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Abstract

The total chromatic number χ′′(G) of a graph G is the minimum
number of colors needed to color the elements (vertices and edges) of G
such that no incident or adjacent pairs of elements receive the same color.
The Total Coloring Conjecture states that for every simple graph G,
χ′′(G) ≤ Δ(G) + 2. A graph G is of type 1 if χ′′(G) = Δ(G) + 1 and of
type 2 if χ′′(G) = Δ(G) + 2. A glued graph results from combining two
vertex-disjoint graphs by identifying connected isomorphic subgraphs of
both graphs.

We prove that the glued graphs of cycles, bipartite graphs and com-
plete graphs satisfy the Total Coloring Conjecture. Moreover, we inves-
tigate necessary and sufficient conditions for being either of type 1 or
type 2 of the glued graphs of cycles, trees and complete graphs.

1 Introduction

A k-total coloring of a graph G is a coloring f : V (G) ∪ E(G) → S where
S = {1, 2, . . . , k}. A k-total coloring is proper if incident edges have different
colors, adjacent vertices have different colors and edges and its endpoints have
different colors. A graph is k-total colorable if it has a proper k-total coloring.
The total chromatic number χ′′(G) of a graph G is the least positive integer k
such that G is k-total colorable.
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Figure 1.1: A 4-total colorable graph

Since a vertex and all edges incident to it cannot be assigned the same
color, χ′′(G) ≥ Δ(G) + 1 for any graph G. The Total Coloring Conjecture,
introduced independently by Behzad[1] and Vizing[8], states that for every
graph G, χ′′(G) ≤ Δ(G)+ 2. A graph G is of type 1 if χ′′(G) = Δ(G)+ 1 and
type 2 if χ′′(G) = Δ(G) + 2.

Let G1 and G2 be any two graphs with distinct vertex sets. Let H1 and
H2 be nontrivial connected subgraphs of G1 and G2, respectively, such that
H1

∼= H2 with isomorphism f , then the glued graph of G1 and G2 at H1 and
H2 with respect to f , denoted by G1��G2

H1∼=fH2
, is the graph that results from com-

bining G1 with G2 by identifying H1 and H2 with respect to the isomorphism
f between H1 and H2. Let H be the copy of H1 and H2 in the glued graph.
We refer to H as the clone of the glued graph.

The glued graph of G1 and G2 at the clone H , written G1��G2
H

, means that
there exist a subgraph H1 of G1 and a subgraph H2 of G2 and an isomorphism f

between H1 and H2 such that G1��G2
H1∼=fH2

and H is the copy of H1 and H2 in the
resulting graph. We denote G1��G2 an arbitrary graph resulting from gluing
graphs G1 and G2 at any isomorphic subgraph H1

∼= H2 with respect to any
of their isomorphism.

The vertex and edge colorings of glued graphs were investigated in [5]
and [6]. More background regarding glued graphs can be explored in Prom-
sakon’s thesis [7]. Here we study the total colorings of glued graphs. In general,
a glued graph of simple graphs is not necessary to be a simple graph. In this pa-
per, we consider only simple connected glued graphs. We focus on four classes
of graphs, namely, cycles, bipartite graphs, trees and complete graphs. We
prove that the glued graphs of cycles, bipartite graphs and complete graphs
satisfy the Total Colorings Conjecture. Moreover, we obtain necessary and suf-
ficient conditions for being either of type 1 or type 2 of glued graphs of cycles,
trees and complete graphs.
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2 Main Results

2.1 The glued graphs of cycles

The first result in this section is in Theorem 2.3. We determine the total
chromatic number of a glued graph of cycles Cm��Cn by using Theorem 2.1
and Theorem 2.2.

Theorem 2.1. [10] χ′′(Cn) =

{
3 if n ≡ 0 (mod 3),
4 otherwise.

Theorem 2.2. [4] For a graph G, χ′′(G) ≤ �3
2Δ(G)	.

Theorem 2.3. For a glued graph Cm��Cn,

χ′′(Cm��Cn) =

{
3 if Cm��Cn is a cycle and m = n ≡ 0 (mod 3),
4 otherwise.

Proof. A glued graph of cycles Cm��Cn is a cycle only when Cm��Cn
∼= Cm

∼=
Cn. By Theorem 2.1, if m = n ≡ 0 (mod 3), we have χ′′(Cm��Cn) = 3.
Otherwise, χ′′(Cm��Cn) = 4.

Assume that Cm��Cn is not a cycle. Then Δ(Cm��Cn) = 3. Thus χ′′(Cm��Cn) ≥
Δ(Cm��Cn) + 1 = 4. By Theorem 2.2, χ′′(Cm��Cn) ≤ �3

2Δ(Cm��Cn)	 ≤
�3

2 × 3	 = 4. Hence χ′′(Cm��Cn) = 4.

Corollary 2.4. Any glued graph of cycles satisfies the Total Coloring Conjec-
ture.

Proof. By Theorem 2.3, χ′′(Cm��Cn) ≤ 4. Since Δ(Cm��Cn) + 2 ≥ 4, we get
χ′′(Cm��Cn) ≤ Δ(Cm��Cn) + 2.

Theorem 2.5. If the glued graph Cm��Cn is a cycle and m = n ≡ 1, 2 (mod 3)
then Cm��Cn is of type 2. Otherwise, Cm��Cn is of type 1.

Proof. Case 1. Cm��Cn is not a cycle. Then Δ(Cm��Cn) = 3. By Theo-
rem 2.3, χ′′(Cm��Cn) = 4 = Δ(Cm��Cn) + 1. Hence, Cm��Cn is of type 1.
Case 2. Cm��Cn is a cycle. Then m = n and Cm��Cn

∼= Cm
∼= Cn. If

m = n ≡ 0 (mod 3), by Theorem 2.1, we get χ′′(Cm��Cn) = 3 = Δ(Cm��Cn) + 1.
Thus Cm��Cn is of type 1. If m = n ≡ 1, 2 (mod 3), by Theorem 2.1,
χ′′(Cm��Cn) = 4 = Δ(Cm��Cn) + 2.

2.2 The glued graphs of bipartite graphs and trees

Proposition 2.6. [1] A bipartite graph satisfies the Total Coloring Conjecture.

Proposition 2.7. [5] If G1 and G2 are graphs, then
(a) G1��G2 is bipartite if and only if G1 and G2 are bipartite,
(b) G1��G2 is tree if and only if G1 and G2 are trees.



164 Total Colorings of Some Classes of Glued Graphs

Corollary 2.8. Any glued graph of bipartite graphs satisfies the Total Coloring
Conjecture.

Proof. It follows immediately from Proposition 2.6 and Proposition 2.7.

We know by Proposition 2.7 that the glued graph of trees is a tree. Since a
tree is bipartite, any glued graph of trees satisfies the Total Coloring Conjec-
ture. A necessary and sufficient condition to be either of type 1 or type 2 of
the glued graph of trees is obtained next.

Theorem 2.9. For a tree T 
= P2, χ′′(T ) = Δ(T ) + 1.

Proof. If T has only one vertex, then χ′′(T ) = 1 = Δ(T ) + 1. If T is P2, then
χ′′(T ) = 3 = Δ(T ) + 2. Assume that T is a tree with n vertices, where n ≥ 3.
Then Δ(T ) ≥ 2. We will proceed by induction on n.
When n = 3, we get T ∼= P3. It is easy to see that χ′′(T ) = 3 = Δ(T ) + 1.
Assume that χ′′(T ) = Δ(T )+1 for all T with k vertices where k ≥ 3. Let T be
a tree with k + 1 vertices where k ≥ 3 and m = Δ(T ) + 1. It suffices to show
that there is a proper total coloring from V (T ) ∪ E(T ) to {1, 2, ...,m}. Since
T is a tree, T has a vertex with degree 1, say v. Let u be a vertex which is
adjacent to v.
Case 1. u is a vertex with maximum degree in T − v. Then Δ(T − v) + 1 =
Δ(T ) = m− 1. Since T − v is a tree with k vertices where k ≥ 3, by induction
hypothesis, χ′′(T − v) ≤ Δ(T − v) + 1 = m − 1. Thus we have a proper total
coloring f : V (T − v) ∪E(T − v) → {1, 2, ...,m− 1}. Since m− 1 = Δ(T ) ≥ 2,
there is a color r which differs from f(u). Let f ′ : V (T )∪E(T ) → {1, 2, ..., m}
be a total coloring of T defined by

f ′(x) =

⎧⎪⎨
⎪⎩

f(x) if x ∈ V (T − v) ∪ E(T − v),
m if x = uv,

r if x = v.

Then f ′ is a proper total coloring from V (T ) ∪ E(T ) to {1, 2, ...,m}.
Case 2. u is not a vertex with maximum degree in T − v. Consequently
Δ(T − v) + 1 = Δ(T ) + 1 = m. Since T − v is a tree with k vertices where
k ≥ 3, by induction hypothesis, χ′′(T − v) ≤ Δ(T − v) + 1 = m. Then there
is a proper total coloring f : V (T − v) ∪ E(T − v) → {1, 2, ...,m}. Since
dT−v(u) + 1 ≤ Δ(T − v) = Δ(T ) = m − 1, at most m − 1 colors are used
to color u and edges incident to u in T − v, so we have a remaining color in
{1, 2, ..., m}, say r. Since m = Δ(T ) + 1 ≥ 2 + 1 = 3, there is a color which
differs from f(u) and r, say r′. Let f ′ : V (T ) ∪E(T ) → {1, 2, ...,m} be a total
coloring of T defined by

f ′(x) =

⎧⎪⎨
⎪⎩

f(x) if x ∈ V (T − v) ∪ E(T − v),
r if x = uv,

r′ if x = v.
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Then f ′ is a proper total coloring from V (T ) ∪ E(T ) to {1, 2, ..., m}. Hence
χ′′(T ) ≤ m = Δ(T )+1. Since χ′′(T ) ≥ Δ(T )+1, we get χ′′(T ) = Δ(T )+1.

Corollary 2.10. If T1 and T2 are trees, then T1��T2 is of type 1 unless T1
∼=

T2
∼= P2.

Proof. By Proposition 2.7, T1��T2 is a tree. By Theorem 2.9, we obtain the
desired result.

Corollary 2.8 guarantees that any glued graph of bipartite graphs satisfies
the Total Coloring Conjecture. It is an open problem to find a necessary and
sufficient condition to be of type 1 or type 2 of any glued graph of bipartite
graphs.

2.3 The glued graphs of complete graphs

The total chromatic number and the maximum degree of complete graphs in
Theorem 2.11 and Lemma 2.12 yield a proof in Theorem 2.13 that any glued
graph of complete graphs satisfies the Total Coloring Conjecture.

Theorem 2.11. [2] χ′′(Kn) =

{
n if n is odd,

n + 1 if n is even.

Lemma 2.12. If a glued graph of complete graphs Km��Kn is a simple graph,
then Δ(Km��Kn) = n(Km��Kn) − 1.

Proof. Assume that Km��Kn is a simple graph. Then the clone of Km��Kn

is a complete graph, say Kr for some r. Each vertex in the clone of Km��Kn
Kr

gives the maximum degree. Hence Δ(Km��Kn
Kr

) = (m−1)+(n−1)− (r−1) =

m+n− r− 1. Moreover, n(Km��Kn
Kr

) = n(Km)+n(Kn)−n(Kr) = m+n− r.

Therefore Δ(Km��Kn
Kr

) = n(Km��Kn
Kr

) − 1.

Theorem 2.13. Any glued graph of complete graphs satisfies the Total Color-
ing Conjecture.

Proof. Let k = n(Km��Kn). Then

χ′′(Km��Kn) ≤ χ′′(Kk), (since Km��Kn is a subgraph of Kk)
≤ Δ(Kk) + 2, (by Theorem 2.11)
= n(Km��Kn) − 1 + 2,

= Δ(Km��Kn) + 2. (by Lemma 2.12)
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Now we look for a necessary and sufficient condition to be either of type 1
or type 2 for any glued graph of complete graphs. Theorem 2.16 gives this
result by using Theorem 2.14 and Lemma 2.15.

A matching in a graph G is a set of edges with no shared endpoints. The
maximum size of matching of a graph G is denoted by α′(G). The complement
G of a graph G is the simple graph with vertex set V (G) defined by uv ∈ E(G)
if and only if uv 
∈ E(G).

Theorem 2.14. [3] Suppose that G is a graph of order 2k and Δ(G) = 2k−1.
We have χ′′(G) = 2k if and only if e(G) + α′(G) ≥ k.

Lemma 2.15. For m, n, r ∈ N such that n > r
m < r + 2r−n

2n−2r−1 if and only if (m − r)(n − r) + (n − r) < m+n−r
2 .

Proof. Let m, n, r ∈ N such that n > r. Then

m < r +
2r − n

2n − 2r − 1
⇔ m <

r(2n − 2r − 1) + (2r − n)
2n − 2r − 1

⇔ m <
2r(n − r) − (n − r)

2n− 2r − 1

⇔ m <
n − r

2n − 2r − 1
(2r − 1)

⇔ (2n − 2r − 1)m < (n − r)(2r − 1)
⇔ 2m(n − r) − m < (n − r)(2r − 1)
⇔ (n − r)(2m − 2r + 1) < m

⇔ (n − r)(2m − 2r + 1) + n − r < m + n − r

⇔ 2(n − r)(m − r + 1) < m + n − r

⇔ (n − r)(m − r) + (n − r) <
m + n − r

2
.

Theorem 2.16. Let m ≥ n > r. If m + n − r is even and m < r + 2r−n
2n−2r−1

,

then Km��Kn
Kr

is of type 2. Otherwise, Km��Kn
Kr

is of type 1.

Proof. Let m ≥ n > r and G = Km��Kn
Kr

. Case 1. m + n − r is odd. By
Theorem 2.11, χ′′(Km+n−r) = m + n− r = Δ(Km+n−r) +1. Since G is a sub-
graph of Km+n−r and Δ(G) = Δ(Km+n−r), we get χ′′(G) ≤ χ′′(Km+n−r) =
Δ(Km+n−r) + 1 = Δ(G) + 1. Thus G is of type 1.

Case 2. m+ n− r is even. By Lemma 2.12, Δ(G) = n(G)− 1 = m+n− r− 1.

The complement of G, Km��Kn
Kr

, has only one nontrivial component, Km−r,n−r .
Then e(G) = (m − r)(n − r). Since m ≥ n, we get α′(G) = n − r. Thus
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e(G)+ α′(G) = (m− r)(n− r) + (n− r). If m ≥ r + 2r−n
2n−2r−1

, by Lemma 2.15,
e(G) + α′(G) = (m − r)(n − r) + (n − r) ≥ m+n−r

2 . Consequently, by Theo-
rem 2.14, G is of type 1. If m < r + 2r−n

2n−2r−1 , by Lemma 2.15, e(G) + α′(G) =
(m−r)(n−r)+(n−r) < m+n−r

2
. Hence, by Theorem 2.14, χ′′(G) 
= n+m−r.

Since n + m − r = n(G) = Δ(G) + 1, we have χ′′(G) 
= Δ(G) + 1. By The-
orem 2.13, χ′′(G) ≤ Δ(G) + 2. Therefore χ′′(G) = Δ(G) + 2, and so, G is of
type 2.

Corollary 2.17. For m ≥ n > r,
(a) Km��Kn

Kr
is of type 1 if and only if m + n − r is odd or m ≥ r + 2r−n

2n−2r−1 ,

(b) Km��Kn
Kr

is of type 2 if and only if m+n− r is even and m < r+ 2r−n
2n−2r−1.

Proof. It follows immediately from Theorem 2.13 and Theorem 2.16.
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