MULTIHOMOMORPHISMS FROM $(\mathbb{Z},+)$ INTO CERTAIN HYPERGROUPS

N. Sirasuntorn* and Y. Kemprasit ${ }^{\dagger}$
Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
e-mail: * N.Sirasuntorn@gmail.com and ${ }^{\dagger}$ Yupaporn.K@Chula.ac.th

Abstract

By a multihomomorphism from a hypergroup (H, \circ) into a hypergroup $\left(H^{\prime}, \circ^{\prime}\right)$ we mean a multi-valued function f from H into H^{\prime} such that $f(x \circ y)=f(x) \circ^{\prime} f(y)$ for all $x, y \in H$ and f is called surjective if $f(H)=$ H^{\prime}. Denote by $\operatorname{MHom}\left((H, \circ),\left(H^{\prime}, \circ^{\prime}\right)\right)$ and $\operatorname{SMHom}\left((H, \circ),\left(H^{\prime}, \circ^{\prime}\right)\right)$ the set of all multihomomorphisms and the set of all surjective multihomomorphisms from (H, \circ) into ($H^{\prime}, \circ^{\prime}$), respectively. Characterizations of the elements of $\operatorname{MHom}((\mathbb{Z},+),(\mathbb{Z},+))$, $\operatorname{SMHom}((\mathbb{Z},+),(\mathbb{Z},+))$, MHom $\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)$ and $\operatorname{SMHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)$ have been given where n is a positive integer and \circ_{n} is the hyperoperation on \mathbb{Z} defined by $x \circ_{n} y$ $=x+y+n \mathbb{Z}$. It has also been shown that $|\operatorname{MHom}((\mathbb{Z},+),(\mathbb{Z},+))|$ $=\aleph_{0}=|\operatorname{SMHom}((\mathbb{Z},+),(\mathbb{Z},+))|$ and $\left|\operatorname{MHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)\right|=2^{\aleph_{0}}=$ $\left|\operatorname{SMHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)\right|$. In this paper, characterizations of the elements of $\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$ and $\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$ are provided. We also show that $\left|\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)\right|=\sum_{\substack{k \in \mathbb{Z}^{+} \\ k \mid n}} k$ and $\mid \operatorname{SMHom}((\mathbb{Z},+)$, $\left.\left(\mathbb{Z}, \circ_{n}\right)\right) \mid=n$.

1 Introduction

A multi-valued function from a nonempty set X into a nonempty set Y is a function $f: X \rightarrow \mathcal{P}(Y) \backslash\{\emptyset\}$ where $\mathcal{P}(Y)$ is the power set of Y, and for $A \subseteq X$, let $f(A)=\bigcup_{a \in A} f(a)$.

A hyperoperation \circ on a nonempty set H is a function $\circ: H \times H \rightarrow \mathcal{P}(H) \backslash\{\emptyset\}$.

Key words: Hypergroup, multihomomorphism
2000 AMS Mathematics Subject Classification: 20N20, 26E25

The value of $(x, y) \in H \times H$ under \circ is denoted by $x \circ y$. For $A, B \subseteq H$ and $x \in H$, let

$$
A \circ B=\bigcup_{\substack{a \in A \\ b \in B}} a \circ b, x \circ A=\{x\} \circ A \text { and } A \circ x=A \circ\{x\}
$$

The system (H, \circ) is called a hypergroup if

$$
x \circ(y \circ z)=(x \circ y) \circ z \text { and } x \circ H=H=H \circ x \text { for all } x, y, z \in H
$$

If N is a normal subgroup of a group G and \circ_{N} is a hyperoperation on G defined by $x \circ_{N} y=x y N$ for all $x, y \in G$, then $\left(G, \circ_{N}\right)$ is a hypergroup ([1], page 11). It is clearly seen that for all $x_{1}, x_{2}, \ldots, x_{k} \in G$ with $k>1, x_{1} \circ_{N}$ $x_{2} \circ_{N} \cdots \circ_{N} x_{k}=x_{1} x_{2} \cdots x_{k} N$. Observe that if $N=\{e\}$ where e is the identity of G, then $\left(G, \circ_{N}\right)$ is the group G.

The cardinality of a set X is denoted by $|X|$.
Let \mathbb{Z} be the set of integers, $\mathbb{Z}^{+}=\{x \in \mathbb{Z} \mid x>0\}$ and $\mathbb{Z}^{-}=\{x \in \mathbb{Z} \mid x<0\}$. For $a, b \in \mathbb{Z}$, not both 0 , let (a, b) be the g.c.d. of a and b. It is clealy seen that $a \mathbb{Z}+b \mathbb{Z}=(a, b) \mathbb{Z}$. Recall that the Euler φ-function is defined by $\varphi(1)=1$ and for $k \in \mathbb{Z}^{+}$with $k>1, \varphi(k)$ is the number of positive integers less than k and relatively prime to k. Then

$$
\varphi(k)=|\{a \in\{1,2, \ldots, k\} \mid(a, k)=1\}| \text { for all } k \in \mathbb{Z}^{+}
$$

It is known that for $n \in \mathbb{Z}^{+}, \sum_{\substack{k \in \mathbb{Z}^{+} \\ k \mid n}} \varphi(k)=n([3]$, page 191).
Let n be a positive integer and let \circ_{n} stand for $\circ_{n \mathbb{Z}}$ in the group $(\mathbb{Z},+)$, that is, $\left(\mathbb{Z}, \circ_{n}\right)$ is the hypergroup with the hyperoperation \circ_{n} defined by

$$
x \circ_{n} y=x+y+n \mathbb{Z} \text { for all } x, y \in \mathbb{Z}
$$

A multihomomorphism f from a hypergroup (H, \circ) into a hypergroup $\left(H^{\prime}, \circ^{\prime}\right)$ is a multi-valued function f from H into H^{\prime} such that

$$
f(x \circ y)=f(x) \circ^{\prime} f(y)\left(=\bigcup_{\substack{s \in f(x) \\ t \in f(y)}} s \circ^{\prime} t\right) \text { for all } x, y \in H .
$$

and f is called surjective if $f(H)=H^{\prime}$. The set of all multihomomorphisms and the set of all surjective multihomomorphisms from (H, \circ) into $\left(H^{\prime}, \circ^{\prime}\right)$ are denoted by $\operatorname{MHom}\left((H, \circ),\left(H^{\prime}, \circ^{\prime}\right)\right)$ and $\operatorname{SMHom}\left((H, \circ),\left(H^{\prime}, \circ^{\prime}\right)\right)$, respectively. $\operatorname{Set} \operatorname{MHom}(H, \circ):=\operatorname{MHom}((H, \circ),(H, \circ))$ and $\operatorname{SMHom}(H, \circ):=\operatorname{SMHom}((H, \circ)$, (H, \circ)).

In [5], the authors characterized the elements of $\operatorname{MHom}(\mathbb{Z},+)$ and determined $|\operatorname{MHom}(\mathbb{Z},+)|$:

Theorem 1.1. ([5]). For a multi-valued function f from \mathbb{Z} into itself, $f \in$ $\operatorname{MHom}(\mathbb{Z},+)$ if and only if there exist a subsemigroup H of $(\mathbb{Z},+)$ containing 0 and an element $a \in \mathbb{Z}$ such that

$$
f(x)=x a+H \text { for all } x \in \mathbb{Z}
$$

Theorem 1.2. ([5]). $|\operatorname{MHom}(\mathbb{Z},+)|=\aleph_{0}$.
In [2], the authors used Theorem 1.1 to characterize the elements of $\operatorname{SMHom}(\mathbb{Z},+)$. Also, $|\operatorname{SMHom}(\mathbb{Z},+)|$ was determined.
Theorem 1.3. ([2]). For a multi-valued function f from \mathbb{Z} into itself, $f \in$ $\operatorname{SMHom}(\mathbb{Z},+)$ if and only if there exist a subsemigroup H of $(\mathbb{Z},+)$ containing 0 and $a \in \mathbb{Z}$ such that

$$
\begin{aligned}
f(x) & =x a+H \text { for all } x \in \mathbb{Z}, \\
(a, h) & =1 \text { for some } h \in H \text { and } \\
H & =\mathbb{Z} \text { whenever } a=0 .
\end{aligned}
$$

Theorem 1.4. ([2]). $|\operatorname{SMHom}(\mathbb{Z},+)|=\aleph_{0}$.
We characterized the elements of $\operatorname{MHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)$ and $\operatorname{SMHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)$ in [4]. Also, the cardinalities of these sets were provided.
Theorem 1.5. ([4]). For a multi-valued function f from \mathbb{Z} into itself, $f \in$ $\operatorname{MHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)$ if and only if one of the following two conditions holds.
(i) There is a subsemigroup H of $(\mathbb{Z},+)$ containing 0 such that

$$
\begin{array}{ll}
f(x+n \mathbb{Z})=H & \text { for all } x \in \mathbb{Z} \text { and } \\
f(x)+f(y)=H & \text { for all } x, y \in \mathbb{Z}
\end{array}
$$

(ii) There are $l, a \in \mathbb{Z}$ such that $l \neq 0, \left.\frac{l}{(l, n)} \right\rvert\, a$,

$$
\begin{array}{ll}
f(x+n \mathbb{Z})=x a+l \mathbb{Z} & \text { for all } x \in \mathbb{Z} \text { and } \\
f(x)+f(y)=f(x)+f(y)+l \mathbb{Z} & \text { for all } x, y \in \mathbb{Z}
\end{array}
$$

Theorem 1.6. ([4]). For a multi-valued function f from \mathbb{Z} into itself, $f \in$ $\operatorname{SMHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)$ if and only if one of the following two conditions holds.

$$
\begin{array}{ll}
f(x+n \mathbb{Z})=\mathbb{Z} & \text { for all } x \in \mathbb{Z} \text { and } \tag{i}\\
f(x)+f(y)=\mathbb{Z} & \text { for all } x, y \in \mathbb{Z}
\end{array}
$$

(ii) There are $l, a \in \mathbb{Z}$ such that $l \neq 0, l \mid n,(a, l)=1$,

$$
\begin{array}{ll}
f(x+n \mathbb{Z})=x a+l \mathbb{Z} & \text { for all } x \in \mathbb{Z} \text { and } \\
f(x)+f(y)=f(x)+f(y)+l \mathbb{Z} & \text { for all } x, y \in \mathbb{Z} .
\end{array}
$$

Also, it was shown in $[4]$ that $\operatorname{MHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)$ and $\operatorname{SMHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)$ are uncountably infinite.

Theorem 1.7. $([4]) .\left|\operatorname{MHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)\right|=\left|\operatorname{SMHom}\left(\left(\mathbb{Z}, \circ_{n}\right),(\mathbb{Z},+)\right)\right|=2^{\aleph_{0}}$.
This paper is a continuation of the works mentioned above. We characterize the elements of $\left.\operatorname{MHom}((\mathbb{Z},+)),\left(\mathbb{Z}, \circ_{n}\right)\right)$ and $\left.\operatorname{SMHom}((\mathbb{Z},+)),\left(\mathbb{Z}, \circ_{n}\right)\right)$. It is also shown that these sets are finite. We show precisely from our characterizations that $\left.\mid \operatorname{MHom}((\mathbb{Z},+)),\left(\mathbb{Z}, \circ_{n}\right)\right) \mid=\sum_{\substack{k \in \mathbb{Z}^{+} \\ k \mid n}} k$ and $\left.\mid \operatorname{SMHom}((\mathbb{Z},+)),\left(\mathbb{Z}, \circ_{n}\right)\right) \mid=n$.

In the remainder of this paper, n is a positive integer and o_{n} is the hyperoperation defined on \mathbb{Z} as above.

2 Main Results

The following result was given in [5].
Lemma 2.1. ([5]). If H is a subsemigroup of $(\mathbb{Z},+)$ such that $H \cap \mathbb{Z}^{+} \neq \emptyset$ and $H \cap \mathbb{Z}^{-} \neq \emptyset$, then $H=k \mathbb{Z}$ for some $k \in \mathbb{Z} \backslash\{0\}$.

The following two lemmas are also needed.
Lemma 2.2. Let G be a group with identity e. If $f \in \operatorname{MHom}\left(G,\left(\mathbb{Z}, \circ_{n}\right)\right)$, then $f(e)=k \mathbb{Z}$ for some $k \in \mathbb{Z} \backslash\{0\}$ with $k \mid n$.

Proof. Let $f \in \operatorname{MHom}\left(G,\left(\mathbb{Z}, \circ_{n}\right)\right)$. Then

$$
\begin{aligned}
f(e)=f(e e)=f(e) \circ_{n} f(e) & =f(e)+f(e)+n \mathbb{Z} \\
& \supseteq f(e)+f(e)
\end{aligned}
$$

which implies that $f(e)$ is a subsemigroup of $(\mathbb{Z},+)$. Let $a \in f(e)$. It is immediate from the above equalities that $a+a+n \mathbb{Z}=2 a+n \mathbb{Z} \subseteq f(e)$. It follows that $f(e) \cap \mathbb{Z}^{+} \neq \emptyset$ and $f(e) \cap \mathbb{Z}^{-} \neq \emptyset$. By Lemma 2.1, $f(e)=k \mathbb{Z}$ for some $k \in \mathbb{Z} \backslash\{0\}$. This implies that

$$
k \mathbb{Z}=f(e)=f(e)+f(e)+n \mathbb{Z}=k \mathbb{Z}+k \mathbb{Z}+n \mathbb{Z}=k \mathbb{Z}+n \mathbb{Z}=(k, n) \mathbb{Z}
$$

Consequently, $k= \pm(k, n)$, so $k \mid n$.
Lemma 2.3. Let G be a group with identity e and $f \in \operatorname{MHom}\left(G,\left(\mathbb{Z}, \circ_{n}\right)\right)$.
Then for every $x \in G$, there exists $a \in f(x)$ such that

$$
f\left(x^{m}\right)=m a+f(e) \text { for all } m \in \mathbb{Z}
$$

Proof. By Lemma 2.2, $f(e)=k \mathbb{Z}$ for some $k \in \mathbb{Z} \backslash\{0\}$ with $k \mid n$. Let $x \in G$ be given. Then

$$
\begin{gather*}
f(x)=f(x e)=f(x)+f(e)+n \mathbb{Z}=f(x)+k \mathbb{Z}+n \mathbb{Z}=f(x)+k \mathbb{Z} \tag{1}\\
\begin{array}{c}
f\left(x^{-1}\right)=f\left(x^{-1} e\right)=f\left(x^{-1}\right)+f(e)+n \mathbb{Z}=f\left(x^{-1}\right)+k \mathbb{Z}+n \mathbb{Z} \\
=f\left(x^{-1}\right)+k \mathbb{Z}
\end{array}
\end{gather*}
$$

Since $k \mathbb{Z}+n \mathbb{Z}=k \mathbb{Z}$, it follows from (1) and (2) that

$$
\begin{align*}
& f(x)+n \mathbb{Z}=f(x)+k \mathbb{Z}=f(x) \tag{3}\\
& f\left(x^{-1}\right)+n \mathbb{Z}=f\left(x^{-1}\right)+k \mathbb{Z}=f\left(x^{-1}\right) \tag{4}
\end{align*}
$$

respectively. It follows from (4) that

$$
\begin{aligned}
k \mathbb{Z}=f(e)=f\left(x x^{-1}\right) & =f(x)+f\left(x^{-1}\right)+n \mathbb{Z} \\
& =f(x)+\left(f\left(x^{-1}\right)+n \mathbb{Z}\right)=f(x)+f\left(x^{-1}\right)
\end{aligned}
$$

so $0=a+b$ for some $a \in f(x)$ and $b \in f\left(x^{-1}\right)$. Thus $b=-a \in f\left(x^{-1}\right)$. Since

$$
f(x)-a \subseteq f(x)+f\left(x^{-1}\right)=k \mathbb{Z}
$$

and

$$
a+f\left(x^{-1}\right) \subseteq f(x)+f\left(x^{-1}\right)=k \mathbb{Z}
$$

it follows that

$$
\begin{equation*}
f(x) \subseteq a+k \mathbb{Z} \text { and } f\left(x^{-1}\right) \subseteq-a+k \mathbb{Z} \tag{5}
\end{equation*}
$$

From (1), (2) and (5), we have

$$
\begin{aligned}
& f(x) \subseteq a+k \mathbb{Z} \subseteq f(x)+k \mathbb{Z}=f(x) \\
& f\left(x^{-1}\right) \subseteq-a+k \mathbb{Z} \subseteq f\left(x^{-1}\right)+k \mathbb{Z}=f\left(x^{-1}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
f(x)=a+k \mathbb{Z} \text { and } f\left(x^{-1}\right)=-a+k \mathbb{Z} \tag{6}
\end{equation*}
$$

Note that $f\left(x^{0}\right)=f(e)=0 a+f(e)$. If $m \in \mathbb{Z}^{+}$and $m>1$, then

$$
\begin{aligned}
f\left(x^{m}\right) & =f(x) \circ_{n} f(x) \circ_{n} \cdots \circ_{n} f(x) & & \\
& =\underbrace{f(x)+\cdots+f(x)}_{m \text { copies }}+n \mathbb{Z} & & \\
& =(f(x)+n \mathbb{Z})+\cdots+(f(x)+n \mathbb{Z}) & & (m \text { copies }) \\
& =f(x)+\cdots+f(x) & & \text { from }(3) \\
& =(a+k \mathbb{Z})+\cdots+(a+k \mathbb{Z}) & & \text { from }(6) \\
& =m a+k \mathbb{Z} & & \\
& =m a+f(e) & &
\end{aligned}
$$

and

$$
\begin{array}{rlrl}
f\left(x^{-m}\right) & =f\left(x^{-1}\right) \circ_{n} f\left(x^{-1}\right) \circ_{n} \cdots \circ_{n} f\left(x^{-1}\right) & & \\
& =\underbrace{f\left(x^{-1}\right)+\cdots+f\left(x^{-1}\right)}_{m \text { copies }}+n \mathbb{Z} & & \\
& =\left(f\left(x^{-1}\right)+n \mathbb{Z}\right)+\cdots+\left(f\left(x^{-1}\right)+n \mathbb{Z}\right) & & (m \text { copies }) \\
& =f\left(x^{-1}\right)+\cdots+f\left(x^{-1}\right) & & \text { from }(4) \\
& =(-a+k \mathbb{Z})+\cdots+(-a+k \mathbb{Z}) & & \text { from }(6) \\
& =-m a+k \mathbb{Z} & & \\
& =-m a+f(e) &
\end{array}
$$

Therefore the proof is complete.
Theorem 2.4. For a multi-valued function f from \mathbb{Z} into itself, $f \in$ MHom $\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$ if and only if there are $a, k \in \mathbb{Z}$ such that $k \neq 0, k \mid n$ and

$$
f(x)=x a+k \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

Proof. If $f \in \operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$, then by Lemma 2.3, there exists $a \in f(1)$ such that

$$
f(x)=x a+f(0) \text { for all } x \in \mathbb{Z}
$$

By Lemma 2.2, $f(0)=k \mathbb{Z}$ for some $k \in \mathbb{Z} \backslash\{0\}$ with $k \mid n$. Hence

$$
f(x)=x a+k \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

For the converse, assume that there are $a, k \in \mathbb{Z}$ such that $k \neq 0, k \mid n$ and

$$
f(x)=x a+k \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

Since $k \mid n$, we have $k \mathbb{Z}+n \mathbb{Z}=k \mathbb{Z}$. If $x, y \in \mathbb{Z}$, then

$$
\begin{aligned}
f(x+y) & =(x+y) a+k \mathbb{Z} \\
& =x a+y a+k \mathbb{Z} \\
& =x a+y a+k \mathbb{Z}+n \mathbb{Z} \\
& =(x a+k \mathbb{Z})+(y a+k \mathbb{Z})+n \mathbb{Z} \\
& =f(x)+f(y)+n \mathbb{Z} \\
& =f(x) \circ_{n} f(y)
\end{aligned}
$$

This implies that $f \in \operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$.

Theorem 2.5. For a multi-valued function f from \mathbb{Z} into itself, $f \in$ SMHom $\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$ if and only if there are $a, k \in \mathbb{Z}$ such that $k \neq 0, k \mid n$, $(a, k)=1$ and

$$
f(x)=x a+k \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

Proof. Assume that $f \in \operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$. Then $f \in \operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$ and $f(\mathbb{Z})=\mathbb{Z}$. From Theorem 2.4, there are $a, k \in \mathbb{Z}$ such that $k \neq 0, k \mid n$ and

$$
f(x)=x a+k \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

Since $f(\mathbb{Z})=\mathbb{Z}$, it follows that

$$
\mathbb{Z}=f(\mathbb{Z})=a \mathbb{Z}+k \mathbb{Z}=(a, k) \mathbb{Z}
$$

This implies that $(a, k)=1$.
The converse is obtained directly from Theorem 2.4 and the fact that $(a, k)=1$ implies $f(\mathbb{Z})=a \mathbb{Z}+k \mathbb{Z}=(a, k) \mathbb{Z}=\mathbb{Z}$.

For $k \in \mathbb{Z} \backslash\{0\}$ with $k \mid n$ and $a \in \mathbb{Z}$, let $F_{k, a} \in \operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$ be defined by

$$
F_{k, a}(x)=x a+k \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

To determine the number of the elements in $\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$ and SMHom $\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)$, the following lemma is needed.
Lemma 2.6. Let $k, l \in \mathbb{Z} \backslash\{0\}$ with $k \mid n$ and $l \mid n$ and $a, b \in \mathbb{Z}$. Then $F_{k, a}=$ $F_{l, b}$ if and only if $l= \pm k$ and $b \equiv a \bmod |k|$.
Proof. Assume that $F_{k, a}=F_{l, b}$. Then

$$
x a+k \mathbb{Z}=F_{k, a}(x)=F_{l, b}(x)=x b+l \mathbb{Z} \text { for all } x \in \mathbb{Z}
$$

In particular, $k \mathbb{Z}=0 a+k \mathbb{Z}=0 b+l \mathbb{Z}=l \mathbb{Z}$ which implies that $l= \pm k$. Thus $k \mathbb{Z}=l \mathbb{Z}=|k| \mathbb{Z}$. Hence

$$
a+|k| \mathbb{Z}=1 a+k \mathbb{Z}=1 b+l \mathbb{Z}=b+|k| \mathbb{Z}
$$

so $b-a \in|k| \mathbb{Z}$. Hence $b \equiv a \bmod |k|$.
Conversely, assume that $l= \pm k$ and $b \equiv a \bmod |k|$. Then $l \mathbb{Z}=k \mathbb{Z}$ and $b-a \in|k| \mathbb{Z}$, so

$$
\text { for all } x \in \mathbb{Z}, x b-x a=x(b-a) \in x(|k| \mathbb{Z}) \subseteq|k| \mathbb{Z}=k \mathbb{Z}
$$

It follows that

$$
\text { for all } x \in \mathbb{Z}, F_{k, a}(x)=x a+k \mathbb{Z}=x b+k \mathbb{Z}=x b+l \mathbb{Z}=F_{l, a}(x)
$$

Therefore we have $F_{k, a}=F_{l, b}$.

Theorem 2.7. $\left|\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)\right|=\sum_{\substack{k \in \mathbb{Z}^{+} \\ k \mid n}} k$ and $\left|\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)\right|=n$.

Proof. From Theorem 2.4 and Theorem 2.5, we have

$$
\begin{equation*}
\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)=\left\{F_{k, a} \mid k \in \mathbb{Z} \backslash\{0\}, a \in \mathbb{Z} \text { and } k \mid n\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{gather*}
\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)=\left\{F_{k, a} \mid\right. \\
k \in \mathbb{Z} \backslash\{0\}, a \in \mathbb{Z}, k \mid n \text { and } \tag{2}\\
(a, k)=1\}
\end{gather*}
$$

respectively. Thus (1), (2) and Lemma 2.6 yield the following equalities

$$
\begin{equation*}
\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)=\left\{F_{k, a}\left|k \in \mathbb{Z}^{+}, k\right| n \text { and } a \in\{0,1, \ldots, k-1\}\right\} \tag{3}
\end{equation*}
$$

and

$$
\begin{gather*}
\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)=\left\{F_{k, a}\left|k \in \mathbb{Z}^{+}, k\right| n, a \in\{0,1, \ldots, k-1\}\right. \\
\text { and }(a, k)=1\} \tag{4}
\end{gather*}
$$

By (3), (4) and Lemma 2.6, we have

$$
\begin{aligned}
\left|\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)\right| & =\sum_{\substack{k \in \mathbb{Z}^{+} \\
k \mid n}} k, \\
\left|\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{n}\right)\right)\right| & =\sum_{\substack{k \in \mathbb{Z}^{+} \\
k \mid n}} \varphi(k)=n .
\end{aligned}
$$

Example. If p is a prime and $m \in \mathbb{Z}^{+}$, then by Theorem 2.7,

$$
\begin{gathered}
\left|\operatorname{MHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{p^{m}}\right)\right)\right|=1+p+\cdots+p^{m}=\frac{p^{m+1}-1}{p-1} \\
\left|\operatorname{SMHom}\left((\mathbb{Z},+),\left(\mathbb{Z}, \circ_{p^{m}}\right)\right)\right|=p^{m}
\end{gathered}
$$

It follows that the number of nonsurjective multihomomorphisms from $(\mathbb{Z},+)$ into $\left(\mathbb{Z}, \circ_{p^{m}}\right)$ is $1+p+\cdots+p^{m-1}\left(=\frac{p^{m}-1}{p-1}\right)$.

References

[1] P. Corsini, "Prolegomena of Hypergroup Theory", Aviani Editore, Udine (1993).
[2] S. Nenthein and P. Lertwichitsilp, Surjective multihomomorphisms between cyclic groups, Thai J. Math., 4(1) (2006), 35-42.
[3] I. Niven, H. S. Zuckerman and H. L. Montgomery, "An Introduction to the Theory of Numbers", John Wiley \& Sons, New York (1991).
[4] N. Sirasuntorn and Y.Kemprasit, Multihomomorphisms from some hypergroups into $(\mathbb{Z},+)$, East-West J. Math., Spec. Issue for ICDMA 2008 (2008), 185-195.
[5] N. Triphop, A. Harnchoowong and Y. Kemprasit, Multihomomorphisms between cyclic groups, Set-valued Math. and Appl., 1(1)(2007), 9-18.

