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Abstract

In this short paper, we prove that a domain is a principal ideal domain
if and only if it is a unique factorization domain and all its prime ideal
are principal. As a consequence, we characterize principal ideal domains
in term of the existence of a presentation of the greatest common divisor
of finitely many elements as a linear combination of these elements.

1. Introduction

Let R be a commutative ring. Recall that R is called Noetherian if the set of
ideals of R satisfies the ascending chain condition, i.e. for any ascending chain

I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ . . .

of ideals of R, there exists an integer n0 such that In = In0 for all n ≥ n0.
It is known that R is Noetherian if and only if every ideal of R is finitely
generated. Then I. S. Cohen gave an interesting characterization of Noetherian
rings which states that R is Noetherian if and only if every prime ideal of R is
finitely generated, cf. [1] (see also [3, Theorem 3.4]). This fact suggests us to
think that to study a certain property on the set of all ideals of a ring, it may
be enough to study this property on the set of all prime ideals.

Throughout this paper, let D be a domain. For the basic concepts and
terminologies, we reffer to the book [2]. We say that D is a principal ideal
domain if every ideal of D is principal, i.e. it can be generated by an element.
D is called a unique factorization domain (UFD for short) if every non zero
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element of D, which is not a unit, can be factorized into a product of irreducible
elements and this factorization is uniquely determined up to a unit factor and
an ordering of the irreducible factors. It is well known that if D is a principal
ideal domain then D is a UFD, but the converse is not true. For example, the
ring of polynomials in two variables with coefficients in a field is a UFD, but
not a principal ideal domain.

The main result of this paper is the following theorem, which gives a new
characterization of principal ideal domains. The motivation of this result comes
from the above mentioned result by I. S. Cohen in [1].

Theorem 1.1 Let D be a domain. Then D is a principal ideal domain if and
only if D is a UFD and every prime ideal of D is principal.

As a consequence of Theorem 1.1, we have other characterizations of prin-
cipal ideal domains as follows. It should be mentioned that if D is a UFD then
for any elements a1, . . . , an of D which are not all zero, their greatest com-
mon divisor gcd(a1, . . . , an) exists. Moreover, if D is a principal ideal domain
then gcd(a1, . . . , an) can be expressed as a linear combination of a1, . . . , an, i.e.
there exist x1, . . . , xn ∈ D such that

gcd(a1, . . . , an) = a1x1 + . . . + anxn.

Colloraly 1.2 Let D be a UFD. The following statements are equivalent:
(i) D is a pricipal ideal domain.
(ii) Every maximal ideal of D is a principal ideal.
(iii) For any elements a1, . . . , an of D which are not all zero, their great-

est common divisor gcd(a1, . . . , an) exists and it is a linear combination of
a1, . . . , an.

2. The Proofs

Proof of Theorem 1.1 One direction is clear. For the non trivial direction,
assume that every prime ideal of D is principal. Let I be an ideal of D. If
I = (0) or I = D then I is principal. Suppose that I �= (0) and I �= D. Let
0 �= a ∈ I. As I �= R, it follows that a is not a unit. Moreover, since D is a UFD,
we have a factorization a = ps1

1 ps2
2 . . . psk

k , where k ≥ 1 is an integer and pi’s
are distinct irreducible elements. Note that the psi

i ’s are uniquely determined
up to a unit, so we call them the components of a. Also, the number k in the
above factorization of a is uniquely determined. So, we can set r(a) = k, the
number of distinct irreducible divisors of a. Set

m = r(I) = min{r(a) | 0 �= a ∈ I}.
Then m ≥ 1 and r(a) ≥ m for all a ∈ I. Moreover, there exists b ∈ I with
r(b) = m. Assume that b = pj1

1 pj2
2 . . . pjm

m where pi is an irreducible element for
all i = 1, 2, . . . , m. For each pi, let Xpi be the set of all integer si ≥ 1 such
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that psi

i appears as a component in an irreducible factorization of some element
a ∈ I. For each i, let ti be the least integer si in Xpi . Let d = pt1

1 . . . ptm
m . We

will prove that I = (d).
Firstly we show that I ⊆ (d), i.e. d is a divisor of a for all a ∈ I. In fact,

suppose that d is not a divisor of a for some a ∈ I, let d′ = gcd(a, b). Since d′

is a divisor of b, we have r(d′) � m. From the definition of ti, if pi is a divisor
of a then pti

i is also a divisor of a. Moreover, because d is not a divisor of a,
there exists some j ∈ {1, . . . , m} such that pj is not a divisor of a. It implies
that r(d′) < m. We show that d′ is a linear combination of a and b. In fact,
since d′ = gcd(a, b), there exist a1, a2 ∈ D such that a = d′.a1 and b = d′.a2.
So gcd(a1, a2) = 1. Set

I1 = {a1x + a2y : x, y ∈ D}.
Then I is an ideal of D. We claim that I1 = D. In fact, suppose that I1 �= D.
Then there exists a maximal ideal J of D containing I1. Since J is maximal,
J �= D and J is a prime ideal. By hypothesis, there exists p ∈ D such that
J = (p). Since a1, a2 ∈ I1, it follows a1, a2 ∈ J = (p), i.e p is a common divisor
of a1 and a2. Since gcd(a1, a2) = 1, we get that p is a unit. Hence J = D, a
contradiction and the claim is proved. Now, since I1 = D, we get 1 ∈ I1 and
hence 1 = a1x + a2y for some x, y ∈ D. Hence

d′ = 1.d′ = (a1x + a2y)d′ = ax + by ∈ I

as a, b ∈ I. So r(d′) ≥ m, a contradiction. So d is a divisor of a for all a ∈ I.
Next we show that (d) ⊆ I, i.e. d ∈ I. For each i ∈ {1, 2, . . . , m}, there

exists by the definition of ti an element bi ∈ I such that

bi = ps1
1 . . . p

si−1
i−1 pti

i p
si+1
i+1 . . . psm

m yi,

where pj is not a divisor of yi and sj ≥ tj for all j ∈ {1, . . . , m}. It is not
difficult to check that

gcd(b, b1, b2, . . . , bm) = pt1
1 . . . ptm

m = d.

Note that b, b1, b2, . . . , bm ∈ I. Therefore, to prove d ∈ I, it is enough to show
that d is a linear combination of b, b1, b2, . . . , bm. Set gcd(b1, b2, . . . , bm) = c.
Then d = gcd(b, c). By the same arguments as above, there exist x1, x2 ∈ D
such that d = bx1 + cx2. Therefore, we need only to prove that c is a linear
combination of b1, b2, . . . , bm. We prove this by induction on m. The case m = 1
is nothing to do. Let m ≥ 2 and assume that the result is true for m − 1. Set
c1 = gcd(b1, b2, . . . , bm−1). Then c = gcd(c1, bm). By induction,

c1 = b1x1 + b2x2 + . . . + bm−1xm−1

for some x1, x2, . . . , xm−1 ∈ D. Since c = gcd(c1, bm), there exist y, z ∈ D such
that c = c1y + bmz. Therefore

c = b1(x1y) + b2(x2y) + . . . + bm−1(xm−1y) + bmz
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is a linear combination of b1, b2, . . . , bm.Thus the theorem is completely proved.�

Proof of Colloraly 1.2 (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii). By induction on the number of elements, it is enough to prove (iii)
for the case of two elements, i.e. if a1, a2 ∈ D such that one of them is not zero
then the greatest common divisor d = gcd(a1, a2) is a linear combination of
a1, a2. Write a1 = db1 and a2 = db2, where gcd(b1, b2) = 1. Set I = {b1x+ b2y :
x, y ∈ D}. If I �= D then I is contained in a maximal ideal of D, which is a
principal ideal by (ii). Then we get a contradiction by the same arguments as
in the proof of Theorem 1.1. It follows that I = D. Therefore 1 = b1x + b2y
for some x, y ∈ D. Hence d = a1x + a2y and the result follows.
(iii) ⇒ (i). Let I be an ideal of D. If I = (0) or I = D then I is principal. So
we can assume that I �= (0) and I �= D. As in the proof of Theorem 1.1, we set

m = r(I) = min{r(a) | 0 �= a ∈ I},
where r(a) is the number of distinct irreducible divisors of a. Note that r(a) ≥
m for all a ∈ I and there exists b ∈ I with r(b) = m ≥ 1. Write b = pj1

1 pj2
2 . . . pjm

m

where pi’s are distinct irreducible divisors of b. For each i = 1, . . . , m, let Xpi

and ti be defined as in the first paragraph of the proof of Theorem 1.1. Let
d = pt1

1 . . . ptm
m . We will prove that I = (d). Let a ∈ I. Assume that d is not a

divisor of a. Let d′ = gcd(a, b). Then r(d′) < m. By the assumption (iii), d′ is a
linear combination of a and b. As a, b ∈ I, we have d′ ∈ I and hence r(d′) ≥ m.
This gives a contradiction. Therefore a ∈ (d). Thus I ⊆ (d). Conversely, By
the definition of ti for i = 1, 2, . . .m, there exists bi ∈ I such that

bi = ps1
1 . . . p

si−1
i−1 pti

i p
si+1
i+1 . . . psm

m yi,

where pj is not a divisor of yi and sj ≥ tj for all j. It follows that

gcd(b, b1, b2, . . . , bm) = pt1
1 . . . ptm

m = d.

By the hypothesis (iii), d is a linear combination of b, b1, b2, . . . , bm. As b, b1, b2,
. . . , bm ∈ I, we get that d ∈ I. Thus I = (d) as required. �
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