SKEW POLYNOMIAL RINGS OVER 2-PRIMAL NOETHERIAN RINGS

V. K. Bhat
School of Mathematics, SMVD University P/o Kakryal, Katra, J and K, India- 182320 vijaykumarbhat2000@yahoo.com

Abstract

Let R be a ring and σ an automorphism of R and δ a σ-derivation of R. We say that R is a δ-ring if $a \delta(a) \in P(R)$ implies $a \in P(R)$, where $P(R)$ is the prime radical of R . We prove that $R[x ; \sigma, \delta]$ is a 2 -primal Noetherian ring if R is a Noetherian ring, which moreover an algebra over the field of rational numbers, σ and δ are such that R is a δ-ring and $\sigma(P)=P, \mathrm{P}$ being any minimal prime ideal of R . We use this to prove that if R is a Noetherian $\sigma(*)$-ring (i.e. $a \sigma(a) \in P(R)$ implies $a \in P(R)), \delta$ a σ-derivation of R such that R is a δ-ring, then $R[x ; \sigma, \delta]$ is a 2 -primal Noetherian ring.

1 Introduction

We begin with the following question:
Question (2) of Bhat [4]: If R is Noetherian ring, which is also an algebra over the field of rational numbers, σ an automorphism of R and δ a σ-derivation of R . Is $R[x ; \sigma, \delta] 2$-primal?

In this paper an affirmative answer to this quetion is given in case R is a δ-ring.

We follow the notation as in Bhat [4], but to make the paper self contained, we have the following:

A ring R always means an associative ring. The field of rational numbers is denoted by \mathbb{Q}. The set of prime ideals and the set of minimal prime ideals of R are denoted by $\operatorname{Spec}(R)$ and $\operatorname{MinSpec}(R)$ respectively. $P(R)$ and $N(R)$

[^0]denote the prime radical and the set of nilpotent elements of R , respectively. Let I and J be any two ideals of a ring R . Then $I \subset J$ means that I is strictly contained in J. Let I be an ideal of a ring R such that $\sigma^{m}(I)=I$ for some integer $m \geq 1$, we denote $\cap_{i=1}^{m} \sigma^{i}(I)$ by I^{0}.

This article concerns the study of skew polynomial rings in terms of 2primal rings. 2-primal rings have been studied in recent years and the 2-primal property is being studied for various types of rings. In [15], G. Marks discusses the 2-primal property of $R[x ; \sigma, \delta]$, where R is a local ring, σ is an automorphism of R and δ is a σ-derivation of R .

Recall that a σ-derivation of R is an additive map $\delta: R \rightarrow R$ such that $\delta(a b)=\delta(a) \sigma(b)+a \delta(b)$, for all $a, b \in R$. In case σ is the identity map, δ is called just a derivation of R. For example for any endomorphism τ of a ring R and for any $a \in R, \varrho: R \rightarrow R$ defined as $\varrho(r)=r a-a \tau(r)$ is a τ-derivation of R .

Let σ be an endomorphism of a ring R and $\delta: R \rightarrow R$ any map. Let $\phi: R \rightarrow M_{2}(R)$ be a homomorphism defined by

$$
\phi(r)=\left(\begin{array}{cc}
\sigma(r) & 0 \\
\delta(r) & r
\end{array}\right), \text { for all } r \in R
$$

Then δ is a σ-derivation of R .
Also let $R=K[x], \mathrm{K}$ a field. Then the formal derivative $\frac{d}{d x}$ is a derivation of R.
Minimal prime ideals of 2-primal rings have been discussed by Kim and Kwak in [12] and Shin in [17]. 2-primal near rings have been discussed by Argac and Groenewald in [1]. Recall that a ring R is called 2-primal if the set of nilpotent elements of R coincides with the prime radical of R (G . Marks [15]), or equivalently if its radical contains every nilpotent element of R, or if $P(R)$ is a completely semiprime ideal of R. An ideal I of a ring R is called completely semiprime if $a^{2} \in I$ implies $a \in I$ for $a \in R$.
We also note that a reduced ring (i.e. a ring with no nonzero nilpotent elements) is 2 -primal and a commutative ring is also 2 -primal. For further details on 2primal rings, we refer the reader to $[3,4,12,14,15]$.

Recall that $R[x ; \sigma, \delta]$ is the skew polynomial ring with coefficients in R in which multiplication is subject to the relation $a x=x \sigma(a)+\delta(a)$ for all $a \in R$. We denote $R[x ; \sigma, \delta]$ by $O(R)$. In case σ is the identity map, we denote the ring of differential operators $R[x ; \delta]$ by $D(R)$, if δ is the zero map, we denote $R[x ; \sigma]$ by $S(R)$.

Recall that in Krempa [13], a ring R is called σ-rigid if there exists an endomorphism σ of R with the property that $a \sigma(a)=0$ implies $\mathrm{a}=0$ for $a \in R$. In [14], Kwak defines a $\sigma(*)$-ring R to be a ring if $a \sigma(a) \in P(R)$ implies $a \in P(R)$ for $a \in R$ and establishes a relation between a 2-primal ring and a $\sigma(*)$-ring. The property is also extended to $S(R)$.

Example 1.1 Let $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$, where F is a field. Then $P(R)=\left(\begin{array}{cc}0 & F \\ 0 & 0\end{array}\right)$ Let $\sigma: R \rightarrow R$ be defined by $\sigma\left(\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right)=\left(\begin{array}{cc}a & 0 \\ 0 & c\end{array}\right)$. Then it can be seen that σ is an endomorphism of R and R is a $\sigma(*)$-ring.

We note that if R is a ring and σ an automorphism of R such that R is a $\sigma(*)$-ring, then R is 2 -primal. For let $a \in R$ be such that $a^{2} \in P(R)$. Then $a \sigma(a) \sigma(a \sigma(a))=a \sigma(a) \sigma(a) \sigma^{2}(a) \in \sigma(P(R))=P(R)$. Therefore $a \sigma(a) \in P(R)$ and so $a \in P(R)$. Thus $P(R)$ is a completely semiprime ideal of R and hence R is 2-primal.

In Theorem (12) of [14], Kwak has proved that if R is a $\sigma(*)$-ring such that $\sigma(P(R))=P(R)$, then $R[x ; \sigma]$ is 2-primal if and only if $P(R)[x ; \sigma]=$ $P(R[x ; \sigma])$.
Hong, Kim and Kwak have proved in Corollary (2.8) of [11] that if R is a 2primal ring and every simple singular left R-module is p-injective, then every prime ideal of R is maximal. In particular, every prime factor ring of R is a simple domain.
It is known (Theorem (1.2) of Bhat [3]) that if R is 2-primal Noetherian \mathbb{Q} algebra and δ is a derivation of R , then $D(R)$ is 2-primal. We also note that if R is a Noetherian ring, then even $R[x]$ need not be 2 -primal.

Example 1.2 Let $R=M_{2}(\mathbb{Q})$, the set of 2×2 matrices over \mathbb{Q}. Then $R[x]$ is a prime ring with non-zero nilpotent elements and, so can not be 2-primal.

Let now R be a 2 -primal ring. Is $O(R)$ also a 2-primal ring? This question was attacked by the author and towards this the following has been proved in Bhat [4]:

Let R be a ring, σ be an automorphism of R and δ be a σ-derivation of R . We say that R is a δ-ring if $a \delta(a) \in P(R)$ implies $a \in P(R)$. We note that a ring with identity is not a δ-ring. Then:

1. (Theorem 2 of Bhat [4]): Let R be a 2-primal Noetherian ring. Then $S(R)$ is 2-primal Noetherian.
2. (Theorem 6 of Bhat [4]): Let R be a Noetherian \mathbb{Q}-algebra. Let σ be an automorphism of R and δ a σ-derivation of R such that R is a δ-ring, $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a \in R ; \sigma(P)=P$ for all $P \in \operatorname{MinSpec}(R)$ and $\delta(P(R)) \subseteq P(R)$. Then $O(R)$ is 2-primal Noetherian.
3. (Theorem 7 of Bhat [4]): Let R be a Noetherian ring, which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R such that R is a $\sigma(*)$-ring and δ be a σ-derivation of R such that $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a \in R$ and R is a δ-ring. Then $R[x ; \sigma, \delta]$ is 2-primal Noetherian.

In this paper we prove (2) and (3) above even without the condition that $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a \in R$. These results are proved in Theorems (2.10) and (2.12) respectively.

Ore-extensions including skew-polynomial rings and differential operator rings have been of interest to many authors. See $[2,4,5,6,7,10,13,14,15]$.

2 Skew polynomial ring $O(R)$

Recall that an ideal I of a ring R is called σ-invariant if $\sigma(I)=I$. Also I is called completely prime if $a b \in I$ implies $a \in I$ or $b \in I$ for $a, b \in R$. We also note that in a right Noetherian ring R, $\operatorname{MinSpec}(R)$ is finite (Theorem (2.4) of Goodearl and Warfield [9]), and for any $P \in \operatorname{MinSpec}(R), \sigma^{t}(P) \in \operatorname{MinSpec}(R)$ for all integers $t \geq 1$. Let $\operatorname{MinSpec}(R)=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$. Let $\sigma^{m_{i}}\left(P_{i}\right)=P_{i}$, for some positive integers $m_{i}, 1 \leq i \leq n$, and $u=m_{1} . m_{2} \ldots m_{n}$. Then $\sigma^{u}\left(P_{i}\right)=P_{i}$ for all $P_{i} \in \operatorname{MinSpec}(R)$. We use same u henceforth, and as mentioned in introduction above, we denote $\cap_{i=1}^{u} \sigma^{i}(P)$ by P^{0}, P being any minimal prime ideal of R .

Definition 2.1 Let R be a ring. Let σ be an automorphism of R and δ a σ derivation of R. We say that R is a δ-ring if a $\delta(a) \in P(R)$ implies $a \in P(R)$.

Recall that an ideal I of a ring R is called δ-invariant if $\delta(I) \subseteq I$. If an ideal I of R is σ-invariant and δ-invariant, then $O(I)$ is an ideal of $O(R)$ as for any $a \in I, \sigma^{j}(a) \in I$ and $\delta^{j}(a) \in I$ for all positive integers j .

Gabriel proved in Lemma (3.4) of [8] that if R is a Noetherian \mathbb{Q}-algebra and δ is a derivation of R , then $\delta(P) \subseteq P$, for all $P \in \operatorname{MinSpec}(R)$. The author generalized this for a σ-derivation δ of R in [4] and proved the following:

Theorem 2.2 (Theorem 3 of Bhat [4]): Let R be a Noetherian \mathbb{Q}-algebra. Let σ be an automorphism of R and δ a σ-derivation of R such that $\sigma(\delta(a))=$ $\delta(\sigma(a))$, for all $a \in R$. Then:

1. $P_{1} \in \operatorname{MinSpec}(R)$ such that $\sigma\left(P_{1}\right)=P_{1}$ implies $O\left(P_{1}\right) \in \operatorname{MinSpec}(O(R))$.
2. $P \in \operatorname{MinSpec}(O(R))$ such that $\sigma(P \cap R)=P \cap R$ implies $P \cap R \in$ $\operatorname{MinSpec}(R)$.

We now prove the above result without the condition that $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a \in R$. Towards this we have the following:

Theorem 2.3 Let R be a Noetherian \mathbb{Q}-algebra. Let σ be an automorphism of R and δ a σ-derivation of R. Then:

1. $P_{1} \in \operatorname{MinSpec}(R)$ such that $\sigma\left(P_{1}\right)=P_{1}$ implies $O\left(P_{1}\right) \in \operatorname{MinSpec}(O(R))$.
2. $P \in \operatorname{MinSpec}(O(R))$ such that $\sigma(P \cap R)=P \cap R$ implies $P \cap R \in$ $\operatorname{MinSpec}(R)$.

Proof (1) Let $P_{1} \in \operatorname{MinSpec}(R)$ with $\sigma\left(P_{1}\right)=P_{1}$. Let $T=\left\{a \in P_{1}\right.$ such that $\delta^{k}(a) \in P_{1}$, for all positive integers $\left.k\right\}$. The it can be seen that $T \in \operatorname{Spec}(R)$. Also $\delta(T) \subseteq T$. Now $T \subseteq P_{1}$, and P_{1} being a minimal prime ideal of R implies that $T=P_{1}$. Hence $\delta\left(P_{1}\right) \subseteq P_{1}$.
Now on the same lines as in Theorem (2.22) of Goodearl and Warfield [9], it can be easily seen that $O\left(P_{1}\right) \in \operatorname{Spec}(O(R))$. Suppose that $O\left(P_{1}\right) \notin \operatorname{MinSpec}(O(R))$, and $P_{2} \subset O\left(P_{1}\right)$ is a minimal prime ideal of $O(R)$. Then we have $P_{2}=$ $O\left(P_{2} \cap R\right) \subset O\left(P_{1}\right) \in \operatorname{MinSpec}(O(R))$. Therefore $P_{2} \cap R \subset P_{1}$, which is a contradiction as $P_{2} \cap R \in \operatorname{Spec}(R)$. Hence $O\left(P_{1}\right) \in \operatorname{MinSpec}(O(R))$.
(2) Let $P \in \operatorname{MinSpec}(O(R))$ with $\sigma(P \cap R)=P \cap R$. Then on the same lines as in Theorem (2.22) of Goodearl and Warfield [9], it can be seen that $P \cap R \in \operatorname{Spec}(R)$ and $O(P \cap R) \in \operatorname{Spec}(O(R))$. Therefore $O(P \cap R)=P$. We now show that $P \cap R \in \operatorname{MinSpec}(R)$. Suppose that $U \subset P \cap R$, and $U \in \operatorname{MinSpec}(R)$. Then $O(U) \subset O(P \cap R)=P$. But $O(U) \in \operatorname{Spec}(O(R))$ and, $O(U) \subset P$, which is not possible. Thus we have $P \cap R \in \operatorname{MinSpec}(R)$.

Recall that in Proposition (1.11) of Shin [17], it has been proved that a ring R is 2-primal if and only if each minimal prime ideal of R is a completely prime ideal.

Proposition 2.4 Let R be a 2-primal ring. Let σ be an automorphism of R and δ a σ-derivation of R such that $\delta(P(R)) \subseteq P(R)$. If $P \in \operatorname{MinSpec}(R)$ is such that $\sigma(P)=P$, then $\delta(P) \subseteq P$.

Proof See Proposition (3) of Bhat [4].
Theorem 2.5 Let R be a ring. Let σ be an automorphism of R and δ a σ derivation of R such that R is a δ-ring and $\delta(P(R)) \subseteq P(R)$. Then R is 2-primal.

Proof See Theorem (4) of Bhat [4]
Proposition 2.6 Let R be a ring. Let σ be an automorphism of R and δ a σ-derivation of R. Then:

1. For any completely prime ideal P of R with $\sigma(P)=P$ and $\delta(P) \subseteq P$, $O(P)$ is a completely prime ideal of $O(R)$.
2. For any completely prime ideal U of $O(R), U \cap R$ is a completely prime ideal of R.

Proof See Proposition (4) of Bhat [4]
Corollary 2.7 Let R be a ring and σ an automorphism of R. Then:

1. For any completely prime ideal P of R with $\sigma(P)=P, S(P)$ is a completely prime ideal of $S(R)$.
2. For any completely prime ideal U of $S(R), U \cap R$ is a completely prime ideal of R.

Corollary 2.8 Let R be a ring, σ an automorphism of R and δ a σ-derivation of R such that R is moreover a δ-ring and $\delta(P(R)) \subseteq P(R)$. Let $P \in \operatorname{MinSpec}(R)$ be such that $\sigma(P)=P$. Then $O(P)$ is a completely prime ideal of $O(R)$.

Theorem 2.9 Let R be a ring, σ an automorphism of R and δ a σ-derivation of R such that R is a δ-ring and $\delta(P(R)) \subseteq P(R)$ and $\sigma(P)=P$ for all $P \in \operatorname{MinSpec}(R)$. Then $O(R)$ is 2-primal if and only if $O(P(R))=P(O(R))$.

Proof See Theorem (5) of Bhat [4]
Theorem 2.10 Let R be a Noetherian \mathbb{Q}-algebra, σ an automorphism of R and δ a σ-derivation of R such that R is a δ-ring, $\sigma(P)=P$ for all $P \in$ $\operatorname{MinSpec}(R)$ and $\delta(P(R)) \subseteq P(R)$. Then $O(R)$ is 2-primal.

Proof Let $P_{1} \in \operatorname{MinSpec}(R)$. Then it is given that $\sigma\left(P_{1}\right)=P_{1}$, and therefore Theorem (2.3) implies that $O\left(P_{1}\right) \in \operatorname{MinSpec}(O(R))$. Similarly for any $P \in$ $\operatorname{MinSpec}(O(R))$ such that $\sigma(P \cap R)=P \cap R$ Theorem (2.3) implies that $P \cap R \in \operatorname{MinSpec}(R)$. Therefore, $O(P(R))=P(O(R))$, and now the result is obvious by using Theorem (2.9).

Corollary 2.11 Let R be a Noetherian \mathbb{Q}-algebra, σ an automorphism of R and δ a σ-derivation of R such that R is a δ-ring and $\sigma(P)=P$ for all $P \in$ $\operatorname{MinSpec}(R)$. Then $O(R)$ is 2-primal.

Proof Let $P_{1} \in \operatorname{MinSpec}(R)$ with $\sigma\left(P_{1}\right)=P_{1}$. Then as in the proof of Theorem (2.3) $\delta\left(P_{1}\right) \subseteq P_{1}$, and therefore $\delta(P(R)) \subseteq P(R)$. Now the rest is obvious using Theorem (2.10).

Theorem 2.12 Let R be a Noetherian ring, which is also an algebra over \mathbb{Q}. Let σ be an automorphism of R such that R is a $\sigma(*)$-ring and δ be a σ derivation of R such that R is a δ-ring. Then $R[x ; \sigma, \delta]$ is 2-primal Noetherian.

Proof We show that $\sigma(U)=U$ for all $U \in \operatorname{MinSpec}(R)$. Suppose $U=U_{1}$ is a minimal prime ideal of R such that $\sigma(U) \neq U$. Let $U_{2}, U_{3}, \ldots, U_{n}$ be the other minimal primes of R . Now $\sigma(U)$ is also a minimal prime ideal of R . Renumber so that $\sigma(U)=U_{n}$. Let $a \in \cap_{i=1}^{n-1} U_{i}$. Then $\sigma(a) \in U_{n}$, and so $a \sigma(a) \in \cap_{i=1}^{n} U_{i}=P(R)$. Therefore $a \in P(R)$, and thus $\cap_{i=1}^{n-1} U_{i} \subseteq U_{n}$, which implies that $U_{i} \subseteq U_{n}$ for some $i \neq n$, which is impossible. Hence $\sigma(U)=U$. Now the rest is obvious.

We now have the following question:
Question 2.13 If R is a Noetherian \mathbb{Q}-algebra (even commutative), σ is an automorphism of R and δ is a σ-derivation of R. Is $O(R)$ 2-primal?

References

[1] N. Argac and N. J. Groenewald, A generalization of 2-primal near rings, Quest. Math., Vol. 27(4) (2004), 397-413.
[2] V. K. Bhat, Associated prime ideals of skew polynomial rings, Beitrge Algebra Geom., Vol. 49(1) (2008), 277-283.
[3] V. K. Bhat, Differential operator rings over 2-primal rings, Ukr. Math. Bull., Vol. 5(2) (2008), 153-158.
[4] V. K. Bhat, Ore extensions over 2-primal Noetherian rings, Bul. Acad. Stiinte Repub. Mold. Mat., No. (3) (2008), 1-10.
[5] W. D. Blair and L. W. Small, Embedding differential and skew-polynomial rings into artinain rings, Proc. Amer. Math. Soc., Vol. 109(4) 1990, 881886.
[6] P. M. Cohn, Difference Algebra, Interscience Publishers, Acad. Press, New York-London-Sydney, 1965.
[7] P. M. Cohn, Free rings and their relations, Acad. Press, London-New York, 1971.
[8] P. Gabriel, Representations des Algebres de Lie Resoulubles (D Apres J. Dixmier. In Seminaire Bourbaki, 1968-69, Pp 1-22, (Lecture Notes in Math. No 179, Berlin 1971 Springer Verlag).
[9] K. R. Goodearl and R. B. Warfield Jr, An introduction to noncommutative Noetherian rings, Cambridge Uni. Press, 1989.
[10] C. Y. Hong, N. K. Kim and T. K. Kwak, Ore-extensions of baer and p.p.-rings, J. Pure Appl. Algebra, Vol. 151(3) (2000), 215-226.
[11] C. Y. Hong, N. K. Kim and T. K. Kwak, On rings whose prime ideals are maximal, Bull. Korean Math. Soc., Vol. 37(1) (2000), 1-9.
[12] N. K. Kim and T. K. Kwak, Minimal prime ideals in 2-primal rings. Math. Japonica, Vol. 50(3) (1999), 415-420.
[13] J. Krempa, Some examples of reduced rings. Algebra Colloq., Vol. 3(4) (1996), 289-300.
[14] T. K. Kwak, Prime radicals of skew-polynomial rings, Int. J. Math. Sci., Vol. 2(2) (2003), 219-227.
[15] G. Marks, On 2-primal Ore extensions, Comm. Algebra, Vol. 29(5) (2001), 2113-2123.
[16] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley 1987; revised edition: Amer. Math. Soc. 2001.
[17] G. Y. Shin, Prime ideals and sheaf representations of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60.

[^0]: Key words: 2-primal, Minimal prime, prime radical, nil radical, automorphism, derivation. 2000 AMS Mathematics Subject Classification: Primary 16XX, Secondary 16S36, 16N40, 16P40, 16W20, 16W25.

