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Abstract

If two rings are ingredients of a semi-projective Morita context, in
which one ring is commutative and the other is reduced, then it is shown
here that the reduced ring will also become commutative. Some conse-
quences are studied and effects of various types of derivations on these
rings are listed.

A classical problem in ring theory is to study and generalize conditions
under which a ring becomes commutative. So far the best tools found for this
purpose are the derivations on rings and also on their modules. One can also
achieve this goal by comparing two rings and impose conditions on them. If one
of the rings is appeared to be commutative, in a compatible way, the other ring
will also become commutative. In order to explore these ideas Morita theory
is found to be a suitable tool.

It is proved here that if two rings are ingredients of a semi-projective Morita
context, in which one is commutative and the other is reduced, then the reduced
ring will also become commutative. Some consequences related to domains and
division rings are stated and proved. We have listed several results from the
theory of derivations in which some prime and semiprime rings are proved to
be commutative. If such a ring is an ingredient of a semi-projective Morita
context then the other ring will also become commutative and if the context is
strict then both rings become isomorphic fields.
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1. Preliminaries

The term rings is used here for associative rings that must possess the multi-
plicative identity. While the term rings is reserved for associative rings may or
may not possess the multiplicative identity. Modules over rings are considered
to be unital and ring homomorphisms are identity preserving. Unless other-
wise stated, we assume throughout that the lower case letters x, x′ or xi are
elements of the upper case letter X.

A ring is reduced if and only if it has no non-zero nilpotent elements while
semiprime if and only if it has no non-zero nilpotent ideals. Clearly, every
reduced ring is semiprime and every commutative semiprime ring is reduced.
In the following we have given an example of a semiprime ring which is not
reduced. Division rings and domains are both semiprime and reduced, while
a prime ring which is also reduced is a domain. By a domain we mean a ring
without non-zero zero divisors. So a commutative domain with identity is an
integral domain.

By a derivation on a ring A we mean the most natural derivation d : A −→
A which is additive as well as satisfying the relation d(a1a2) = d(a1)a2 +
a1d(a2). If A is a ring (with identity 1A), then it is clear that d(1A) = 0.

We assume throughout that the datum K(A, B) = [A, B, M, N, 〈, 〉A , 〈, 〉B]
is a Morita context (in short, ”mc”) in which A and B are rings, M and N
are (B, A)− and (A, B)− bimodules, respectively, 〈, 〉A : N ⊗B M −→ A and
〈, 〉B : M ⊗A N −→ B are bimodule morphisms with the associativity (or
compatibility) conditions

(i) m′ 〈n, m〉A = 〈m′, n〉B m and (ii) 〈n, m〉A n′ = n 〈m, n′〉B ,

where 〈, 〉A and 〈, 〉B are the Morita maps (in short, mc maps). The images
I = 〈N, M〉A and J = 〈M, N〉B are the trace ideals of A and B, respectively.

A Morita context K(A, B) is said to be a ”projective Morita context”, in
short a ”pmc” (or strict), if both mc maps, 〈, 〉A and 〈, 〉B , are epimorphisms.
K(A, B) is said to be a ”semi-projective Morita context”, or a ”semi-pmc”, if
one of the mc maps, 〈, 〉A or 〈, 〉B , is an epimorphism.

Let A and B be rings. In case an mc K(A, B) of rings is a pmc, i.e., if both
mc maps 〈, 〉A and 〈, 〉B are epimorphisms, then they become isomorphisms.
In this case, the category of right (respt. left) A−modules is equivalent to
right (respt. left) B−modules and Cent(A) ∼= Cent(B). For details and more
references see for instance [14], [15], [17], [9], [16], and [18].

If K(A, B) is a pmc of rings, then the rings A and B are said to be Morita
similar (or Morita equivalent). Common properties shared by Morita similar
rings are termed as Morita invariant. For instance, being prime or semiprime
are Morita invariant, while being reduced, commutative, domain, division rings
or fields are not Morita invariant
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2. A commutativity theorem for a semi-pmc.

In this section we will study effects of semi-pmc and pmc on reduced rings,
semiprime rings, domains and division rings. We will prove first a commuta-
tivity theorem for reduced rings by using a semi-pmc.

Theorem 2.1 Let A and B be rings of a semi-pmc K(A, B) in which 〈, 〉B
is epic. If A is commutative and B is reduced, then B is also commutative.

Proof Assume that the mc K(A, B) = [A, B, M, N, 〈, 〉A , 〈, 〉B] is a semi-pmc
in which A is commutative, B is reduced, and the Morita map 〈, 〉B is epic. If

we let b1 =
α∑

i=1
〈m1i, n1i〉B and b2 =

β∑
j=1

〈m2j, n2j〉B , and if

〈m1i, n1i〉B 〈m2j, n2j〉B = 〈m2j, n2j〉B 〈m1i, n1i〉B .

∀i = 1 · · ·α, j = 1 · · ·β, then b1b2 = b2b1. Hence, in order to prove that B is
commutative, it suffices to prove that an arbitrary commutator, say,

b = [〈m, n〉B , 〈m′, n′〉B ] ∈ B ((1))

is zero.
In deed, if 〈m, n〉B = 0 or 〈m′, n′〉B = 0, then b = 0. So assume that

〈m, n〉B 	= 0 and 〈m′, n′〉B 	= 0. Then

〈n, bm〉A = 〈n, [〈m, n〉B 〈m′, n′〉B − 〈m′, n′〉B 〈m, n〉B ]m〉A
= 〈n, m〉A 〈n, m′〉A 〈n′, m〉A − 〈n, m′〉A 〈n′, m〉A 〈n, m〉A
= 0. ((2))

We further expand 〈n, bm〉A as

〈m, 〈n, bm〉A n〉
B

= 〈m, n〉B b 〈m, n〉B = 0. ((3))

Multiply either from left or from right the terms in (3) by b, we obtain

(〈m, n〉B b)2 = 0 = (b 〈m, n〉B)2.

which simply means that

〈m, n〉B b = 0 = b 〈m, n〉B . ((4))

Then by (1) and (4) we get the relations

〈m, n〉B 〈m, n〉B 〈m′, n′〉B = 〈m, n〉B 〈m′, n′〉B 〈m, n〉B
= 〈m′, n′〉B 〈m, n〉B 〈m, n〉B ((5))



182 Reduced Rings, Morita Contexts and Derivations

Let us repeat the entire phenomena by setting 〈n′, bm′〉A = 0, as in (2)
above, we get relations

〈m′, n′〉B 〈m, n〉B 〈m′, n′〉B = 〈m, n〉B 〈m′, n′〉B 〈m′, n′〉B
= 〈m′, n′〉B 〈m′, n′〉B 〈m, n〉B . ((6))

Finally, by comparing various terms of equalities from (5) and (6) in b2, we
deduce that b2 = 0. Hence b = 0. �

Corollary 2.2 Let A and B be rings of a semi-pmc K(A, B) in which 〈, 〉B
is epic.

(1) If A is commutative and B is a domain, then B is also commuta-
tive.

(2) If A is commutative and B is a division ring, then B becomes a
field.

Proof (1) holds because a domain is a reduced ring. The proof can also be
followed directly from Eq(3) in Theorem 2.1. Because 〈m, n〉B b 〈m, n〉B = 0
and as B is a domain, b = 0.

(2) holds because a division ring is a domain and a commutative
division ring is a field.�

Corollary 2.3 Let A and B be rings of an mc K(A, B) and let I � A and
J � B be the trace ideals.

(1) If I ⊆ Cent(A) and B is reduced, then J ⊆ Cent(B).
(2) If I is commutative and B is reduced, then J is commutative.

Proof (1) and (2). Every element of J is of the form
n∑

i=1

〈mi, ni〉B and I is

commutative. The rest of the proof is same as the proof of Theorem 2.1. �

Corollary 2.4 Let K(A, B) be a pmc of rings in which A is commutative.
(1) If B is a reduced ring, then A is also reduced and A ∼= B.
(2) If B is a domain, then both A and B become isomorphic integral

domains.
(3) If B is a division ring, then both A and B become isomorphic fields.

Proof (1) If A and B are rings with both mc maps 〈, 〉A and 〈, 〉B epimor-
phisms, then Cent(A) ∼= Cent(B). Being commutative, A = Cent(A). If B is
reduced, then by above theorem, B = Cent(B). Hence A ∼= B.

(2) and (3) are clear from (1) above and Theorem 2.1. �
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Let K(A, B) = [A, M, N, B, 〈, 〉A , 〈, 〉B ] be an mc of rings and let its Morita
ring be denoted by

R =
[

A N
M B

]
.

Clearly, R is a ring if both A and B are rings. It is proved in [18; Theorem 2.1]
that from an mc K(A, B) of rings one can always get a semi-pmc and a pmc.
In particular, if 〈, 〉B is epic, then K(R, B) is a pmc. Hence, in this case B and
R are Morita similar.

In the following corollary we pose an example of a semiprime ring which is
not reduced.

Corollary 2.5 Let K(A, B) be a semi-pmc of rings (with 1 	= 0) in which
〈, 〉B is epic. If A is commutative and B is reduced, then the Morita ring R is
semiprime but not reduced.

Proof For the mc K(A, B), if the mc map 〈, 〉B is epic, then by the above
remark, the mc K(R, B) is a pmc, hence R and B are Morita similar rings.

If A is commutative and B is reduced then by Theorem 2.1 above, B
also becomes commutative. Because every reduced ring is semiprime and as
semiprimeness is a Morita invariant property, so B is also semiprime. But R is
Morita similar to B, so it is also semiprime.

Next, on the contrary assume that R is reduced. Then by Theorem 2.1, R
becomes commutative. Let

r =
[

a n
m b

]
, r′ =

[
a′ n′

m′ b′

]
∈ R.

Then
rr′ = rr′ =⇒[

aa′ + 〈n, m′〉A an′ + nb′

ma′ + bm′ 〈m, n′〉B + bb′

]
=

[
a′a + 〈n′, m〉A a′n + n′b

m′a + b′m 〈m′, n〉B + b′b

]

Because B is commutative,

〈m, n′〉B = 〈m′, n〉B , ∀m, m′ ∈ M and n, n′ ∈ N.

This leads to the fact that

〈m, n〉B = 〈2m, n〉B = 2 〈m, n〉B
=⇒ 〈m, n〉B = 0, ∀m ∈ M and n ∈ N.

Since every element of B is of the form
n∑

i=1
〈mi, ni〉B . Hence B = 0, a contra-

diction. �
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3. Some remarks on derivations

A classical problem in ring theory is to pose conditions on a ring such that
the ring appears to be commutative. Theorem 2.1 can be conveniently used to
determine the commutativity of a ring (with some restrictions) of a semi-pmc
if the other ring is commutative. For instance:

3.1 . Let K(A, B) be a semi-pmc in which 〈, 〉B is epic. If A is prime and
has a reverse derivation, which Herstein in [10] defined as: d : A −→ A is a
reverse derivation in case d(aa′) = d(a′)a + a′d(a), then by [10; Theorem 2.1],
A becomes a commutative domain. If B is reduced then by Theorem 2.1 above,
B also becomes commutative. In case K(A, B) is a pmc, i.e., when A and B are
Morita similar rings and B is a division ring, then A and B become isomorphic
fields.

3.2 If d : A → A is a derivation, namely, d(aa′) = d(a)a′ +ad(a′), then Posner
in [19; Lemma 3] proved that if A is prime and d 	= 0 such that the commutator
[a, d(a)] = 0, ∀a ∈ A, then A is commutative. Hence, for a semi-pmc K(A, B),
if B is reduced, then B also becomes commutative and in case of a pmc if B is
a division ring then both A and B become isomorphic fields.

3.3 An n−centralizing mapping on a subset S of a ring A is an additive map
d : A → A such that [Sn, d(s)] ∈ Cent(S), ∀s ∈ S. Let K(A, B) be a semi-pmc
in which 〈, 〉B is epic. If A is prime with Char(A) ≥ 0, and d 	= 0 is a non-zero
n− centralizing derivation on a left ideal U 	= 0 of A, then it is proved by Deng
[8; Theorem 2] that A is commutative. Hence if B is reduced then by Theorem
2.1, B is commutative.

In the following we list more conditions under which A and B become
commutative rings.

Corollary 3.4 Let K(A, B) be a semi-pmc in which 〈, 〉B is epic. Let A be
prime, d : A −→ A is a non-zero derivation and U 	= (0) an ideal of A. If B is
reduced then B becomes commutative if any one of the following conditions is
satisfied. Moreover, if A and B are Morita similar rings, and B is a division
ring, then A and B become isomorphic fields.

(i) [a, d(a)] ∈ Cent(A), ∀a ∈ A.
(ii) Char(A) 	= 2 and [d(a), d(a′)] ∈ Cent(A), or [d(a), d(a′)] = 0, ∀a ∈ A.
(iii) Char(A) 	= 2 and d2(A) ⊆ Cent(A).∀a ∈ A
(iv) d(an) ∈ Cent(A), n > 0.
(v) Char(A) 	= 2, d[a, a′] ∈ Cent(A).
(vi) Char(A) 	= 2, d3 	= 0, and d(a − an) ∈ CentA, n > 1
(vii) Char(A) 	= 2, 3, and [[d(a), a], a] ∈ Cent(A).
(viii) [d(u), d(u′)] = d[u, u′] or [d(u), d(u′)] = d[, u′, u] ∀u, u′ ∈ U
(ix) d[u, u′] = 0,or [d(u), u] ∈ CentA, ∀u, u ′.
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(x) d(u ◦ u′) = u ◦ u′ or d(u ◦ u′) + u ◦ u′ = 0 ,and if Char(A) 	= 2 such
that d(u) ◦ d(u′) = u ◦ u′ or d(u) ◦ d(u′) = 0 or d(u) ◦ d(u′) + u ◦ u′ = 0, where
u ◦ u′ = uu′ + u′u, ∀u, u′ ∈ U

(xi) d(uu′)−uu′ ∈ Cent(A) or d(uu′)+uu′ ∈ Cent(A) or d(u)d(u′)−uu′ ∈
Cent(A) or d(u)d(u′) + uu′ ∈ Cent(A).∀u, u′ ∈ U

(xii) d(aa
′
) + aa

′ ∈ Cent(A) or d(aa
′
) − aa

′ ∈ CentA or d(a)d(a
′
) + aa

′ ∈
Cent(A) or d(a)d(a

′
) − aa

′ ∈ CentA.∀a, a
′ ∈ A.

(xiii) g : A → A another derivation on A, such that d(u)u − ug(u) ∈
Cent(A), ∀u ∈ A.

Proof The proof can be followed from [4; Corollary 2], [[1] , [2; Theorems 4.1,
4.2, 4.3, 4.4 and 4.5],.[20; Theorem 2], [19; Theorem 2],[12; Theorems 2 and
3], [8; Theorem 2], [11; Theorem], [6; Theorem 4.1], [3; Theorem 4] along with
Theorem 2.1 and Corollary 2.4. �
Corollary 3.5 Let K(A, B) be a semi-pmc in which 〈, 〉B is epic. Let A be
semiprime and d : A −→ A a non-zero derivation. If B is reduced, then B
becomes commutative if any one of the following conditions is satisfied. More-
over, if A and B are Morita similar rings, and B is a division ring, then
A and B become isomorphic fields.

(i) d ([a, a′]) + [a, a′] = 0 or d ([a, a′]) − [a, a′] = 0.
(ii) [d (a) , d (a′)] = [a, a′]
(iii) A is 2-torsion free such that d ([a, a′])+ [a, a′] ∈ Cent(A) or d [a, a′]−

[a, a′] ∈ Cent (A).

Proof Proof can be followed from [5; Corollary 1], [7; Theorem 2], [13; Corol-
lary 1] and Theorem 2.1 and Corollary 2.4. �
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