MULTIHOMOMORPHISMS FROM $(\mathbb{Z}, +)$ INTO CERTAIN HYPERGROUPS

N. Sirasuntorn^{*} and Y. Kemprasit[†]

Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand e-mail: *N.Sirasuntorn@gmail.com and [†]Yupaporn.K@Chula.ac.th

Abstract

By a multihomomorphism from a hypergroup (H, \circ) into a hypergroup (H', \circ') we mean a multi-valued function f from H into H' such that $f(x \circ y) = f(x) \circ' f(y)$ for all $x, y \in H$ and f is called surjective if f(H) = H'. Denote by MHom $((H, \circ), (H', \circ'))$ and SMHom $((H, \circ), (H', \circ'))$ the set of all multihomomorphisms and the set of all surjective multihomomorphisms from (H, \circ) into (H', \circ') , respectively. Characterizations of the elements of MHom $((\mathbb{Z}, +), (\mathbb{Z}, +))$, SMHom $((\mathbb{Z}, +), (\mathbb{Z}, +))$, MHom $((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))$ and SMHom $((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))$ have been given where n is a positive integer and \circ_n is the hyperoperation on \mathbb{Z} defined by $x \circ_n y = x + y + n\mathbb{Z}$. It has also been shown that $|\text{MHom}((\mathbb{Z}, +), (\mathbb{Z}, +))| = \aleph_0 = |\text{SMHom}((\mathbb{Z}, +), (\mathbb{Z}, +))|$ and $|\text{MHom}((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))| = 2^{\aleph_0} = |\text{SMHom}((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))|$. In this paper, characterizations of the elements of MHom $((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$ and SMHom $((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$ are provided. We also show that $|\text{MHom}((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))| = n$.

1 Introduction

A multi-valued function from a nonempty set X into a nonempty set Y is a function $f: X \to \mathcal{P}(Y) \setminus \{\emptyset\}$ where $\mathcal{P}(Y)$ is the power set of Y, and for $A \subseteq X$, let $f(A) = \bigcup f(a)$.

 $\overset{a \in A}{\text{A hyperoperation}} \circ \text{ on a nonempty set } H \text{ is a function} \circ : H \times H \to \mathcal{P}(H) \setminus \{\emptyset\}.$

Key words: Hypergroup, multihomomorphism

²⁰⁰⁰ AMS Mathematics Subject Classification: 20N20, 26E25

The value of $(x, y) \in H \times H$ under \circ is denoted by $x \circ y$. For $A, B \subseteq H$ and $x \in H$, let

$$A \circ B = \bigcup_{\substack{a \in A \\ b \in B}} a \circ b, \ x \circ A = \{x\} \circ A \text{ and } A \circ x = A \circ \{x\}.$$

The system (H, \circ) is called a hypergroup if

 $x \circ (y \circ z) = (x \circ y) \circ z$ and $x \circ H = H = H \circ x$ for all $x, y, z \in H$.

If N is a normal subgroup of a group G and \circ_N is a hyperoperation on G defined by $x \circ_N y = xyN$ for all $x, y \in G$, then (G, \circ_N) is a hypergroup ([1], page 11). It is clearly seen that for all $x_1, x_2, \ldots, x_k \in G$ with k > 1, $x_1 \circ_N x_2 \circ_N \cdots \circ_N x_k = x_1 x_2 \cdots x_k N$. Observe that if $N = \{e\}$ where e is the identity of G, then (G, \circ_N) is the group G.

The cardinality of a set X is denoted by |X|.

Let \mathbb{Z} be the set of integers, $\mathbb{Z}^+ = \{x \in \mathbb{Z} \mid x > 0\}$ and $\mathbb{Z}^- = \{x \in \mathbb{Z} \mid x < 0\}$. For $a, b \in \mathbb{Z}$, not both 0, let (a, b) be the g.c.d. of a and b. It is clealy seen that $a\mathbb{Z} + b\mathbb{Z} = (a, b)\mathbb{Z}$. Recall that the Euler φ -function is defined by $\varphi(1) = 1$ and for $k \in \mathbb{Z}^+$ with k > 1, $\varphi(k)$ is the number of positive integers less than k and relatively prime to k. Then

$$\varphi(k) = |\{a \in \{1, 2, \dots, k\} \mid (a, k) = 1\}| \text{ for all } k \in \mathbb{Z}^+.$$

It is known that for $n \in \mathbb{Z}^+$, $\sum_{\substack{k \in \mathbb{Z}^+ \\ k \mid n}} \varphi(k) = n$ ([3], page 191).

Let *n* be a positive integer and let \circ_n stand for $\circ_{n\mathbb{Z}}$ in the group $(\mathbb{Z}, +)$, that is, (\mathbb{Z}, \circ_n) is the hypergroup with the hyperoperation \circ_n defined by

$$x \circ_n y = x + y + n\mathbb{Z}$$
 for all $x, y \in \mathbb{Z}$.

A multihomomorphism f from a hypergroup (H, \circ) into a hypergroup (H', \circ') is a multi-valued function f from H into H' such that

$$f(x \circ y) = f(x) \circ f(y) \ (= \bigcup_{\substack{s \in f(x) \\ t \in f(y)}} s \circ t) \text{ for all } x, y \in H.$$

and f is called *surjective* if f(H) = H'. The set of all multihomomorphisms and the set of all surjective multihomomorphisms from (H, \circ) into (H', \circ') are denoted by $\operatorname{MHom}((H, \circ), (H', \circ'))$ and $\operatorname{SMHom}((H, \circ), (H', \circ'))$, respectively. Set $\operatorname{MHom}(H, \circ) := \operatorname{MHom}((H, \circ), (H, \circ))$ and $\operatorname{SMHom}(H, \circ) := \operatorname{SMHom}((H, \circ), (H, \circ))$.

In [5], the authors characterized the elements of $MHom(\mathbb{Z}, +)$ and determined $|MHom(\mathbb{Z}, +)|$:

N. SIRASUNTORN AND Y. KEMPRASIT

Theorem 1.1. ([5]). For a multi-valued function f from \mathbb{Z} into itself, $f \in MHom(\mathbb{Z}, +)$ if and only if there exist a subsemigroup H of $(\mathbb{Z}, +)$ containing 0 and an element $a \in \mathbb{Z}$ such that

$$f(x) = xa + H$$
 for all $x \in \mathbb{Z}$.

Theorem 1.2. ([5]). $|MHom(\mathbb{Z}, +)| = \aleph_0$.

In [2], the authors used Theorem 1.1 to characterize the elements of $\text{SMHom}(\mathbb{Z},+)$. Also, $|\text{SMHom}(\mathbb{Z},+)|$ was determined.

Theorem 1.3. ([2]). For a multi-valued function f from \mathbb{Z} into itself, $f \in SMHom(\mathbb{Z}, +)$ if and only if there exist a subsemigroup H of $(\mathbb{Z}, +)$ containing 0 and $a \in \mathbb{Z}$ such that

$$f(x) = xa + H \text{ for all } x \in \mathbb{Z},$$

(a, h) = 1 for some $h \in H$ and
 $H = \mathbb{Z}$ whenever $a = 0.$

Theorem 1.4. ([2]). $|SMHom(\mathbb{Z}, +)| = \aleph_0$.

We characterized the elements of $MHom((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))$ and $SMHom((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))$ in [4]. Also, the cardinalities of these sets were provided.

Theorem 1.5. ([4]). For a multi-valued function f from \mathbb{Z} into itself, $f \in MHom((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))$ if and only if one of the following two conditions holds.

(i) There is a subsemigroup H of $(\mathbb{Z}, +)$ containing 0 such that

 $f(x+n\mathbb{Z}) = H$ for all $x \in \mathbb{Z}$ and f(x) + f(y) = H for all $x, y \in \mathbb{Z}$.

(ii) There are $l, a \in \mathbb{Z}$ such that $l \neq 0$, $\frac{l}{(l,n)} \mid a$,

$$\begin{aligned} f(x+n\mathbb{Z}) &= xa+l\mathbb{Z} & \text{for all } x \in \mathbb{Z} \text{ and} \\ f(x)+f(y) &= f(x)+f(y)+l\mathbb{Z} & \text{for all } x,y \in \mathbb{Z}. \end{aligned}$$

Theorem 1.6. ([4]). For a multi-valued function f from \mathbb{Z} into itself, $f \in SMHom((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))$ if and only if one of the following two conditions holds.

(i) $f(x+n\mathbb{Z}) = \mathbb{Z}$ for all $x \in \mathbb{Z}$ and $f(x) + f(y) = \mathbb{Z}$ for all $x, y \in \mathbb{Z}$.

(ii) There are $l, a \in \mathbb{Z}$ such that $l \neq 0, l \mid n, (a, l) = 1$,

 $\begin{array}{ll} f(x+n\mathbb{Z}) &= xa+l\mathbb{Z} & \mbox{ for all } x\in\mathbb{Z} \mbox{ and } \\ f(x)+f(y) &= f(x)+f(y)+l\mathbb{Z} \mbox{ for all } x,y\in\mathbb{Z}. \end{array}$

Also, it was shown in [4] that $MHom((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))$ and $SMHom((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))$ are uncountably infinite.

Theorem 1.7. ([4]). $|MHom((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))| = |SMHom((\mathbb{Z}, \circ_n), (\mathbb{Z}, +))| = 2^{\aleph_0}$.

This paper is a continuation of the works mentioned above. We characterize the elements of $\operatorname{MHom}((\mathbb{Z}, +)), (\mathbb{Z}, \circ_n)$ and $\operatorname{SMHom}((\mathbb{Z}, +)), (\mathbb{Z}, \circ_n)$. It is also shown that these sets are finite. We show precisely from our characterizations that $|\operatorname{MHom}((\mathbb{Z}, +)), (\mathbb{Z}, \circ_n))| = \sum_{\substack{k \in \mathbb{Z}^+ \\ k|n}} k$ and $|\operatorname{SMHom}((\mathbb{Z}, +)), (\mathbb{Z}, \circ_n))| = n$.

In the remainder of this paper, n is a positive integer and \circ_n is the hyperoperation defined on \mathbb{Z} as above.

2 Main Results

172

The following result was given in [5].

Lemma 2.1. ([5]). If H is a subsemigroup of $(\mathbb{Z}, +)$ such that $H \cap \mathbb{Z}^+ \neq \emptyset$ and $H \cap \mathbb{Z}^- \neq \emptyset$, then $H = k\mathbb{Z}$ for some $k \in \mathbb{Z} \setminus \{0\}$.

The following two lemmas are also needed.

Lemma 2.2. Let G be a group with identity e. If $f \in MHom(G, (\mathbb{Z}, \circ_n))$, then $f(e) = k\mathbb{Z}$ for some $k \in \mathbb{Z} \setminus \{0\}$ with $k \mid n$.

Proof. Let $f \in MHom(G, (\mathbb{Z}, \circ_n))$. Then

$$f(e) = f(ee) = f(e) \circ_n f(e) = f(e) + f(e) + n\mathbb{Z}$$
$$\supseteq f(e) + f(e)$$

which implies that f(e) is a subsemigroup of $(\mathbb{Z}, +)$. Let $a \in f(e)$. It is immediate from the above equalities that $a + a + n\mathbb{Z} = 2a + n\mathbb{Z} \subseteq f(e)$. It follows that $f(e) \cap \mathbb{Z}^+ \neq \emptyset$ and $f(e) \cap \mathbb{Z}^- \neq \emptyset$. By Lemma 2.1, $f(e) = k\mathbb{Z}$ for some $k \in \mathbb{Z} \setminus \{0\}$. This implies that

$$k\mathbb{Z} = f(e) = f(e) + f(e) + n\mathbb{Z} = k\mathbb{Z} + k\mathbb{Z} + n\mathbb{Z} = k\mathbb{Z} + n\mathbb{Z} = (k, n)\mathbb{Z}.$$

Consequently, $k = \pm (k, n)$, so $k \mid n$.

Lemma 2.3. Let G be a group with identity e and $f \in MHom(G, (\mathbb{Z}, \circ_n))$. Then for every $x \in G$, there exists $a \in f(x)$ such that

$$f(x^m) = ma + f(e)$$
 for all $m \in \mathbb{Z}$.

Proof. By Lemma 2.2, $f(e) = k\mathbb{Z}$ for some $k \in \mathbb{Z} \setminus \{0\}$ with $k \mid n$. Let $x \in G$ be given. Then

$$f(x) = f(xe) = f(x) + f(e) + n\mathbb{Z} = f(x) + k\mathbb{Z} + n\mathbb{Z} = f(x) + k\mathbb{Z}, \quad (1)$$

$$f(x^{-1}) = f(x^{-1}e) = f(x^{-1}) + f(e) + n\mathbb{Z} = f(x^{-1}) + k\mathbb{Z} + n\mathbb{Z}$$

$$f(x) + h\mathbb{Z} = f(x^{-1}) + k\mathbb{Z}.$$
 (2)

Since $k\mathbb{Z} + n\mathbb{Z} = k\mathbb{Z}$, it follows from (1) and (2) that

$$f(x) + n\mathbb{Z} = f(x) + k\mathbb{Z} = f(x), \qquad (3)$$

$$f(x^{-1}) + n\mathbb{Z} = f(x^{-1}) + k\mathbb{Z} = f(x^{-1}), \tag{4}$$

respectively. It follows from (4) that

$$k\mathbb{Z} = f(e) = f(xx^{-1}) = f(x) + f(x^{-1}) + n\mathbb{Z}$$

= $f(x) + (f(x^{-1}) + n\mathbb{Z}) = f(x) + f(x^{-1}),$

so 0 = a + b for some $a \in f(x)$ and $b \in f(x^{-1})$. Thus $b = -a \in f(x^{-1})$. Since

$$f(x) - a \subseteq f(x) + f(x^{-1}) = k\mathbb{Z}$$

and

$$a + f(x^{-1}) \subseteq f(x) + f(x^{-1}) = k\mathbb{Z},$$

it follows that

$$f(x) \subseteq a + k\mathbb{Z} \text{ and } f(x^{-1}) \subseteq -a + k\mathbb{Z}.$$
 (5)

From (1), (2) and (5), we have

$$f(x) \subseteq a + k\mathbb{Z} \subseteq f(x) + k\mathbb{Z} = f(x)$$

$$f(x^{-1}) \subseteq -a + k\mathbb{Z} \subseteq f(x^{-1}) + k\mathbb{Z} = f(x^{-1}).$$

Hence

$$f(x) = a + k\mathbb{Z} \text{ and } f(x^{-1}) = -a + k\mathbb{Z}.$$
(6)

Note that $f(x^0) = f(e) = 0a + f(e)$. If $m \in \mathbb{Z}^+$ and m > 1, then

$$f(x^{m}) = f(x) \circ_{n} f(x) \circ_{n} \cdots \circ_{n} f(x) \qquad (m \text{ copies})$$

$$= \underbrace{f(x) + \cdots + f(x)}_{m \text{ copies}} + n\mathbb{Z} \qquad (m \text{ copies})$$

$$= (f(x) + n\mathbb{Z}) + \cdots + (f(x) + n\mathbb{Z}) \qquad (m \text{ copies})$$

$$= f(x) + \cdots + f(x) \qquad \text{from (3)}$$

$$= (a + k\mathbb{Z}) + \cdots + (a + k\mathbb{Z}) \qquad \text{from (6)}$$

$$= ma + k\mathbb{Z}$$

$$= ma + f(e)$$

and

$$f(x^{-m}) = f(x^{-1}) \circ_n f(x^{-1}) \circ_n \cdots \circ_n f(x^{-1}) \qquad (m \text{ copies})$$

= $\underbrace{f(x^{-1}) + \cdots + f(x^{-1})}_{m \text{ copies}} + n\mathbb{Z}$
= $(f(x^{-1}) + n\mathbb{Z}) + \cdots + (f(x^{-1}) + n\mathbb{Z}) \qquad (m \text{ copies})$
= $f(x^{-1}) + \cdots + f(x^{-1}) \qquad \text{from (4)}$
= $(-a + k\mathbb{Z}) + \cdots + (-a + k\mathbb{Z}) \qquad \text{from (6)}$
= $-ma + k\mathbb{Z}$
= $-ma + f(e).$

Therefore the proof is complete.

Theorem 2.4. For a multi-valued function f from \mathbb{Z} into itself, $f \in MHom$ $((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$ if and only if there are $a, k \in \mathbb{Z}$ such that $k \neq 0, k \mid n$ and

$$f(x) = xa + k\mathbb{Z}$$
 for all $x \in \mathbb{Z}$.

Proof. If $f \in MHom((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$, then by Lemma 2.3, there exists $a \in f(1)$ such that

$$f(x) = xa + f(0)$$
 for all $x \in \mathbb{Z}$.

By Lemma 2.2, $f(0) = k\mathbb{Z}$ for some $k \in \mathbb{Z} \setminus \{0\}$ with $k \mid n$. Hence

$$f(x) = xa + k\mathbb{Z}$$
 for all $x \in \mathbb{Z}$.

For the converse, assume that there are $a,k\in\mathbb{Z}$ such that $k\neq 0,\;k\,|\,n$ and

$$f(x) = xa + k\mathbb{Z}$$
 for all $x \in \mathbb{Z}$.

Since $k \mid n$, we have $k\mathbb{Z} + n\mathbb{Z} = k\mathbb{Z}$. If $x, y \in \mathbb{Z}$, then

$$f(x + y) = (x + y)a + k\mathbb{Z}$$

= $xa + ya + k\mathbb{Z}$
= $xa + ya + k\mathbb{Z} + n\mathbb{Z}$
= $(xa + k\mathbb{Z}) + (ya + k\mathbb{Z}) + n\mathbb{Z}$
= $f(x) + f(y) + n\mathbb{Z}$
= $f(x) \circ_n f(y)$.

This implies that $f \in MHom((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$.

Theorem 2.5. For a multi-valued function f from \mathbb{Z} into itself, $f \in SMHom$ $((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$ if and only if there are $a, k \in \mathbb{Z}$ such that $k \neq 0, k \mid n$, (a, k) = 1 and

$$f(x) = xa + k\mathbb{Z}$$
 for all $x \in \mathbb{Z}$.

Proof. Assume that $f \in \text{SMHom}((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$. Then $f \in \text{MHom}((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$ and $f(\mathbb{Z}) = \mathbb{Z}$. From Theorem 2.4, there are $a, k \in \mathbb{Z}$ such that $k \neq 0, k \mid n$ and

$$f(x) = xa + k\mathbb{Z}$$
 for all $x \in \mathbb{Z}$.

Since $f(\mathbb{Z}) = \mathbb{Z}$, it follows that

$$\mathbb{Z} = f(\mathbb{Z}) = a\mathbb{Z} + k\mathbb{Z} = (a, k)\mathbb{Z}.$$

This implies that (a, k) = 1.

The converse is obtained directly from Theorem 2.4 and the fact that (a, k) = 1 implies $f(\mathbb{Z}) = a\mathbb{Z} + k\mathbb{Z} = (a, k)\mathbb{Z} = \mathbb{Z}$.

For $k \in \mathbb{Z} \setminus \{0\}$ with $k \mid n$ and $a \in \mathbb{Z}$, let $F_{k,a} \in \mathrm{MHom}((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$ be defined by

$$F_{k,a}(x) = xa + k\mathbb{Z}$$
 for all $x \in \mathbb{Z}$.

To determine the number of the elements in $MHom((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$ and $SMHom((\mathbb{Z}, +), (\mathbb{Z}, \circ_n))$, the following lemma is needed.

Lemma 2.6. Let $k, l \in \mathbb{Z} \setminus \{0\}$ with $k \mid n$ and $l \mid n$ and $a, b \in \mathbb{Z}$. Then $F_{k,a} = F_{l,b}$ if and only if $l = \pm k$ and $b \equiv a \mod |k|$.

Proof. Assume that $F_{k,a} = F_{l,b}$. Then

$$xa + k\mathbb{Z} = F_{k,a}(x) = F_{l,b}(x) = xb + l\mathbb{Z}$$
 for all $x \in \mathbb{Z}$.

In particular, $k\mathbb{Z} = 0a + k\mathbb{Z} = 0b + l\mathbb{Z} = l\mathbb{Z}$ which implies that $l = \pm k$. Thus $k\mathbb{Z} = l\mathbb{Z} = |k|\mathbb{Z}$. Hence

$$a + |k|\mathbb{Z} = 1a + k\mathbb{Z} = 1b + l\mathbb{Z} = b + |k|\mathbb{Z},$$

so $b - a \in |k|\mathbb{Z}$. Hence $b \equiv a \mod |k|$.

Conversely, assume that $l = \pm k$ and $b \equiv a \mod |k|$. Then $l\mathbb{Z} = k\mathbb{Z}$ and $b - a \in |k|\mathbb{Z}$, so

for all
$$x \in \mathbb{Z}$$
, $xb - xa = x(b - a) \in x(|k|\mathbb{Z}) \subseteq |k|\mathbb{Z} = k\mathbb{Z}$.

It follows that

for all
$$x \in \mathbb{Z}$$
, $F_{k,a}(x) = xa + k\mathbb{Z} = xb + k\mathbb{Z} = xb + l\mathbb{Z} = F_{l,a}(x)$.

Therefore we have $F_{k,a} = F_{l,b}$.

 $\textbf{Theorem 2.7.} | \textit{MHom}((\mathbb{Z}, +), (\mathbb{Z}, \circ_n)) | = \sum_{\substack{k \in \mathbb{Z}^+ \\ k \mid n}} k \textit{ and } | \textit{SMHom}((\mathbb{Z}, +), (\mathbb{Z}, \circ_n)) | = n.$

Proof. From Theorem 2.4 and Theorem 2.5, we have

$$\mathrm{MHom}((\mathbb{Z},+),(\mathbb{Z},\circ_n)) = \{F_{k,a} \mid k \in \mathbb{Z} \setminus \{0\}, a \in \mathbb{Z} \text{ and } k \mid n\}$$
(1)

and

$$SMHom((\mathbb{Z}, +), (\mathbb{Z}, \circ_n)) = \{F_{k,a} \mid k \in \mathbb{Z} \setminus \{0\}, a \in \mathbb{Z}, k \mid n \text{ and} (a, k) = 1\}$$
(2)

respectively. Thus (1), (2) and Lemma 2.6 yield the following equalities

$$MHom((\mathbb{Z}, +), (\mathbb{Z}, \circ_n)) = \{F_{k,a} \mid k \in \mathbb{Z}^+, k \mid n \text{ and } a \in \{0, 1, \dots, k-1\}\}$$
(3)

and

SMHom
$$((\mathbb{Z}, +), (\mathbb{Z}, \circ_n)) = \{F_{k,a} \mid k \in \mathbb{Z}^+, k \mid n, a \in \{0, 1, \dots, k-1\}$$

and $(a, k) = 1\}.$ (4)

By (3), (4) and Lemma 2.6, we have

$$|\mathrm{MHom}((\mathbb{Z},+),(\mathbb{Z},\circ_n))| = \sum_{\substack{k \in \mathbb{Z}^+ \\ k \mid n}} k,$$

$$|\mathrm{SMHom}((\mathbb{Z},+),(\mathbb{Z},\circ_n))| = \sum_{\substack{k \in \mathbb{Z}^+ \\ k \mid n}} \varphi(k) = n.$$

Example. If p is a prime and $m \in \mathbb{Z}^+$, then by Theorem 2.7,

$$|\mathrm{MHom}((\mathbb{Z}, +), (\mathbb{Z}, \circ_{p^m}))| = 1 + p + \dots + p^m = \frac{p^{m+1} - 1}{p - 1},$$
$$|\mathrm{SMHom}((\mathbb{Z}, +), (\mathbb{Z}, \circ_{p^m}))| = p^m.$$

It follows that the number of nonsurjective multihomomorphisms from $(\mathbb{Z}, +)$ into $(\mathbb{Z}, \circ_{p^m})$ is $1 + p + \cdots + p^{m-1} (= \frac{p^m - 1}{p-1})$.

176

References

- P. Corsini, "Prolegomena of Hypergroup Theory", Aviani Editore, Udine (1993).
- [2] S. Nenthein and P. Lertwichitsilp, *Surjective multihomomorphisms between cyclic groups*, Thai J. Math., 4(1) (2006), 35-42.
- [3] I. Niven, H. S. Zuckerman and H. L. Montgomery, "An Introduction to the Theory of Numbers", John Wiley & Sons, New York (1991).
- [4] N. Sirasuntorn and Y.Kemprasit, Multihomomorphisms from some hypergroups into (Z, +), East-West J. Math., Spec. Issue for ICDMA 2008 (2008), 185-195.
- [5] N. Triphop, A. Harnchoowong and Y. Kemprasit, *Multihomomorphisms between cyclic groups*, Set-valued Math. and Appl., 1(1)(2007), 9-18.