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Abstract

The paper proves the existence theorem of a functional integral equa-
tion of volterra type in the class L1 of all Lebesgue integrable functions
on [0,∞), we used the Schauder fixed point theorem and the De-Blasi
measure of weak noncompactness.

1. Introduction

Generally, the subject of nonlinear integral equations considered as an impor-
tant branch of mathematics because it is used for solving of many problems
such as physics, engineering and economics (cf. [9,11]).
In this paper, we will investigate the solvability of the functional Volterra in-
tegral equation

x(t) = f1(t,
∫ t

0

k(t, s)f2(s, x(φ(s)))ds), t > 0 (1)

which is the general form of other functional integral equations (cf. [3, 7]).
In [6], this equation had been investigated where the existence of monotonic
solutions were proved.

2. Notation, definitions and Auxiliary Facts

This section is devoted to recall what we will be needed later, for this let
R+ = [0,∞) and L1 = L1(R+) be the class of Lebesgue integrable functions
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on R+, whose norm defined as

‖ x ‖=
∫ ∞

0

| x(t) | dt.

Assume that f(t, x) = f : R+ × R → R satisfies Caratheodory conditions,
i.e. it is measurable in t for any x ∈ R and continuous in x for almost all
t ∈ R+. Then for every function x(t) being measurable on R+, we may assign
the function (Fx)(t) = f(t, x(t)), t ∈ R+ which is called the superposition
operator generated by f and we have the following theorem.
Theorem (1). [1]
The superposition operator F generated by a function f maps continuously the
space L1(R+) into itself iff | f(t, x) |≤ a(t) + b | x |, for all t ∈ R+, x ∈ R,
where a(t) ∈ L1(R+) and b is a nonnegative constant.
Next, let E be a Banach space whose zero vector is θ and X a nonempty and
bounded subsect of E. Suppose Br is a closed ball whose center is θ and its
radius r. De-Blasi measure of weak noncompactness is defined [5] as:
β(X) = inf{r > 0: there exists a weakly compact subset Y of E such that
X ⊂ Y + Br}.
The measure β has many useful properties [2].
On other hand there is another measure of weak noncompactness in L(R+)
which is related to the De-Blasi measure β. This measure was introduced by
Banas and Knap [9] and defined as:

γ(X) = c(X) + d(X),

where

c(X) = lim
ε→0

{sup
x∈X

{sup[
∫

D

| x(t) | dt, D ⊂ R+, measD ≤ ε]}},

d(X) = lim
T→∞

{sup[
∫ ∞

T

| x(t) | dt : x ∈ X]},

for any nonempty and bounded subset X of L1(R+) and we have the following
theorem.
Theorem (2). [4]
The function γ is a regular measure of weak noncompactness in the space
L1(R+) such that

β(X) ≤ γ(X) ≤ 2β(X).

Also, we have the following theorem.
Theorem (3). [4]
A subset X ⊂ L(R+) is relatively compact iff
(i) for any ε > 0, there is δ > 0 such that if meas D ≤ δ, then

∫
D | x(t) | dt ≤

ε, x ∈ X,
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(ii) for any ε > 0, there is T > 0 such that
∫ ∞

T
| x(t) | dt ≤ ε x ∈ X.

Finally, we will recall Dragoni theorem and Schauder fixed point theorem re-
spectively.
Theorem (4). [10]
Let A be a compact metric space, B a separable metric space and C a Banach
space. If H : A × B → C is a function satisfies caratheodory conditions, then
for every ε > 0, there exists a measurable closed subset Dε of A such that
m(A/Dε) < ε and H |Dε×B is continuous.
Theorem (5). [8]
Assume that X is a nonempty, convex, closed and bounded subset of a Banach
space E and G : E → E is completely continuous mapping (i.e. G is continuous
and G(Y ) is relatively compact for every bounded subset Y of E) such that
G : X → X. Then G has at least a fixed point in X.

3. Existence Theorem

Now, we will assume the necessary conditions under which the existence theo-
rem of our functional equation will be proved.
Assume that:
(i) fi : R+×R → R, i = 1, 2 satisfy Caratheodory conditions and there are two
functions ai ∈ L1, i = 1, 2 and two nonnegative constants bi, i = 1, 2 such that
| fi(t, x) |≤ ai(t) + bi | x | , i = 1, 2, for all t ∈ R+ , x ∈ R,

(ii) k : R+×R+ → R satisfies Caratheodory conditions such that the linear
operator K defined as

(Kx)(t) =
∫ t

0

k(t, s)x(s)ds , t > 0 (2)

maps the space L1 into itself (note that due to this assumption and [10] the
linear operator K will be continuous and so it is bounded whose norm ‖ K ‖).
(iii) φ : R+ → R+ is an increasing, absolutely continuous function and there is
a positive constant M such that

φ′(t) ≥ M, for almost all t ≥ 0,

(iv) α = b1b2 ‖ K ‖ M−1 < 1.
Hence, we have the following theorem.
Theorem (6)
If the assumptions (i) - (iv) are satisfied, then the functional integral equation
(1) has at least a solution in the space L1.
Proof
Let

(Hx)(t) = f1(t,
∫ t

0

k(t, s)f2(s, x(φ(s)))ds) , t > 0. (3)
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Due to the assumptions (i), (ii), (iii) and theorem (1), we deduce that the
operator H defined by (3) maps continuously the space L1 into itself.
Moreover, we have

‖ (Hx)(t) ‖ =
∫ ∞

0

f1(t,
∫ t

0

k(t, s)f2(s, x(φ(s)))ds)dt

≤
∫ ∞

0

[a1(t) + b1 |
∫ t

0

k(t, s)f2(s, x(φ(s)))ds |]dt

≤ ‖ a1 ‖ +b1 ‖ KFφ ‖
where F is the superposition operator generated by f2 as defined in section (2)
and K is the linear integral operator as defined by (2).
Thus, we have

‖ (Hx)(t) ‖ ≤ ‖ a1 ‖ +b1 ‖ K ‖
∫ ∞

0

[a2(s) + b2 | x(φ(s)) |]ds

≤ ‖ a1 ‖ +b1 ‖ a2 ‖‖ K ‖ +(b1b2 ‖ K ‖ /M).
∫ ∞

0

| x(φ(s)) | φ′(s)ds

≤ ‖ a1 ‖ +b1 ‖ a2 ‖‖ K ‖ +(b1b2 ‖ K ‖ /M)
∫ ∞

0

| x(u) | du,

where u = φ(s).
So, using (iv), we have

‖ (Hx)(t) ‖≤‖ a1 ‖ +b1 ‖ a2 ‖‖ K ‖ +α ‖ x ‖,
which means that the operator H transforms the ball Br into itself, where
r = ‖a1‖+b1‖a2‖‖K‖

(1−α) .
Next, we will prove that the operator H is contraction with respect to the De-
Blasi measure β of weak noncompactness. For this, let X ⊂ Br and D ⊂ [0, T ], 0 < T < t, with
meas D < ε (in the sense of Lebesgue measure), then for any x ∈ X, we have
∫

D

| (Hx)(t) | dt =
∫

D

| f1(t,
∫ t

0

k(t, s)f2(s, x(φ(s)))ds) | dt

≤
∫

D

[a1(t) + b1 |
∫ t

0

k(t, s)f2(s, x(φ(s))ds |]dt

≤ ‖ a1 ‖L1(D) +b1 ‖ K ‖L1(D) .[‖ a2 ‖L1(D) +b2M
−1

∫
φ(D)

| x(u) | du],

where u = φ(s).
Since the operator K transform the space L1(D) into itself and is continuous,
we get
∫

D

| (Hx)(t) | dt ≤‖ a1 ‖L1(D) +b1 ‖ a2 ‖L1(D)‖ K ‖D +(b1b2 ‖ K ‖D /M)
∫

φ(D)

| x(u) | du,
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where ‖ K ‖D denotes the norm of the operator K : L1(D) → L1(D).
Since

lim
ε→0

[sup[
∫

D

ai(t)dt : D ⊂ R+, measD ≤ ε]] = 0, i = 1, 2

then we get
c(HX) ≤ (b1b2 ‖ K ‖ /M)c(X) = αc(X) (4)

where c(X) was defined as before in section (2).
Furthermore, fixing τ > 0, we get
∫ ∞

τ

| (Hx)(t) | dt =
∫ ∞

τ

| f1(t,
∫ t

0

k(t, s)f2(s, x(φ(s)))ds | dt

≤
∫ ∞

τ

[a1(t) + b1 |
∫ t

0

k(t, s)f2(s, x(φ(s)))ds |]dt

≤
∫ ∞

τ

a1(t)dt + b1 ‖ K ‖
∫ ∞

τ

[a2(s) + (b2/M) | x(φ(s)) | φ′(s)]ds

≤
∫ ∞

τ

a1(t)dt + b1 ‖ K ‖
∫ ∞

τ

a2(s)ds + (b1b2 ‖ K ‖ /M)
∫ ∞

φ(τ)

| x(u) | du

Since lim
τ→∞

∫ ∞
τ

ai(t)dt = 0, i = 1, 2 and lim
τ→∞ φ(τ ) = ∞ then, the above

inequality becomes as τ → ∞
d(HX) ≤ αd(X) (5)

Combining (4) and (5) we get

γ(HX) ≤ αγ(X)

Using Theorem (2), we see that

β(HX) ≤ αβ(X) , α < 1.

Let B1
r = Conv(HBr), where Conv(HBr) denotes the closure of the convex

hull of HBr , since HBr ⊂ Br , then B1
r ⊂ Br . Similarly, let B2

r = Conv(HB1
r ),

then B2
r ⊂ B1

r , also B3
r = Conv(HB2

r ) ⊂ B2
r and so on we get a decreasing

sequence (Bn
r ) of bounded, convex, closed subsets of Br such that

H(Bn
r ) ⊂ Bn

r , n ∈ N.

Using the properties of the De-Blasi measure β of weak noncompactness, we
see that

β(Bn+1
r ) = β(ConvHBn

r )
= β(HBn

r )
≤ αβ(Bn

r ) , n ≥ N
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and so on, we have

β(Bn+1
r ) ≤ αnβ(Br) , α < 1 , n ≥ N

Hence, as n → ∞, we get lim
n→∞β(Bn+1

r ) = 0.
So, Y = ∩n∈NBn

r is a nonempty, closed, bounded convex and relatively com-
pact subset of Br and H(Y ) ⊂ Y .
In the sequel, we will prove that H(Y ) is relatively compact in the space L1.
To do this, let {yn} be a sequence in Y and ε > 0, then by using Theorem (4)
there exists a closed measureable subset Dε of [0, t] such that m([0, t]/Dε) < ε
and fi |Dε×R, i = 1, 2 and k |Dε×R are continuous.
Let

Un(t) =
∫ t

0

k(t, s)f2(s, yn(φ(s)))ds,

then for t1, t2 ∈ Dε, we have:

| Un(t1) − Un(t2) | = |
∫ t1

0

k(t1, s)f2(s, yn(φ(s)))ds −
∫ t2

0

k(t2, s)f2(s, yn(φ(s)))ds |

≤
∫ t1

0

| k(t1, s) − k(t2, s) | [a2(s) + b2 | yn(φ(s)) |]ds

+
∫ t1

t2

| k(t2, s) | [a2(s) + b2 | yn(φ(s)) |]ds.

Since (yn) ⊂ Y and Y is bounded, then so is (yn). Hence (Un) is a sequence
of a equicontinuous and uniformly bounded functions in c(Dε) and so (H(yn))
is a sequence of equicontinuous and uniformly bounded functions in c(Dε). By
using Ascoli-Arzela theorem, we deduce that (H(yn)) is relatively compact in
c(Dε), from which, we deduce that H(yn) is Cauchy sequence in c(Dε).
Next, we will use the last result to prove that (H(yn)) is Cauchy sequence in
L1.
Using Theorem (3) and the fact that H(Y ) is relatively compact in (CDε) that
proved before in our theorem, we deduce that for every σ > 0, there is δ > 0
such that

sup
y

∫
Diδ

| (Hy)(t) | dt <
σ

4.2i
,

for meas Diδ < δ , Diδ ⊂ [i − 1, i] , i = 1, 2, 3, ..., n.
Choose, for each i, i = 1, 2, ..., n, r∗i ∈ N with m([i − 1, i]/Dr∗

i
) < δ, then for

n1, n2 ∈ N , we have

∫ ∞

0

| (Hyn1)(t) − (Hyn2)(t) | dt = lim
n→∞

n∑
i=1

i∫

i−1

| (Hyn1 )(t) − (Hyn2)(t) | dt
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≤ lim
n→∞

n∑
i=1

∫

[i−1,i]/Dr∗
i

| (Hyn1)(t) − (Hyn2 (t) | dt

+
∫

Dr∗
i

| (Hyn1(t) − (Hyn2)(t) | dt

≤ lim
n→∞

n∑
i=1

(
2.σ

4.2i
+ ‖ Hyn1 − Hyn2 ‖c(Dr∗

i
)

≤ lim
n→∞

∞∑
i=1

(
σ

2.2i
+

σ

2.2i
) =

∞∑
i=1

σ

2i
= σ,

for large value of n1, n2, we deduce that (Hyn) is Cauchy sequence in L1, since
L1 is complete space, then (Hyn) is relatively compact in L1.
Finally, we can use Schauder fixed point theorem to get a fixed point for our
operator H , so the functional integral equation (1) is solvable in L1.
Example (1):
Take f2(t, u) = u and f1(t, u) = f(t, u) then our functional integral equation
(1) becomes

x(t) = f(t,
∫ t

0

k(t, s)x(φ(s))ds) (6)

which is solvable in L1 under the same conditions (ii) and (iii) of Theorem (6)
and (i), (iv) are replaced by
(i)′f : R+ ×R → R satisfies Caratheodory conditions and there are a function
a ∈ L1 and a nonnegative constant b such that

| f(t, x) |≤ a(t) + b | x | , for allt ∈ R+ , x ∈ R,

(iv)′α = b ‖ K ‖ M−1 < 1.

Example (2)
Take fi(t, u(t)) = u(t), i = 1, 2, then our functional integral equation (1) be-
comes the volterra integral equation

x(t) =
∫ t

0

k(t, s)x(φ(s))ds (7)

According to Theorem (6), equation (7) has at least a solution x ∈ L1 if the
conditions (ii), (iii) of Theorem (6) are satisfied as well as ‖ K ‖≤ M .
Example (3)
Combining equation (6) and (7) we get the functional equation

x(t) = f(t, x(t)) , t > 0 (8)

Hence, by using examples (1) and (2) we get the following theorem.
Theorem (7)
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The functional equation (8) has at least a solution x ∈ L1 if the condition (i)′

of example (1) is satisfied as well as b < 1.
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