TOTAL COLORINGS OF SOME CLASSES OF GLUED GRAPHS

W. Charoenpanitseri ${ }^{\dagger}$, W. Hemakul ${ }^{\ddagger}$
and C. Uiyyasathian*
Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
${ }^{\dagger}$ idolhere@hotmail.com, ${ }^{\dagger}$ wanida.H@chula.ac.th, ${ }^{*}$ Chariya.U@chula.ac.th

Abstract

The total chromatic number $\chi^{\prime \prime}(G)$ of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no incident or adjacent pairs of elements receive the same color. The Total Coloring Conjecture states that for every simple graph G, $\chi^{\prime \prime}(G) \leq \Delta(G)+2$. A graph G is of type 1 if $\chi^{\prime \prime}(G)=\Delta(G)+1$ and of type 2 if $\chi^{\prime \prime}(G)=\Delta(G)+2$. A glued graph results from combining two vertex-disjoint graphs by identifying connected isomorphic subgraphs of both graphs.

We prove that the glued graphs of cycles, bipartite graphs and complete graphs satisfy the Total Coloring Conjecture. Moreover, we investigate necessary and sufficient conditions for being either of type 1 or type 2 of the glued graphs of cycles, trees and complete graphs.

1 Introduction

A k-total coloring of a graph G is a coloring $f: V(G) \cup E(G) \rightarrow S$ where $S=\{1,2, \ldots, k\}$. A k-total coloring is proper if incident edges have different colors, adjacent vertices have different colors and edges and its endpoints have different colors. A graph is k-total colorable if it has a proper k-total coloring. The total chromatic number $\chi^{\prime \prime}(G)$ of a graph G is the least positive integer k such that G is k-total colorable.

[^0]

Figure 1.1: A 4-total colorable graph

Since a vertex and all edges incident to it cannot be assigned the same color, $\chi^{\prime \prime}(G) \geq \Delta(G)+1$ for any graph G. The Total Coloring Conjecture, introduced independently by Behzad[1] and Vizing[8], states that for every graph $G, \chi^{\prime \prime}(G) \leq \Delta(G)+2$. A graph G is of type 1 if $\chi^{\prime \prime}(G)=\Delta(G)+1$ and type 2 if $\chi^{\prime \prime}(G)=\Delta(G)+2$.

Let G_{1} and G_{2} be any two graphs with distinct vertex sets. Let H_{1} and H_{2} be nontrivial connected subgraphs of G_{1} and G_{2}, respectively, such that $H_{1} \cong H_{2}$ with isomorphism f, then the glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f, denoted by $G_{H_{1} \bowtie f H_{2}}$, is the graph that results from combining G_{1} with G_{2} by identifying H_{1} and H_{2} with respect to the isomorphism f between H_{1} and H_{2}. Let H be the copy of H_{1} and H_{2} in the glued graph. We refer to H as the clone of the glued graph.

The glued graph of G_{1} and G_{2} at the clone H, written $G_{1} \oplus G_{2}$, means that there exist a subgraph H_{1} of G_{1} and a subgraph H_{2} of G_{2} and an isomorphism f between H_{1} and H_{2} such that $G_{H_{1} \triangleq f H_{2}}^{G_{1} \bowtie G_{2}}$ and H is the copy of H_{1} and H_{2} in the resulting graph. We denote $G_{1} \triangleleft G_{2}$ an arbitrary graph resulting from gluing graphs G_{1} and G_{2} at any isomorphic subgraph $H_{1} \cong H_{2}$ with respect to any of their isomorphism.

The vertex and edge colorings of glued graphs were investigated in [5] and [6]. More background regarding glued graphs can be explored in Promsakon's thesis $[7]$. Here we study the total colorings of glued graphs. In general, a glued graph of simple graphs is not necessary to be a simple graph. In this paper, we consider only simple connected glued graphs. We focus on four classes of graphs, namely, cycles, bipartite graphs, trees and complete graphs. We prove that the glued graphs of cycles, bipartite graphs and complete graphs satisfy the Total Colorings Conjecture. Moreover, we obtain necessary and sufficient conditions for being either of type 1 or type 2 of glued graphs of cycles, trees and complete graphs.

2 Main Results

2.1 The glued graphs of cycles

The first result in this section is in Theorem 2.3. We determine the total chromatic number of a glued graph of cycles $C_{m} \triangleleft C_{n}$ by using Theorem 2.1 and Theorem 2.2.
Theorem 2.1. [10] $\chi^{\prime \prime}\left(C_{n}\right)= \begin{cases}3 & \text { if } n \equiv 0(\bmod 3), \\ 4 & \text { otherwise. }\end{cases}$
Theorem 2.2. [4] For a graph G, $\chi^{\prime \prime}(G) \leq\left\lfloor\frac{3}{2} \Delta(G)\right\rfloor$.
Theorem 2.3. For a glued graph $C_{m} \triangleleft C_{n}$,
$\chi^{\prime \prime}\left(C_{m} \triangleleft C_{n}\right)= \begin{cases}3 & \text { if } C_{m} \boxtimes C_{n} \text { is a cycle and } m=n \equiv 0(\bmod 3), \\ 4 & \text { otherwise } .\end{cases}$
Proof. A glued graph of cycles $C_{m} \boxtimes C_{n}$ is a cycle only when $C_{m} \boxtimes C_{n} \cong C_{m} \cong$ C_{n}. By Theorem 2.1, if $m=n \equiv 0(\bmod 3)$, we have $\chi^{\prime \prime}\left(C_{m} \triangleleft C_{n}\right)=3$. Otherwise, $\chi^{\prime \prime}\left(C_{m} \triangleleft C_{n}\right)=4$.

Assume that $C_{m} \triangleleft C_{n}$ is not a cycle. Then $\Delta\left(C_{m} \boxtimes C_{n}\right)=3$. Thus $\chi^{\prime \prime}\left(C_{m} \triangleleft C_{n}\right) \geq$ $\Delta\left(C_{m} \boxtimes C_{n}\right)+1=4$. By Theorem 2.2, $\chi^{\prime \prime}\left(C_{m} \triangleleft C_{n}\right) \leq\left\lfloor\frac{3}{2} \Delta\left(C_{m} \triangleleft C_{n}\right)\right\rfloor \leq$ $\left\lfloor\frac{3}{2} \times 3\right\rfloor=4$. Hence $\chi^{\prime \prime}\left(C_{m} \triangleleft C_{n}\right)=4$.

Corollary 2.4. Any glued graph of cycles satisfies the Total Coloring Conjecture.

Proof. By Theorem 2.3, $\chi^{\prime \prime}\left(C_{m} \boxtimes C_{n}\right) \leq 4$. Since $\Delta\left(C_{m} \boxtimes C_{n}\right)+2 \geq 4$, we get $\chi^{\prime \prime}\left(C_{m} \boxtimes C_{n}\right) \leq \Delta\left(C_{m} \triangleleft C_{n}\right)+2$.

Theorem 2.5. If the glued graph $C_{m} \triangleleft C_{n}$ is a cycle and $m=n \equiv 1,2(\bmod 3)$ then $C_{m} \boxtimes C_{n}$ is of type 2. Otherwise, $C_{m} \boxtimes C_{n}$ is of type 1 .

Proof. Case 1. $C_{m} \triangleleft C_{n}$ is not a cycle. Then $\Delta\left(C_{m} \triangleleft C_{n}\right)=3$. By Theorem 2.3, $\chi^{\prime \prime}\left(C_{m} \triangleleft C_{n}\right)=4=\Delta\left(C_{m} \boxtimes C_{n}\right)+1$. Hence, $C_{m} \triangleleft C_{n}$ is of type 1 .
Case 2. $C_{m} \triangleleft C_{n}$ is a cycle. Then $m=n$ and $C_{m} \triangleleft C_{n} \cong C_{m} \cong C_{n}$. If $m=n \equiv 0(\bmod 3)$, by Theorem 2.1, we get $\chi^{\prime \prime}\left(C_{m} \triangleleft C_{n}\right)=3=\Delta\left(C_{m} \triangleleft C_{n}\right)+1$. Thus $C_{m} \triangleleft C_{n}$ is of type 1 . If $m=n \equiv 1,2(\bmod 3)$, by Theorem 2.1, $\chi^{\prime \prime}\left(C_{m} \triangleleft C_{n}\right)=4=\Delta\left(C_{m} \boxtimes C_{n}\right)+2$.

2.2 The glued graphs of bipartite graphs and trees

Proposition 2.6. [1] A bipartite graph satisfies the Total Coloring Conjecture.
Proposition 2.7. [5] If G_{1} and G_{2} are graphs, then
(a) $G_{1} \triangleleft G_{2}$ is bipartite if and only if G_{1} and G_{2} are bipartite,
(b) $G_{1} \triangleleft G_{2}$ is tree if and only if G_{1} and G_{2} are trees.

Corollary 2.8. Any glued graph of bipartite graphs satisfies the Total Coloring Conjecture.

Proof. It follows immediately from Proposition 2.6 and Proposition 2.7.
We know by Proposition 2.7 that the glued graph of trees is a tree. Since a tree is bipartite, any glued graph of trees satisfies the Total Coloring Conjecture. A necessary and sufficient condition to be either of type 1 or type 2 of the glued graph of trees is obtained next.
Theorem 2.9. For a tree $T \neq P_{2}, \chi^{\prime \prime}(T)=\Delta(T)+1$.
Proof. If T has only one vertex, then $\chi^{\prime \prime}(T)=1=\Delta(T)+1$. If T is P_{2}, then $\chi^{\prime \prime}(T)=3=\Delta(T)+2$. Assume that T is a tree with n vertices, where $n \geq 3$. Then $\Delta(T) \geq 2$. We will proceed by induction on n.
When $n=3$, we get $T \cong P_{3}$. It is easy to see that $\chi^{\prime \prime}(T)=3=\Delta(T)+1$.
Assume that $\chi^{\prime \prime}(T)=\Delta(T)+1$ for all T with k vertices where $k \geq 3$. Let T be a tree with $k+1$ vertices where $k \geq 3$ and $m=\Delta(T)+1$. It suffices to show that there is a proper total coloring from $V(T) \cup E(T)$ to $\{1,2, \ldots, m\}$. Since T is a tree, T has a vertex with degree 1 , say v. Let u be a vertex which is adjacent to v.
Case 1. u is a vertex with maximum degree in $T-v$. Then $\Delta(T-v)+1=$ $\Delta(T)=m-1$. Since $T-v$ is a tree with k vertices where $k \geq 3$, by induction hypothesis, $\chi^{\prime \prime}(T-v) \leq \Delta(T-v)+1=m-1$. Thus we have a proper total coloring $f: V(T-v) \cup E(T-v) \rightarrow\{1,2, \ldots, m-1\}$. Since $m-1=\Delta(T) \geq 2$, there is a color r which differs from $f(u)$. Let $f^{\prime}: V(T) \cup E(T) \rightarrow\{1,2, \ldots, m\}$ be a total coloring of T defined by

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \in V(T-v) \cup E(T-v) \\ m & \text { if } x=u v \\ r & \text { if } x=v\end{cases}
$$

Then f^{\prime} is a proper total coloring from $V(T) \cup E(T)$ to $\{1,2, \ldots, m\}$.
Case 2. u is not a vertex with maximum degree in $T-v$. Consequently $\Delta(T-v)+1=\Delta(T)+1=m$. Since $T-v$ is a tree with k vertices where $k \geq 3$, by induction hypothesis, $\chi^{\prime \prime}(T-v) \leq \Delta(T-v)+1=m$. Then there is a proper total coloring $f: V(T-v) \cup E(T-v) \rightarrow\{1,2, \ldots, m\}$. Since $d_{T-v}(u)+1 \leq \Delta(T-v)=\Delta(T)=m-1$, at most $m-1$ colors are used to color u and edges incident to u in $T-v$, so we have a remaining color in $\{1,2, \ldots, m\}$, say r. Since $m=\Delta(T)+1 \geq 2+1=3$, there is a color which differs from $f(u)$ and r, say r^{\prime}. Let $f^{\prime}: V(T) \cup E(T) \rightarrow\{1,2, \ldots, m\}$ be a total coloring of T defined by

$$
f^{\prime}(x)= \begin{cases}f(x) & \text { if } x \in V(T-v) \cup E(T-v) \\ r & \text { if } x=u v \\ r^{\prime} & \text { if } x=v\end{cases}
$$

Then f^{\prime} is a proper total coloring from $V(T) \cup E(T)$ to $\{1,2, \ldots, m\}$. Hence $\chi^{\prime \prime}(T) \leq m=\Delta(T)+1$. Since $\chi^{\prime \prime}(T) \geq \Delta(T)+1$, we get $\chi^{\prime \prime}(T)=\Delta(T)+1$.

Corollary 2.10. If T_{1} and T_{2} are trees, then $T_{1} \triangleleft T_{2}$ is of type 1 unless $T_{1} \cong$ $T_{2} \cong P_{2}$.

Proof. By Proposition 2.7, $T_{1} \triangleleft T_{2}$ is a tree. By Theorem 2.9, we obtain the desired result.

Corollary 2.8 guarantees that any glued graph of bipartite graphs satisfies the Total Coloring Conjecture. It is an open problem to find a necessary and sufficient condition to be of type 1 or type 2 of any glued graph of bipartite graphs.

2.3 The glued graphs of complete graphs

The total chromatic number and the maximum degree of complete graphs in Theorem 2.11 and Lemma 2.12 yield a proof in Theorem 2.13 that any glued graph of complete graphs satisfies the Total Coloring Conjecture.

Theorem 2.11. [2] $\chi^{\prime \prime}\left(K_{n}\right)= \begin{cases}n & \text { if } n \text { is odd, } \\ n+1 & \text { if } n \text { is even. }\end{cases}$
Lemma 2.12. If a glued graph of complete graphs $K_{m} \boxtimes K_{n}$ is a simple graph, then $\Delta\left(K_{m} \boxtimes K_{n}\right)=n\left(K_{m} \boxtimes K_{n}\right)-1$.

Proof. Assume that $K_{m} \triangleleft K_{n}$ is a simple graph. Then the clone of $K_{m} \triangleleft K_{n}$ is a complete graph, say K_{r} for some r. Each vertex in the clone of $K_{m_{m}} \underset{K_{r}}{\triangleleft} K_{n}$ gives the maximum degree. Hence $\Delta\left(K_{m_{r}} \triangleleft K_{n}\right)=(m-1)+(n-1)-(r-1)=$ $m+n-r-1$. Moreover, $n\left(K_{m} \boxtimes K_{n}\right)=n\left(K_{m}\right)+n\left(K_{n}\right)-n\left(K_{r}\right)=m+n-r$.

Theorem 2.13. Any glued graph of complete graphs satisfies the Total Coloring Conjecture.

Proof. Let $k=n\left(K_{m} \triangleleft K_{n}\right)$. Then

$$
\begin{align*}
\chi^{\prime \prime}\left(K_{m} \triangleleft K_{n}\right) & \leq \chi^{\prime \prime}\left(K_{k}\right), & & \text { (since } \left.K_{m} \triangleleft K_{n} \text { is a subgraph of } K_{k}\right) \\
& \leq \Delta\left(K_{k}\right)+2, & & (\text { by Theorem 2.11) } \\
& =n\left(K_{m} \triangleleft K_{n}\right)-1+2, & & \\
& =\Delta\left(K_{m} \triangleleft K_{n}\right)+2 . & & \text { (by Lemma 2.12) } \tag{byLemma2.12}
\end{align*}
$$

Now we look for a necessary and sufficient condition to be either of type 1 or type 2 for any glued graph of complete graphs. Theorem 2.16 gives this result by using Theorem 2.14 and Lemma 2.15.

A matching in a graph G is a set of edges with no shared endpoints. The maximum size of matching of a graph G is denoted by $\alpha^{\prime}(G)$. The complement \bar{G} of a graph G is the simple graph with vertex set $V(G)$ defined by $u v \in E(\bar{G})$ if and only if $u v \notin E(G)$.

Theorem 2.14. [3] Suppose that G is a graph of order $2 k$ and $\Delta(G)=2 k-1$. We have $\chi^{\prime \prime}(G)=2 k$ if and only if $e(\bar{G})+\alpha^{\prime}(\bar{G}) \geq k$.

Lemma 2.15. For $m, n, r \in \mathbb{N}$ such that $n>r$
$m<r+\frac{2 r-n}{2 n-2 r-1}$ if and only if $(m-r)(n-r)+(n-r)<\frac{m+n-r}{2}$.
Proof. Let $m, n, r \in \mathbb{N}$ such that $n>r$. Then

$$
\begin{aligned}
m<r+\frac{2 r-n}{2 n-2 r-1} & \Leftrightarrow m<\frac{r(2 n-2 r-1)+(2 r-n)}{2 n-2 r-1} \\
& \Leftrightarrow m<\frac{2 r(n-r)-(n-r)}{2 n-2 r-1} \\
& \Leftrightarrow m<\frac{n-r}{2 n-2 r-1}(2 r-1) \\
& \Leftrightarrow(2 n-2 r-1) m<(n-r)(2 r-1) \\
& \Leftrightarrow 2 m(n-r)-m<(n-r)(2 r-1) \\
& \Leftrightarrow(n-r)(2 m-2 r+1)<m \\
& \Leftrightarrow(n-r)(2 m-2 r+1)+n-r<m+n-r \\
& \Leftrightarrow 2(n-r)(m-r+1)<m+n-r \\
& \Leftrightarrow(n-r)(m-r)+(n-r)<\frac{m+n-r}{2} .
\end{aligned}
$$

Theorem 2.16. Let $m \geq n>r$. If $m+n-r$ is even and $m<r+\frac{2 r-n}{2 n-2 r-1}$, then $K_{m} \stackrel{\rightharpoonup}{K_{r}}$. K_{n} is of type 2. Otherwise, $K_{m_{K_{r}}}^{\triangleleft} K_{n}$ is of type 1 .

Proof. Let $m \geq n>r$ and $G=K_{K_{r}} \underset{K_{r}}{ } K_{n}$. Case 1. $m+n-r$ is odd. By Theorem 2.11, $\chi^{\prime \prime}\left(K_{m+n-r}\right)=m+n-r=\Delta\left(K_{m+n-r}\right)+1$. Since G is a subgraph of K_{m+n-r} and $\Delta(G)=\Delta\left(K_{m+n-r}\right)$, we get $\chi^{\prime \prime}(G) \leq \chi^{\prime \prime}\left(K_{m+n-r}\right)=$ $\Delta\left(K_{m+n-r}\right)+1=\Delta(G)+1$. Thus G is of type 1 .
Case 2. $m+n-r$ is even. By Lemma 2.12, $\Delta(G)=n(G)-1=m+n-r-1$. The complement of $G, \overline{K_{m_{r}} \triangleright K_{n}}$, has only one nontrivial component, $K_{m-r, n-r}$. Then $e(\bar{G})=(m-r)(n-r)$. Since $m \geq n$, we get $\alpha^{\prime}(\bar{G})=n-r$. Thus
$e(\bar{G})+\alpha^{\prime}(\bar{G})=(m-r)(n-r)+(n-r)$. If $m \geq r+\frac{2 r-n}{2 n-2 r-1}$, by Lemma 2.15, $e(\bar{G})+\alpha^{\prime}(\bar{G})=(m-r)(n-r)+(n-r) \geq \frac{m+n-r}{2}$. Consequently, by Theorem 2.14, G is of type 1 . If $m<r+\frac{2 r-n}{2 n-2 r-1}$, by Lemma 2.15, $e(\bar{G})+\alpha^{\prime}(\bar{G})=$ $(m-r)(n-r)+(n-r)<\frac{m+n-r}{2}$. Hence, by Theorem 2.14, $\chi^{\prime \prime}(G) \neq n+m-r$. Since $n+m-r=n(G)=\Delta(G)+1$, we have $\chi^{\prime \prime}(G) \neq \Delta(G)+1$. By Theorem 2.13, $\chi^{\prime \prime}(G) \leq \Delta(G)+2$. Therefore $\chi^{\prime \prime}(G)=\Delta(G)+2$, and so, G is of type 2 .
Corollary 2.17. For $m \geq n>r$,
(a) $K_{m} \bowtie K_{K_{r}}$ is of type 1 if and only if $m+n-r$ is odd or $m \geq r+\frac{2 r-n}{2 n-2 r-1}$,
(b) $K_{m} \stackrel{\triangleright}{K_{r}} K_{n}$ is of type 2 if and only if $m+n-r$ is even and $m<r+\frac{2 r-n}{2 n-2 r-1}$.

Proof. It follows immediately from Theorem 2.13 and Theorem 2.16.

References

[1] M. Behzad, "The total chromatic number of a graph", Combinatorial Mathematics and its Applications, Proceedings of the Conference Oxford Academic Press N.Y. (1971), 1-9.
[2] M. Bezhad, G. Chartrand and J. K. Cooper, The colors numbers of complete graphs, J. London Math. Soc., 42 (1967), 225-228.
[3] A. J. W. Hilton, A total chromatic number analogue of Plantholt's theorem, Discrete Math., 79 (1989), 169-175.
[4] A. V. Kostochka and N. P. Mazurova, An inequality in the theory of graph coloring (in Russian), Metody Diskret. Analiz., 30 (1977), 23-29.
[5] C. Promsakon and C. Uiyyasathian, Chromatic numbers of glued graphs, Thai J. Math. (special issued), 4 (2006), 75-81.
[6] C. Promsakon and C. Uiyyasathian, Edge-chromatic numbers of glued graphs, Thai J. Math., 4 (2006), 395-401.
[7] C. Promsakon, "Colorability of Glued Graphs", Master Degree Thesis, Chulalongkorn University (2006).
[8] V. G. Vizing, On evaluation of chromatic number of a p-graph (in Russian), Discrete Analysis, Collection of works of Sobolev Institute of Mathematics SB RAS, 3 (1964), 3-24.
[9] D. West, "Introduction to Graph Theory", Prentice Hall, New Jersey (2001).
[10] H. P. Yap, Total Coloring of Graphs, Lecture Note in Mathematics, Vol. 1623, Springer, Berlin (1996).

[^0]: * corresponding author

 Key words: total coloring, the total chromatic number, glued graph 2000 AMS Mathematics Subject Classification: 05C15

