East-West J. of Mathematics: Vol. 10, No 2 (2008) pp. 149-152

NEW CHARACTERIZATIONS OF
PRINCIPAL IDEAL DOMAINS

Nong Quoc Chinh and Pham Hong Nam

Thai Nguyen College of Sciences
Thai Nguyen, Vietnam
e-mail: nongquocchinh2002@hn.vnn.vn

Abstract

In this short paper, we prove that a domain is a principal ideal domain
if and only if it is a unique factorization domain and all its prime ideal
are principal. As a consequence, we characterize principal ideal domains
in term of the existence of a presentation of the greatest common divisor
of finitely many elements as a linear combination of these elements.

1. Introduction

Let R be a commutative ring. Recall that R is called Noetherian if the set of
ideals of R satisfies the ascending chain condition, i.e. for any ascending chain

L CLC...CI,C...

of ideals of R, there exists an integer ng such that I, = I, for all n > ng.
It is known that R is Noetherian if and only if every ideal of R is finitely
generated. Then I. S. Cohen gave an interesting characterization of Noetherian
rings which states that R is Noetherian if and only if every prime ideal of R is
finitely generated, cf. [1] (see also [3, Theorem 3.4]). This fact suggests us to
think that to study a certain property on the set of all ideals of a ring, it may
be enough to study this property on the set of all prime ideals.

Throughout this paper, let D be a domain. For the basic concepts and
terminologies, we reffer to the book [2]. We say that D is a principal ideal
domain if every ideal of D is principal, i.e. it can be generated by an element.
D is called a unique factorization domain (UFD for short) if every non zero
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element of D, which is not a unit, can be factorized into a product of irreducible
elements and this factorization is uniquely determined up to a unit factor and
an ordering of the irreducible factors. It is well known that if D is a principal
ideal domain then D is a UFD, but the converse is not true. For example, the
ring of polynomials in two variables with coefficients in a field is a UFD, but
not a principal ideal domain.

The main result of this paper is the following theorem, which gives a new
characterization of principal ideal domains. The motivation of this result comes
from the above mentioned result by I. S. Cohen in [1].

Theorem 1.1 Let D be a domain. Then D is a principal ideal domain if and
only if D is a UFD and every prime ideal of D is principal.

As a consequence of Theorem 1.1, we have other characterizations of prin-
cipal ideal domains as follows. It should be mentioned that if D is a UFD then
for any elements ai,...,a, of D which are not all zero, their greatest com-
mon divisor ged(aq, . .., a,) exists. Moreover, if D is a principal ideal domain
then ged(ay, . .., ay) can be expressed as a linear combination of ay, . .., ay, i.e.
there exist x1,...,x, € D such that

ged(ag, ... an) = a121 + .. + AnTp.

Colloraly 1.2 Let D be a UFD. The following statements are equivalent:
(i) D is a pricipal ideal domain.
(i) Every mazimal ideal of D is a principal ideal.

(#ii) For any elements ai,...,a, of D which are not all zero, their great-
est common divisor gcd(ay,...,ay) exists and it is a linear combination of
A1y...,0p.

2. The Proofs

Proof of Theorem 1.1 One direction is clear. For the non trivial direction,
assume that every prime ideal of D is principal. Let I be an ideal of D. If
I = (0) or I = D then I is principal. Suppose that I # (0) and I # D. Let
0#a€l. AsI # R, it followsthat a is not a unit. Moreover, since D is a UFD,
we have a factorization a = pi'p5*...p;", where k > 1 is an integer and p;’s
are distinct irreducible elements. Note that the p;*’s are uniquely determined
up to a unit, so we call them the components of a. Also, the number & in the
above factorization of a is uniquely determined. So, we can set r(a) = k, the
number of distinct irreducible divisors of a. Set

m=r(I) =min{r(a) |0 # a € I}.

Then m > 1 and r(a) > m for all a € I. Moreover, there exists b € I with
r(b) = m. Assume that b = p]'p3*...pJm where p; is an irreducible element for
all ¢ = 1,2,...,m. For each p;, let X,, be the set of all integer s; > 1 such
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that pi* appears as a component in an irreducible factorization of some element
a € I. For each i, let t; be the least integer s; in X,,. Let d = pi* ...plm. We
will prove that I = (d).

Firstly we show that I C (d), i.e. d is a divisor of a for all a € I. In fact,
suppose that d is not a divisor of a for some a € I, let d’ = ged(a, b). Since d’
is a divisor of b, we have r(d') < m. From the definition of ¢;, if p; is a divisor
of a then pf is also a divisor of a. Moreover, because d is not a divisor of a,
there exists some j € {1,...,m} such that p; is not a divisor of a. It implies
that r(d’) < m. We show that d’ is a linear combination of a and b. In fact,
since d’ = ged(a, b), there exist aj,as € D such that a = d’.a; and b = d’.as.
So ged(ag, az) = 1. Set

I ={a1x + axy : x,y € D}.

Then [ is an ideal of D. We claim that Iy = D. In fact, suppose that I; # D.
Then there exists a maximal ideal J of D containing I;. Since J is maximal,
J # D and J is a prime ideal. By hypothesis, there exists p € D such that
J = (p). Since ay,as € I, it follows a1, a2 € J = (p), i.e p is a common divisor
of a; and aq. Since ged(aq, az) = 1, we get that p is a unit. Hence J = D, a
contradiction and the claim is proved. Now, since I; = D, we get 1 € I; and
hence 1 = a1z + asy for some x,y € D. Hence

d =1.d = (a1x+ ay)d =ax+byel

as a,b € 1. So r(d") > m, a contradiction. So d is a divisor of a for all a € I.
Next we show that (d) C I, i.e. d € I. For each i € {1,2,...,m}, there
exists by the definition of ¢; an element b; € I such that

b =pi'.. pfl__llpflp:_ﬁl DY
where p; is not a divisor of y; and s; > ¢; for all j € {1,...,m}. It is not
difficult to check that

ged(b, by, by, ..., by) = pit ... plm =d.

Note that b, b1, b2, ..., b, € I. Therefore, to prove d € I, it is enough to show
that d is a linear combination of b, by, bs, ..., by. Set ged(by, b, ..., by) = c.
Then d = ged(b, ¢). By the same arguments as above, there exist x1,x2 € D
such that d = bxy + cxy. Therefore, we need only to prove that c is a linear
combination of by, ba, . . ., by,. We prove this by induction on m. The case m = 1
is nothing to do. Let m > 2 and assume that the result is true for m — 1. Set
c1 = ged(by,ba, ..., bym—1). Then ¢ = ged(eq, byy,). By induction,

ci=bx1 +bro+ ... +bm_1Tm-1

for some x1,xa, ..., Tm—1 € D. Since ¢ = ged(cy, byy,), there exist y, 2 € D such
that ¢ = c1y + by z. Therefore

c=bi(z1y) + ba(x2y) + ... + bm—1(Tm-1Y) + bz



152 New characterizations of principal ideal domains

is a linear combination of by, b, . . ., b,, . Thus the theorem is completely proved.O

Proof of Colloraly 1.2 (i) = (4) is trivial.

(#4) = (¢41). By induction on the number of elements, it is enough to prove (iii)
for the case of two elements, i.e. if a1, as € D such that one of them is not zero
then the greatest common divisor d = ged(ag, as) is a linear combination of
a1, az. Write a; = db; and as = dby, where ng(bl, b2) =1.Set I = {b1$+b2y :
x,y € D}. If I # D then I is contained in a maximal ideal of D, which is a
principal ideal by (ii). Then we get a contradiction by the same arguments as
in the proof of Theorem 1.1. It follows that I = D. Therefore 1 = byx + bay
for some x,y € D. Hence d = a1z + asy and the result follows.

(#it) = (4). Let I be an ideal of D. If I = (0) or I = D then [ is principal. So
we can assume that I # (0) and I # D. As in the proof of Theorem 1.1, we set

m=r(I) =min{r(a) |0 # a € I},

where 7(a) is the number of distinct irreducible divisors of a. Note that r(a) >
m for alla € I and there exists b € I withr(b) = m > 1. Write b = pJ'pl? ... pim
where p;’s are distinct irreducible divisors of b. For each i =1,...,m, let X,
and t; be defined as in the first paragraph of the proof of Theorem 1.1. Let
d=pl*...plm. We will prove that I = (d). Let a € I. Assume that d is not a
divisor of a. Let d’ = ged(a, b). Then r(d’) < m. By the assumption (iii), d’ is a
linear combination of a and b. As a,b € I, we have d’ € I and hence r(d’) > m.
This gives a contradiction. Therefore a € (d). Thus I C (d). Conversely, By
the definition of t; for i = 1,2, ...m, there exists b; € I such that

Si—1, t; Sit1

bi =Pt P PP DR Y
where p; is not a divisor of y; and s; > ¢; for all j. It follows that
ged(b, by, b, ... by) = pit .. plm =d.
By the hypothesis (iii), d is a linear combination of b, by, b, . .., by,. As b, by, b,
..y by € 1, we get that d € I. Thus I = (d) as required. O
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