for all $\mathcal{PL}(i) \subseteq \mathcal{P}(W(i))^2$ the following properties hold:

П

- (i) $ndH\Sigma(i)-Mod\mathcal{PL}(i) = nd\Sigma(i)-Mod\chi^{nd\Sigma-E(i)}[\mathcal{PL}(i)],$
- (ii) $ndH\Sigma(i)-Mod\mathcal{PL}(i) \subseteq nd\Sigma(i)-Mod\mathcal{PL}(i)$,
- (iii) $\chi^{nd\Sigma-A}[ndH\Sigma(i)-Mod\mathcal{PL}(i)] = ndH\Sigma(i)-Mod\mathcal{PL}(i),$
- (iv) $\chi^{nd\Sigma-E(i)}[nd\Sigma(i)-IdndH\Sigma(i)-Mod\mathcal{PL}(i)] = nd\Sigma(i)-IdndH\Sigma(i)-Mod\mathcal{PL}(i),$
- (v) $ndH\Sigma(i)-ModndH\Sigma(i)-Id\mathcal{K} = nd\Sigma(i)-Modnd\Sigma(i)-Id\chi^{nd\Sigma-A}[\mathcal{K}], and$
- (i) $ndH\Sigma(i)-Id\mathcal{K} = nd\Sigma(i)-Id\chi^{nd\Sigma-A}[\mathcal{K}],$
- (ii) $ndH\Sigma(i)-Id\mathcal{K} \subseteq nd\Sigma(i)-Id\mathcal{K}$,
- (iii) $\chi^{nd\Sigma-E(i)}[ndH\Sigma(i)-Id\mathcal{K}] = ndH\Sigma(i)-Id\mathcal{K},$
- $(\mathrm{iv})^{'} \chi^{nd\Sigma^{-}A}[nd\Sigma(i)-ModndH\Sigma(i)-Id\mathcal{K}] = nd\Sigma(i)-ModndH\Sigma(i)-Id\mathcal{K},$
- $(\mathbf{v})^{'} \ ndH\Sigma(i) IdndH\Sigma(i) Mod\mathcal{PL}(i) = nd\Sigma(i) Idnd\Sigma(i) Mod\chi^{nd\Sigma E(i)}[\mathcal{PL}(i)].$

4 I-Sorted Nd-Solid Varieties

Definition 4.1 Let $\mathcal{K} \subseteq \mathcal{P}(Alg(\Sigma))$ be a subclass of the set of all subsets of $Alg(\Sigma)$ and let $\mathcal{PL}(i) \subseteq \mathcal{P}(W(i))^2$ be a subset of the set of all non-deterministic Σ -equations of sort i. Then \mathcal{K} is called a non-deterministic solid model class of sort i or is called a non-deterministic solid Σ -variety of sort i if every non-deterministic Σ -identity of sort i is satisfied as a non-deterministic Σ -hyperidentity of sort i:

$$\mathcal{K} \models_{i}^{nd} nd\Sigma(i)\text{-}Id\mathcal{K}.$$

 \mathcal{K} is called I-sorted non-deterministic solid model class if every non-deterministic Σ -identity of sort i is satisfied as a non-deterministic Σ -hyperidentity of sort i for all $i \in I$, that is,

$$\mathcal{K} \models_{i}^{nd} nd\Sigma(i)\text{-}Id\mathcal{K}$$
, for all $i \in I$.

 $\mathcal{PL}(i), i \in I$ is said to be a non-deterministic Σ -equational theory of sort i if there exists a class $\mathcal{K} \subseteq \mathcal{P}(Alg(\Sigma))$ such that $\mathcal{PL}(i) = nd\Sigma(i) - Id\mathcal{K}$. Then we set $\mathcal{PL} := (\mathcal{PL}(i))_{i \in I}$. This I-sorted set is called I-sorted non-deterministic Σ -equational theory.

Using the propositions of Lemma 3.18 one obtains the following characterization of non-deterministic solid Σ -varieties.

Theorem 4.2 ([7]) Let K be a non-deterministic Σ -variety of sort $i \in I$. Then the following properties are equivalent:

- (i) $\mathcal{K} = ndH\Sigma(i)-ModndH\Sigma(i)-Id\mathcal{K}$,
- (ii) $\chi^{nd\Sigma-A}[\mathcal{K}] = \mathcal{K}$,
- (iii) $nd\Sigma(i)$ - $Id\mathcal{K} = ndH\Sigma(i)$ - $Id\mathcal{K}$,
- (iv) $\chi^{nd\Sigma-E(i)}[nd\Sigma(i)-Id\mathcal{K}] = nd\Sigma(i)-Id\mathcal{K}$.

Theorem 4.3 ([7]) Let $\mathcal{PL}(i)$ be a non-deterministic Σ -equational theory of sort $i \in I$. Then the following properties are equivalent:

- (i) $\mathcal{PL}(i) = ndH\Sigma(i) IdndH\Sigma(i) Mod\mathcal{PL}(i)$,
- (ii) $\chi^{nd\Sigma E(i)}[\mathcal{PL}(i)] = \mathcal{PL}(i)$,
- (iii) $nd\Sigma(i)$ - $Mod\mathcal{PL}(i) = ndH\Sigma(i)$ - $Mod\mathcal{PL}(i)$,
- (iv) $\chi^{nd\Sigma-A}[nd\Sigma(i)-Mod\mathcal{PL}(i)] = nd\Sigma(i)-Mod\mathcal{PL}(i)$.

5 I-sorted Nd-Complete Lattices

Let $\mathcal{PH}(i)$ be the class of all fixed points with respect to the closure operator $nd\Sigma(i)$ - $Modnd\Sigma(i)$ -Id:

$$\mathcal{PH}(i) := \{ \mathcal{K} \subseteq \mathcal{P}(Alg(\Sigma)) \mid \mathcal{K} = nd\Sigma(i) - Modnd\Sigma(i) - Id\mathcal{K} \},$$

that is, $\mathcal{PH}(i)$ is the class of all non-deterministic Σ -varieties of sort i. Then $\mathcal{PH}(i)$ forms a non-deterministic complete lattice of non-deterministic Σ -varieties of sort i. Let $\mathcal{PH}y(i)$ be the class of all fixed points with respect to the closure operator $ndH\Sigma(i)$ - $ModndH\Sigma(i)$ -Id:

$$\mathcal{PH}y(i) := \{ \mathcal{K} \subseteq \mathcal{P}(Alg(\Sigma)) \mid \mathcal{K} = ndH\Sigma(i) - ModndH\Sigma(i) - Id\mathcal{K} \},$$

that is, $\mathcal{PH}y(i)$ is the class of all non-deterministic solid Σ -varieties of sort i. Then $\mathcal{PH}y(i)$ forms a non-deterministic complete lattice of non-deterministic solid Σ -varieties of sort i and $\mathcal{PH}y(i)$ is a non-deterministic complete sublattice of $\mathcal{PH}(i)$. We set $\mathcal{PH} := (\mathcal{PH}(i))_{i \in I}$ and $\mathcal{PH}y := (\mathcal{PH}y(i))_{i \in I}$. \mathcal{PH} is called an I-sorted non-deterministic complete lattice. $\mathcal{PH}y$ is called an I-sorted non-deterministic complete sublattice of \mathcal{PH} , since for every $i \in I, \mathcal{PH}y(i)$ is a non-deterministic complete sublattice of $\mathcal{PH}(i)$. Dually, let $\mathcal{PL}(i)$ be the class of all fixed points with respect to the closure operator $nd\Sigma(i)$ - $Idnd\Sigma(i)$ -Mod:

$$\mathcal{PPL}(i) := \{ \mathcal{PL}(i) \subseteq \mathcal{P}(W(i))^2 \mid \mathcal{PL}(i) = nd\Sigma(i) - Idnd\Sigma(i) - Mod\mathcal{PL}(i) \},$$

that is, $\mathcal{PPL}(i)$ is the class of all non-deterministic Σ -equational theories of sort i. Then $\mathcal{PPL}(i)$ forms a nondeterministic complete lattice of Σ -equational

theories of sort i. Let $\mathcal{PPL}y(i)$ be the class of all fixed points with respect to the closure operator $ndH\Sigma(i)$ - $IdndH\Sigma(i)$ -Mod:

$$\mathcal{PPL}y(i) := \{ \mathcal{PL}(i) \subseteq \mathcal{P}(W(i))^2 \mid \mathcal{PL}(i) = ndH\Sigma(i) - IdndH\Sigma(i) - Mod\mathcal{PL}(i) \},$$

that is, $\mathcal{PPL}y(i)$ is the class of all non-deterministic solid Σ -equational theories of sort i. Then $\mathcal{PPL}y(i)$ forms a non-deterministic complete lattice of non-deterministic solid Σ -equational theories of sort i and $\mathcal{PPL}y(i)$ is a non-deterministic complete sublattice of $\mathcal{PPL}(i)$. We set $\mathcal{PPL} := (\mathcal{PPL}(i))_{i \in I}$ and $\mathcal{PPL}y := (\mathcal{PPL}y(i))_{i \in I}$. \mathcal{PPL} is called an I-sorted non-deterministic complete lattice. $\mathcal{PPL}y$ is called an I-sorted non-deterministic complete sublattice of \mathcal{PPL} , since for every $i \in I$, $\mathcal{PPL}y(i)$ is a non-deterministic complete sublattice of $\mathcal{PPL}(i)$.

Our results show that the most results of [4] are valid also in the many-sorted case if the superposition of many-sorted tree languages and of sets of many-sorted terms are defined in the way in which we did.

References

- [1] K. Denecke and S. Lekkoksung, Hypersubstitutions of Many-Sorted Algebras, Asian-European J. Math., Vol. I 3 (2008) 337–346.
- [2] K. Denecke and S. Lekkoksung, Hyperidentities in Many-Sorted Algebras, preprint 2009.
- [3] K. Denecke and S. Lekkoksung, Nd-Hypersubstitutions of Many-Sorted Agebras, preprint 2009.
- [4] K. Denecke and P. Glubudom, Nd-Solid Varieties, *Discussiones Mathematicae*, General Algebra and Applications, **27** (2007) 245–262.
- [5] K. Denecke and S. L. Wismath, Hyperidenties and Clones, Gordon and Breach Science Publishers, 2000.
- [6] H. Ehrig, B. Mahr, Fundamentals of algebraic spezification 1: Equations and initial semantics, EATCS Monographs on Theoretical Computer Science 6, Springer-Verlag, Berlin 1985.
- [7] J. Koppilz and K. Denecke, M-Solid Varieties of Algebras, Springer 2006.
- [8] S. Salehi, Varieties of Tree Languages, TUCS Dissertations No 64, July 2005.