NEW CHARACTERIZATIONS OF PRINCIPAL IDEAL DOMAINS

Nong Quoc Chinh and Pham Hong Nam

Thai Nguyen College of Sciences
Thai Nguyen, Vietnam
e-mail: nongquocchinh2002@hn.vnn.vn

Abstract

In this short paper, we prove that a domain is a principal ideal domain if and only if it is a unique factorization domain and all its prime ideal are principal. As a consequence, we characterize principal ideal domains in term of the existence of a presentation of the greatest common divisor of finitely many elements as a linear combination of these elements.

1. Introduction

Let R be a commutative ring. Recall that R is called Noetherian if the set of ideals of R satisfies the ascending chain condition, i.e. for any ascending chain

$$
I_{1} \subseteq I_{2} \subseteq \ldots \subseteq I_{n} \subseteq \ldots
$$

of ideals of R, there exists an integer n_{0} such that $I_{n}=I_{n_{0}}$ for all $n \geq n_{0}$. It is known that R is Noetherian if and only if every ideal of R is finitely generated. Then I. S. Cohen gave an interesting characterization of Noetherian rings which states that R is Noetherian if and only if every prime ideal of R is finitely generated, cf. [1] (see also [3, Theorem 3.4]). This fact suggests us to think that to study a certain property on the set of all ideals of a ring, it may be enough to study this property on the set of all prime ideals.

Throughout this paper, let D be a domain. For the basic concepts and terminologies, we reffer to the book [2]. We say that D is a principal ideal domain if every ideal of D is principal, i.e. it can be generated by an element. D is called a unique factorization domain (UFD for short) if every non zero

[^0]element of D, which is not a unit, can be factorized into a product of irreducible elements and this factorization is uniquely determined up to a unit factor and an ordering of the irreducible factors. It is well known that if D is a principal ideal domain then D is a UFD, but the converse is not true. For example, the ring of polynomials in two variables with coefficients in a field is a UFD, but not a principal ideal domain.

The main result of this paper is the following theorem, which gives a new characterization of principal ideal domains. The motivation of this result comes from the above mentioned result by I. S. Cohen in [1].
Theorem 1.1 Let D be a domain. Then D is a principal ideal domain if and only if D is a UFD and every prime ideal of D is principal.

As a consequence of Theorem 1.1, we have other characterizations of principal ideal domains as follows. It should be mentioned that if D is a UFD then for any elements a_{1}, \ldots, a_{n} of D which are not all zero, their greatest common divisor $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ exists. Moreover, if D is a principal ideal domain then $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ can be expressed as a linear combination of a_{1}, \ldots, a_{n}, i.e. there exist $x_{1}, \ldots, x_{n} \in D$ such that

$$
\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=a_{1} x_{1}+\ldots+a_{n} x_{n}
$$

Colloraly 1.2 Let D be a UFD. The following statements are equivalent:
(i) D is a pricipal ideal domain.
(ii) Every maximal ideal of D is a principal ideal.
(iii) For any elements a_{1}, \ldots, a_{n} of D which are not all zero, their greatest common divisor $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ exists and it is a linear combination of a_{1}, \ldots, a_{n}.

2. The Proofs

Proof of Theorem 1.1 One direction is clear. For the non trivial direction, assume that every prime ideal of D is principal. Let I be an ideal of D. If $I=(0)$ or $I=D$ then I is principal. Suppose that $I \neq(0)$ and $I \neq D$. Let $0 \neq a \in I$. As $I \neq R$, it follows that a is not a unit. Moreover, since D is a UFD, we have a factorization $a=p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{k}^{s_{k}}$, where $k \geq 1$ is an integer and p_{i} 's are distinct irreducible elements. Note that the $p_{i}^{s_{i}}$,s are uniquely determined up to a unit, so we call them the components of a. Also, the number k in the above factorization of a is uniquely determined. So, we can set $r(a)=k$, the number of distinct irreducible divisors of a. Set

$$
m=r(I)=\min \{r(a) \mid 0 \neq a \in I\}
$$

Then $m \geq 1$ and $r(a) \geq m$ for all $a \in I$. Moreover, there exists $b \in I$ with $r(b)=m$. Assume that $b=p_{1}^{j_{1}} p_{2}^{j_{2}} \ldots p_{m}^{j_{m}}$ where p_{i} is an irreducible element for all $i=1,2, \ldots, m$. For each p_{i}, let $X_{p_{i}}$ be the set of all integer $s_{i} \geq 1$ such
that $p_{i}^{s_{i}}$ appears as a component in an irreducible factorization of some element $a \in I$. For each i, let t_{i} be the least integer s_{i} in $X_{p_{i}}$. Let $d=p_{1}^{t_{1}} \ldots p_{m}^{t_{m}}$. We will prove that $I=(d)$.

Firstly we show that $I \subseteq(d)$, i.e. d is a divisor of a for all $a \in I$. In fact, suppose that d is not a divisor of a for some $a \in I$, let $d^{\prime}=\operatorname{gcd}(a, b)$. Since d^{\prime} is a divisor of b, we have $r\left(d^{\prime}\right) \leqslant m$. From the definition of t_{i}, if p_{i} is a divisor of a then $p_{i}^{t_{i}}$ is also a divisor of a. Moreover, because d is not a divisor of a, there exists some $j \in\{1, \ldots, m\}$ such that p_{j} is not a divisor of a. It implies that $r\left(d^{\prime}\right)<m$. We show that d^{\prime} is a linear combination of a and b. In fact, since $d^{\prime}=\operatorname{gcd}(a, b)$, there exist $a_{1}, a_{2} \in D$ such that $a=d^{\prime} . a_{1}$ and $b=d^{\prime} . a_{2}$. So $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$. Set

$$
I_{1}=\left\{a_{1} x+a_{2} y: x, y \in D\right\}
$$

Then I is an ideal of D. We claim that $I_{1}=D$. In fact, suppose that $I_{1} \neq D$. Then there exists a maximal ideal J of D containing I_{1}. Since J is maximal, $J \neq D$ and J is a prime ideal. By hypothesis, there exists $p \in D$ such that $J=(p)$. Since $a_{1}, a_{2} \in I_{1}$, it follows $a_{1}, a_{2} \in J=(p)$, i.e p is a common divisor of a_{1} and a_{2}. Since $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$, we get that p is a unit. Hence $J=D$, a contradiction and the claim is proved. Now, since $I_{1}=D$, we get $1 \in I_{1}$ and hence $1=a_{1} x+a_{2} y$ for some $x, y \in D$. Hence

$$
d^{\prime}=1 . d^{\prime}=\left(a_{1} x+a_{2} y\right) d^{\prime}=a x+b y \in I
$$

as $a, b \in I$. So $r\left(d^{\prime}\right) \geq m$, a contradiction. So d is a divisor of a for all $a \in I$.
Next we show that $(d) \subseteq I$, i.e. $d \in I$. For each $i \in\{1,2, \ldots, m\}$, there exists by the definition of t_{i} an element $b_{i} \in I$ such that

$$
b_{i}=p_{1}^{s_{1}} \ldots p_{i-1}^{s_{i-1}} p_{i}^{t_{i}} p_{i+1}^{s_{i+1}} \ldots p_{m}^{s_{m}} y_{i}
$$

where p_{j} is not a divisor of y_{i} and $s_{j} \geq t_{j}$ for all $j \in\{1, \ldots, m\}$. It is not difficult to check that

$$
\operatorname{gcd}\left(b, b_{1}, b_{2}, \ldots, b_{m}\right)=p_{1}^{t_{1}} \ldots p_{m}^{t_{m}}=d
$$

Note that $b, b_{1}, b_{2}, \ldots, b_{m} \in I$. Therefore, to prove $d \in I$, it is enough to show that d is a linear combination of $b, b_{1}, b_{2}, \ldots, b_{m}$. Set $\operatorname{gcd}\left(b_{1}, b_{2}, \ldots, b_{m}\right)=c$. Then $d=\operatorname{gcd}(b, c)$. By the same arguments as above, there exist $x_{1}, x_{2} \in D$ such that $d=b x_{1}+c x_{2}$. Therefore, we need only to prove that c is a linear combination of $b_{1}, b_{2}, \ldots, b_{m}$. We prove this by induction on m. The case $m=1$ is nothing to do. Let $m \geq 2$ and assume that the result is true for $m-1$. Set $c_{1}=\operatorname{gcd}\left(b_{1}, b_{2}, \ldots, b_{m-1}\right)$. Then $c=\operatorname{gcd}\left(c_{1}, b_{m}\right)$. By induction,

$$
c_{1}=b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{m-1} x_{m-1}
$$

for some $x_{1}, x_{2}, \ldots, x_{m-1} \in D$. Since $c=\operatorname{gcd}\left(c_{1}, b_{m}\right)$, there exist $y, z \in D$ such that $c=c_{1} y+b_{m} z$. Therefore

$$
c=b_{1}\left(x_{1} y\right)+b_{2}\left(x_{2} y\right)+\ldots+b_{m-1}\left(x_{m-1} y\right)+b_{m} z
$$

is a linear combination of $b_{1}, b_{2}, \ldots, b_{m}$. Thus the theorem is completely proved.
Proof of Colloraly $1.2(i) \Rightarrow(i i)$ is trivial.
(ii) \Rightarrow (iii). By induction on the number of elements, it is enough to prove (iii) for the case of two elements, i.e. if $a_{1}, a_{2} \in D$ such that one of them is not zero then the greatest common divisor $d=\operatorname{gcd}\left(a_{1}, a_{2}\right)$ is a linear combination of a_{1}, a_{2}. Write $a_{1}=d b_{1}$ and $a_{2}=d b_{2}$, where $\operatorname{gcd}\left(b_{1}, b_{2}\right)=1$. Set $I=\left\{b_{1} x+b_{2} y\right.$: $x, y \in D\}$. If $I \neq D$ then I is contained in a maximal ideal of D, which is a principal ideal by (ii). Then we get a contradiction by the same arguments as in the proof of Theorem 1.1. It follows that $I=D$. Therefore $1=b_{1} x+b_{2} y$ for some $x, y \in D$. Hence $d=a_{1} x+a_{2} y$ and the result follows.
$(i i i) \Rightarrow(i)$. Let I be an ideal of D. If $I=(0)$ or $I=D$ then I is principal. So we can assume that $I \neq(0)$ and $I \neq D$. As in the proof of Theorem 1.1, we set

$$
m=r(I)=\min \{r(a) \mid 0 \neq a \in I\},
$$

where $r(a)$ is the number of distinct irreducible divisors of a. Note that $r(a) \geq$ m for all $a \in I$ and there exists $b \in I$ with $r(b)=m \geq 1$. Write $b=p_{1}^{j_{1}} p_{2}^{j_{2}} \ldots p_{m}^{j_{m}}$ where p_{i} 's are distinct irreducible divisors of b. For each $i=1, \ldots, m$, let $X_{p_{i}}$ and t_{i} be defined as in the first paragraph of the proof of Theorem 1.1. Let $d=p_{1}^{t_{1}} \ldots p_{m}^{t_{m}}$. We will prove that $I=(d)$. Let $a \in I$. Assume that d is not a divisor of a. Let $d^{\prime}=\operatorname{gcd}(a, b)$. Then $r\left(d^{\prime}\right)<m$. By the assumption (iii), d^{\prime} is a linear combination of a and b. As $a, b \in I$, we have $d^{\prime} \in I$ and hence $r\left(d^{\prime}\right) \geq m$. This gives a contradiction. Therefore $a \in(d)$. Thus $I \subseteq(d)$. Conversely, By the definition of t_{i} for $i=1,2, \ldots m$, there exists $b_{i} \in I$ such that

$$
b_{i}=p_{1}^{s_{1}} \ldots p_{i-1}^{s_{i-1}} p_{i}^{t_{i}} p_{i+1}^{s_{i+1}} \ldots p_{m}^{s_{m}} y_{i}
$$

where p_{j} is not a divisor of y_{i} and $s_{j} \geq t_{j}$ for all j. It follows that

$$
\operatorname{gcd}\left(b, b_{1}, b_{2}, \ldots, b_{m}\right)=p_{1}^{t_{1}} \ldots p_{m}^{t_{m}}=d
$$

By the hypothesis (iii), d is a linear combination of $b, b_{1}, b_{2}, \ldots, b_{m}$. As b, b_{1}, b_{2}, $\ldots, b_{m} \in I$, we get that $d \in I$. Thus $I=(d)$ as required.

Acknowledgment. The authors thank Professor Le Thanh Nhan for careful reading the manuscript and for many useful suggestions during preparation of this paper.

References

[1] I. S. Cohen, Commutative rings with restricted minumum condition, Duke Math. J., 17 (1950), 27-42.
[2] S. Lang, "Algebra", Springer, 2005 (Revised third edition).
[3] H. Matsumura, "Commutative ring theory", Cambridge University Press, 1986.

[^0]: Keywords: Principal ideal domains, unique factorization domains, prime ideals, greatest common divisors.
 2000 AMS Mathematics Subject Classification: 13A05, 13C05.

