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A multi-valued function from a nonempty set X into a nonempty set Y is a
function f: X — P(Y) \ {0} where P(Y) is the power set of Y, and for A C X,
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Abstract

By a multihomomorphism from a hypergroup (H, o) into a hypergroup
(H’,0") we mean a multi-valued function f from H into H’ such that
flxzoy) = f(z)o'f(y) forall z,y € H and f is called surjective if f(H) =
H’. Denote by MHom((H, o), (H",0")) and SMHom((H, o), (H",0")) the
set of all multihomomorphisms and the set of all surjective multihomo-
morphisms from (H,o) into (H’,0"), respectively. Characterizations of
the elementsof MHom((Z,+), (Z,+)), SMHom((Z,+), (Z,+)), MHom
((Z,0n),(Z,+)) and SMHom((Z, 0,,), (Z,+)) have been given where n is
a positive integer and o, is the hyperoperation on Z defined by = o, y
= 2 + y + nZ. It has also been shown that |MHom((Z,+),(Z,+))|
= R = [SMHom((Z, +), (Z,+))| and |MHom((Z,ox), (Z,+))|= 2% =
[SMHom((Z, o), (Z,+))|. In this paper,characterizations of the elements
of MHom((Z, +), (Z,0,)) and SMHom((Z, +), (Z, 0, )) are provided. We
also show that |MHom((Z,+),(Z,0,))|= Z k and |SMHom((Z,+),

(Z,0,))| = n. kS‘Z'*'

Introduction

let f(A) = [ f(a).

acA

A hyperoperation o on a nonempty set H is a function o : HxH — P(H)\{0}.
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170 Multihomomorphisms from (Z, +) into Certain Hypergroups

The value of (x,y) € H x H under o is denoted by z oy. For A, B C H and
r € H, let

AoB = Uaob, zoA={z}oA and Aox = Ao{z}.

acA
beB

The system (H, o) is called a hypergroup if
zo(yoz)=(zxoy)ozandzoH=H=Hoxz foral z,y,z € H.

If N is a normal subgroup of a group G and oy is a hyperoperation on G
defined by z oy y = ayN for all z,y € G, then (G,oy) is a hypergroup ([1],
page 11). Tt is clearly seen that for all x1,xs,..., 2 € G with k > 1, z1 oy
Toon - -ON TR = T1T2 - - N. Observe that if N = {e} where e is the identity
of G, then (G, oy) is the group G.

The cardinality of a set X is denoted by | X]|.

Let Z be the set of integers, Z* = {z € Z | >0} and Z~ = {z € Z | <0}
For a,b € Z, not both 0, let (a, b) be the g.c.d. of a and b. It is clealy seen that
aZ + bZ = (a,b)Z. Recall that the Euler -function is defined by ¢(1) = 1 and
for k € Z* with k > 1, (k) is the number of positive integers less than &k and
relatively prime to k. Then

ok)={a€{1,2,...,k} | (a,k) =1} for all k € ZT.

It is known that for n € ZT, Z w(k) =n ([3], page 191).

kezt
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Let n be a positive integer and let o, stand for o,z in the group (Z,+),
that is, (Z, o,) is the hypergroup with the hyperoperation o,, defined by

ropy=x+y+nZ forall z,y € Z.

A multihomomorphism f from a hypergroup (H, o) into a hypergroup (H’,0")
is a multi-valued function f from H into H’ such that

flwoy)=f(z)o'f(y) (= |J so't) forallz,y € H.
sef(x)
tg‘[(y)

and f is called surjective if f(H) = H’. The set of all multihomomorphisms
and the set of all surjective multihomomorphisms from (H, o) into (H”,0") are
denoted by MHom((H, o), (H",0")) and SMHom((H, o), (H",0")), respectively.
Set MHom(H, o) :=MHom((H, o), (H,0)) and SMHom(H, o) :=SMHom((H, o),
(H, o).

In [5], the authors characterized the elements of MHom(Z, +) and deter-
mined [MHom(Z, +)| :
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Theorem 1.1. ([5]). For a multi-valued function f from Z into itself, f €
MHom(Z,+) if and only if there exist a subsemigroup H of (Z,+) containing 0
and an element a € Z such that

flx) =za+ H for all z € Z.
Theorem 1.2. ([5]). |[MHom(Z,+)| = Ny.

In [2], the authors used Theorem 1.1 to characterize the elements of SMHom(Z,+).
Also, |[SMHom(Z, +)| was determined.

Theorem 1.3. ([2]). For a multi-valued function f from Z into itself, f €
SMHom(Z, +) if and only if there exist a subsemigroup H of (Z,+) containing 0
and a € Z such that

f(x) =xa+ H for allx € Z,

(a,h) =1 for some h € H and

H =7 whenever a = 0.

Theorem 1.4. ([2]). |[SMHom(Z,+)| = No.

We characterized the elements of MHom((Z, 0,,), (Z, +)) and SMHom ((Z, 0,,), (Z, +))
in [4]. Also, the cardinalities of these sets were provided.

Theorem 1.5. ([4]). For a multi-valued function f from Z into itself, f €
MHom((Z, 0y,), (Z,+)) if and only if one of the following two conditions holds.

(i) There is a subsemigroup H of (Z,+) containing 0 such that

fle+nZ) =H foral x€Z and
f@)+ fly) =H forall x,y €Z.

(ii) There arel,a € Z such that 1 # 0, (ll—n) | a,
flx+nZ) =xza+IZ forall x € Z and
f@)+ fly) = f(@)+ fly) +1Z  for all x,y € Z.

Theorem 1.6. ([4]). For a multi-valued function f from Z into itself, f €
SMHom((Z, oy), (Z,+)) if and only if one of the following two conditions holds.

(i) fle+nZ) =7 foral x€Z and
f@)+ fly) =Z for all z,y € Z.

(ii) There arel,a € Z such that 1 #£ 0, l|n, (a,1) =1,
flx+nZ) =xza+IZ forall x € Z and

f@)+ fly) = flx)+ fly) +1Z for all xz,y € Z.
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Also, it was shown in [4] that MHom((Z, o,,), (Z,+)) and SMHom((Z, o,,), (Z, +))
are uncountably infinite.

Theorem 1.7. ([4]).|MHom((Z, 0,), (Z,+))|=|SMHom((Z, 0,,), (Z, +))| = 2%.

This paper is a continuation of the works mentioned above. We characterize
the elements of MHom((Z, +)), (Z, 0,,)) and SMHom((Z, +)), (Z, 0,,)). It is also
shown that these sets are finite. We show precisely from our characterizations

that [MHom((Z, +)), (Z,0,))|= 3 k and [SMHom((Z,+)), (Z, 0,))| = n.

kezt
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In the remainder of this paper, n is a positive integer and o,, is the hyper-
operation defined on Z as above.

2 Main Results

The following result was given in [5].

Lemma 2.1. ([5]). If H is a subsemigroup of (Z,+) such that HNZ" # ()
and HNZ~ # 0, then H = kZ for some k € Z \ {0}.

The following two lemmas are also needed.

Lemma 2.2. Let G be a group with identity e. If f € MHom(G, (Z,0,)), then
f(e) = kZ for some k € Z \ {0} with k|n.

Proof. Let f € MHom(G, (Z,0,)). Then
fle) = flee) = f(e) on f(e) = f(e) + f(e) + nZ
2 fle) + f(e)
which implies that f(e) is a subsemigroup of (Z,+). Let a € f(e). It is
immediate from the above equalities that a + a + nZ = 2a + nZ C f(e). It

follows that f(e) NZT # 0 and f(e) NZ~ # (. By Lemma 2.1, f(e) = kZ for
some k € Z\ {0}. This implies that

kZ = f(e) = f(e) + f(e) + nZ = kZ + kZ + nZ = kZ + nZ = (k,n)Z.
Consequently, k = +(k,n), so k|n. O

Lemma 2.3. Let G be a group with identity e and f € MHom(G,(Z,0,)).
Then for every x € G, there exists a € f(x) such that

f(@™) =ma+ f(e) for all m € Z.
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Proof. By Lemma 2.2, f(e) = kZ for some k € Z\ {0} with k|n. Let x € G
be given. Then

f@) = f(ze) = f(x) + f(e) + nZ = f(x) + kZ +nZ = f(x) +kZ, (1)
f@™)=fz7te) = fa) + fle) + nZ = f(x™) + kZ + nZ

= f(z™') +kZ. (2)

Since kZ + nZ = kZ, it follows from (1) and (2) that
f@)+nZ = f(x) + kL= f(z), 3)
f@™) +nL=fla™h) + kL= fla™), (4)

respectively. It follows from (4) that
kKZ = fle) = flza™") = f(x) + fa™") +nZ
= f(a) + (f(a™h) + nZ) = f(z) + f(z™),
so 0 =a+b for some a € f(xr) and b € f(z~!). Thus b= —a € f(z~1). Since
fl@) —aC f(z)+ f(z™") = kZ
and
a+ fa™t) C fla) + f(z7}) = kZ,
it follows that
f(x) Ca+kZand f(z™') C —a + kZ. (5)
From (1), (2) and (5), we have
fl@) CatkZC f(x) +kZ = f(x)
f@™) C—a+kZC fa™') + kZ = f(z").

Hence
f(x)=a+kZ and f(z™') = —a + kZ. (6)
Note that f(z°) = f(e) = 0a+ f(e). If m € ZT and m > 1, then
f@™) = f(@)on f(z) on - on f(x) (m copies)
= f(z) +- -+ f(z) +nZ
m copies

= (f(x) +nZ) + - - -+ (f(z) + nZ) (m copies)

= f(a) +-+ f() from (3)

=(a+kZ)+ -+ (a+kZ) from (6)

=ma + kZ

=ma+ f(e)
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and

f@™™) = fl@™")on fa™ ) op - on flz™h) (m copies)
=fl )+ + flah) +nZ
=(f@ ") +nZ)+ -+ (f(z"") +nZ) (m copies)
=fl@ )+ 4 flah) from (4)
=(—a+FkZ)+ -+ (—a+FkZ) from (6)
= —ma + kZ
= —ma + f(e).

Therefore the proof is complete. O

Theorem 2.4. For a multi-valued function f from Z into itself, f € MHom
(Z,+),(Z,0,)) if and only if there are a,k € Z such that k # 0, k|n and

fx) =za+kZ forall x € Z.

Proof. If f € MHom((Z, +), (Z, 0,,)), then by Lemma 2.3, there exists a € f(1)
such that

f(z) = za+ f(0) for all z € Z.
By Lemma 2.2, f(0) = kZ for some k € Z\ {0} with k| n. Hence
f(x) =za+ kZ for all x € Z.
For the converse, assume that there are a, k € Z such that k # 0, k|n and
f(x) =za+ kZ for all x € Z.
Since k| n, we have kZ + nZ = kZ. If x, y € Z, then

flz+y)=(x+y)a+kZ
=xa+ya+ kZ
=xa+ya+ kZ +nZ
= (za + kZ) + (ya + kZ) + nZ
= f(@) + fy) +nZ
= f(@) on f(y).

This implies that f € MHom((Z, +), (Z, 0,)). O
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Theorem 2.5. For a multi-valued function f from Z into itself, f € SMHom
(Z,+),(Z,0,)) if and only if there are a,k € Z such that k # 0, k|n,
(a,k) =1 and

fx) =za+kZ forall x € Z.

Proof. Assume that f € SMHom((Z, +), (Z, 0,)). Then f € MHom((Z, +), (Z, 0y,))
and f(Z) = Z. From Theorem 2.4, there are a,k € Z such that k # 0,k | n
and

f(@) =xza+ kZ forall x € Z.
Since f(Z) = Z, it follows that
Z=f(Z)=aZ +kZ = (a,k)Z.

This implies that (a, k) = 1.
The converse is obtained directly from Theorem 2.4 and the fact that
(a, k) =1 implies f(Z) = aZ + kZ = (a, k)Z = Z. O

For k € Z \ {0} with k|n and a € Z, let F}, , € MHom((Z,+), (Z,0,)) be
defined by

Fi o(z) =za+ KZ for all z € Z.

To determine the number of the elements in MHom((Z, +), (Z, 0,,)) and SMHom
((Z,+),(Z,o0,)), the following lemma is needed.

Lemma 2.6. Let k, 1 € Z\ {0} withk|n and l|n and a, b € Z. Then Fy o=
Fip if and only if | = £k and b = a mod |k|.

Proof. Assume that Fj, o = F; 3. Then

za+ kZ = Fy, o(x) = Fip(x) = xb+1Z for all z € Z.

In particular, kZ = Oa + kZ = 0b + [Z = lZ which implies that [ = £k. Thus
kZ =17 = |k|Z. Hence

a+|k|Z=1a+kZ =1b+1Z = b + |k|Z,

so b—a € |k|Z. Hence b =a mod |k|.
Conversely, assume that | = £k and b = ¢ mod |k|. Then IZ = kZ and
b—ac€|k|Z, so

for all x € Z,2b— za = x(b — a) € z(|k|Z) C |k|Z = KZ.
It follows that
forallz € Z, Fyy o(v) = za+ kZ = b+ kZ = xb+ lZ = F} o ().
Therefore we have Fj, , = Fp. O
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Theorem 2.7.|MHom((Z, +),(Z, 0y,))] :Z k and |SMHom((Z, +).(Z, 0y,))| = n.
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Proof. From Theorem 2.4 and Theorem 2.5, we have
MHom((Z, +), (Z,0,)) = {Fi,a | k € Z\ {0}, a € Z and k|n} (1)

and

SMHom((Z, +), (Z,0,)) = {Fk,a | k € Z\ {0}, a € Z, k| n and
(a,k) =1} (2)

respectively. Thus (1), (2) and Lemma 2.6 yield the following equalities

MHom((Z, +), (Z,0,)) = {Fra | k€ Z*, k|nand a € {0, 1,..., k —1}}

(3)
and
SMHom((Z, +), (Z,0,)) = {Fka | k€ ZT, k|n,a € {0,1,..., k—1}
and (a, k) =1}. (4)
By (3), (4) and Lemma 2.6, we have
IMHom((Z, +), (Z,0n))| = > _ k,
kez*
k|n
O
[SMHom((Z, +), (Z, 0n))| = D (k) = n.
kke|Z+

Example. If p is a prime and m € ZT, then by Theorem 2.7,

pm+1 _1
IMHom((Z, +), (Z,0pm))| =14+p+---+p" = —,

p—1
|SMHOH1((Z, +)a (Za Op'm,))| = pm.

It follows that the number of nonsurjective multihomomorphisms from (Z, +)

into (Z,opm) is 1+ p+- o pl(= p:T_ll)
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