# FIXED POINT THEOREM FOR COUNTABLE FAMILY OF MAPS THAT SATISFY A GENERAL CONTRACTIVE CONDITION DEPENDENT ON ANOTHER FUNCTION 

Kieu Phuong Chi and Le Anh Tu<br>Department of Mathematics, Vinh University, Vinh City, Vietnam chidhv@gmail.com


#### Abstract

In this paper, we prove the fixed theorem for a countable family of maps that satisfy a general contractive condition dependent on another function.


## 1 Introduction

Let $(X, d)$ be a complete metric space and let $\mathcal{F}=\left\{\mathcal{T}_{\alpha}: \alpha \in \mathcal{I}\right\}$ be a family of maps which $\operatorname{map} X$ into itself. A point $u \in X$ is a common fixed point of $\mathcal{F}$ iff $u=T_{\alpha}(u)$ for each $T_{\alpha} \in \mathcal{F}$. In [3], Ćirić proved the following result.

Theorem 1.1. (Ćirić) Let $(X, d)$ be a complete metric space and let $\left\{S_{n}: n=\right.$ $0,1,2, \ldots\}$ be a sequence of maps which map $X$ into itself. If for some $q \in(0,1)$

$$
d\left(S_{0} x, S_{n} y\right) \leqslant q \max \left\{d(x, y), d\left(x, S_{0} x\right), d\left(y, S_{n} y\right), \frac{1}{2}\left(d\left(x, S_{n} y\right)+d\left(y, S_{0} x\right)\right)\right\}
$$

holds for each $n=1,2, \ldots$ and all $x, y \in X$, then $\left\{S_{n}: n=0,1,2, ..\right\}$ has a unique fixed point.

Applying above theorem for $\mathcal{F}$ is a singleton, we can get the following corollary.

Corollary 1.2. ([2]) Let $S$ be a $X$ complete space and let $S: X \rightarrow X$ be a map. If for some $q \in(0,1)$

$$
\begin{equation*}
d(S x, S y) \leqslant q \max \left\{d(x, y), d(x, S x), d(y, S y), \frac{1}{2}(d(x, S y)+d(S x, y))\right\} \tag{1}
\end{equation*}
$$

holds for every $x, y \in X$, then $S$ has a unique fixed point.
Recently, A. Beiranvand, S. Moradi,... (see[1]) have provided the result on the existence of fixed points for new contractive mappings. We recall some concepts.

Definition 1.3. ([1]) Let $(X, d)$ be a metric and $T, S: X \rightarrow X$ be two functions. A mapping $S$ is called to be a $T$-contraction if there exists $q \in(0,1)$ such that

$$
d(T S x, T S y) \leqslant q d(T x, T y), \forall x, y \in X
$$

Clearly, if we choose $T x=x$ for all $x \in X$ then $T$-contraction mapping becomes to a contraction. Note that, one can give an example which states that the map $S$ is a $T$-contraction but $T$ is not a contraction (see[1]). We recall the concept of generalized contraction maps.

Definition 1.4. ([2], [3]) Let $(X, d)$ be a metric and $S: X \rightarrow X$ be a function. A mapping $S$ is said to be a generalized contraction if there exists $q \in(0,1)$ such that
$d(S x, S y) \leqslant q \max \left\{d(x, y), d(x, S x), d(y, S y), \frac{1}{2}(d(x, S y)+d(S x, y))\right\}, \forall x, y \in X$.
In [2], authors give an example that states that the map $S$ is a generalized contraction, but $S$ is not a contraction. By the ideas of combining the Definition 1.3 and Definition 1.4, we have the following concept.

Definition 1.5. Let $(X, d)$ be a metric and $T, S: X \rightarrow X$ be two functions. A mapping $S$ is called a $T$-generalized contraction if there exists $q \in(0,1)$ such that

$$
\begin{align*}
d(T S x, T S y) \leqslant q \max \{ & d(T x, T y), d(T x, T S x), d(T y, T S y) \\
& \left.\frac{1}{2}(d(T x, T S y)+d(T S x, T y))\right\}, \forall x, y \in X \tag{2}
\end{align*}
$$

Definition 1.6. ([1]) Let $(X, d)$ be a metric. A mapping $T: X \rightarrow X$ is called sequentially convergent if for every sequence $\left\{y_{n}\right\}$, if $\left\{T y_{n}\right\}$ is convergent, then $\left\{y_{n}\right\}$ is also convergent.

## 2 The main results

The aim of this work is to prove the following result.
Theorem 2.1. Let $(X, d)$ be a complete metric space and $T: X \rightarrow X$ be an one-to-one, continuous and sequentially convergent mapping. If for some $q \in(0,1)$

$$
\begin{align*}
d\left(T S_{0} x, T S_{n} y\right) \leqslant q \max \{ & d(T x, T y), d\left(T x, T S_{0} x\right), d\left(T y, T S_{n} y\right) \\
& \left.\frac{1}{2}\left(d\left(T x, T S_{n} y\right)+d\left(T y, T S_{0} x\right)\right)\right\} \tag{3}
\end{align*}
$$

holds for each $n=1,2, \ldots$ and all $x, y \in X$, then $\left\{S_{n}: n=0,1,2, ..\right\}$ has a unique fixed point.
Remark 2.2. By the above theorem and taking $T x=x, \forall x \in X$, we obtain Theorem 1.1.

Next, applying Theorem 2.1 for the family $\mathcal{F}=\left\{S_{n}: n=0,1,2, \ldots\right\}$ with $S_{n}=S$ for all $n$, we can get the following result.
Corollary 2.3. Let $X$ a complete metric space and $T: X \rightarrow X$ be an one-to-one, continuous and sequentially convergent mapping. Then every $T$ generalized contraction continuous function $S: X \rightarrow X, S$ has a unique fixed point.

The following example is due to [4]. It shows that the Corollary 2.3 is stronger than Corollary 1.2.
Example 2.4. Let $X=[1,+\infty)$ be a subset of reals with the usual metric. Define $S: X \rightarrow X$ by

$$
S x=4 \sqrt{x}, \forall x \in X
$$

It is easy to see that $a=16$ is unique of $S$. If (1) holds for some $q \in(0,1)$ then

$$
d(S x, S y)<\max \left\{d(x, y), d(x, S x), d(y, S y), \frac{1}{2}(d(x, S y)+d(y, S x))\right\}
$$

for every $x, y \in X$. But by taking $x=1, y=4$ we have

$$
d(S x, S y)=\max \left\{d(x, y), d(x, S x), d(y, S y), \frac{1}{2}(d(x, S y)+d(y, S x))\right\}=4
$$

We get a contradiction. So, we cannot apply Corollary 2.1 for the map $S$. However, $S$ will satisfy Corollary 2.3 if we choose $T(x)=\ln (e x)$. Indeed, obviously $T$ is one-to-one, continuous and sequentially convergent and

$$
\begin{array}{r}
d(T S x, T S y)=|\ln (e 4 \sqrt{x})-\ln (e 4 \sqrt{y})|=\frac{1}{2}\left|\ln \frac{x}{y}\right| \\
=\frac{1}{2}|\ln (e x)-\ln (e y)|=\frac{1}{2} d(T x, T y) \\
\leqslant \frac{1}{2} \max \left\{d(T x, T y), d(T x, T S x), d(T y, T S y), \frac{1}{2}(d(T x, T S y)+d(T S x, T y))\right\}
\end{array}
$$

for every $x, y \in X$.

We need following lemma for the proof of Theorem 2.1. It is a generalization of the result of [3].

Lemma 2.5. Let $(X, d)$ is a metric space, $T: X \rightarrow X$, which is one-to-one and $S_{0}, S: X \rightarrow X$ be two maps on $X$. If
$d\left(T S_{0} x, T S y\right) \leqslant q \max \left\{d(T x, T y), d\left(T x, T S_{0} x\right), d(T y, T S y), d(T x, T S y), d\left(T y, T S_{0} x\right)\right\}$
holds for some $q, 0<q<1$ and every $x, y \in X$ and $\left\{x \in X: S_{0}(x)=x\right\}$ is a non empty set, then $\left\{x \in X: S_{0}(x)=x\right\}$ is a singleton and

$$
\left\{x \in X: S_{0}(x)=x\right\}=\{x \in X: S(x)=x\}
$$

Proof Let $a \in\left\{x \in X: S_{0} x=x\right\}$ be any fixed point. Then, by (4)

$$
\begin{aligned}
& d(T a, T S a)=d\left(T S_{0} a, T S a\right) \leqslant q \max \left\{d(T a, T a), d\left(T a, T S_{0} a\right), d(T a, T S a)\right. \\
&\left.d(T a, T S a), d\left(T a, T S_{0} a\right)\right\} \\
& \leqslant q \max \{d(T a, T S a), 0\}=q d(T a, T S a)
\end{aligned}
$$

Since $q \in(0,1)$, we have $d(T a, T S a)=0$. It implies that $T a=T S a$. By the fact that $T$ is one-to-one, we get that $S a=a$. Hence $a \in\{x \in X: S x=x\}$. Next, let $a^{\prime} \in\left\{x \in X: S_{0} x=x\right\}$ be arbitrary. Then $a^{\prime} \in\{x \in X: S x=x\}$ and by (4),

$$
\begin{aligned}
d\left(T a, T a^{\prime}\right)= & d\left(T S_{0} a, T S a^{\prime}\right) \leqslant q \max \left\{d\left(T a, T a^{\prime}\right), d\left(T a, T S_{0} a\right), d\left(T a^{\prime}, T S a^{\prime}\right),\right. \\
& \left.d\left(T a, T S a^{\prime}\right), d\left(T a^{\prime}, T S_{0} a^{\prime}\right)\right\} \\
= & q \max \left\{0, d\left(T a, T a^{\prime}\right)\right\}=q d\left(T a, T a^{\prime}\right) .
\end{aligned}
$$

It follows that $d\left(T a, T a^{\prime}\right)=0$. Since $T$ is one-to-one, we have $a=a^{\prime}$. Therefore

$$
\left\{x \in X: S_{0}(x)=x\right\}=\{a\}=\{x \in X: S(x)=x\} .
$$

Proof of Theorem 2.1 Fix $x_{0} \in X$. Consider the sequence $\left\{x_{n}\right\}$ define by $x_{0}, x_{1}=S_{0} x_{0}, x_{2}=S_{1} x_{1}, x_{3}=S_{0} x_{2}, x_{4}=S_{2} x_{3}, \ldots, x_{2 n-1}=S_{0} x_{2 n-2}, x_{2 n}=$ $S_{n} x_{2 n-1}, \ldots$. For each $n=0,1,2, \ldots$, we set $y_{n}=T x_{n}$. We claim that $\left\{y_{n}\right\}$ is
a Cauchy sequence. Indeed, for each $n=1,2, \ldots$, we have

$$
\begin{aligned}
& d\left(y_{2 n}, y_{2 n-1}\right)=d\left(T x_{2 n}, T x_{2 n-1}\right)=d\left(T S_{0} x_{2 n-2}, T S_{n} x_{2 n-1}\right) \\
& \leqslant q \max \left\{d\left(T x_{2 n-2}, T x_{2 n-1}\right), d\left(T x_{2 n-2}, T S_{0} x_{2 n-2}\right), d\left(T x_{2 n-1}, T S_{n} x_{2 n-1}\right)\right. \\
& \left.\frac{1}{2}\left(d\left(T x_{2 n-2}, T S_{n} x_{2 n-1}\right)+d\left(T x_{2 n-1}, T S_{0} x_{2 n-2}\right)\right)\right\} \\
& =q \max \left\{d\left(y_{2 n-2}, y_{2 n-1}\right), d\left(y_{2 n-2}, y_{2 n-1}\right), d\left(y_{2 n-1}, y_{2 n}\right)\right. \\
& \left.\frac{1}{2}\left(d\left(y_{2 n-2}, y_{2 n}\right)+d\left(y_{2 n-1}, y_{2 n-1}\right)\right)\right\} \\
& \quad=q \max \left\{d\left(y_{2 n-2}, y_{2 n-1}\right), d\left(y_{2 n-1}, y_{2 n}\right), \frac{1}{2} d\left(y_{2 n-2}, y_{2 n}\right)\right\}
\end{aligned}
$$

Since $q \in(0,1)$, we infer that

$$
d\left(y_{2 n}, y_{2 n-1}\right) \leqslant q \max \left\{d\left(y_{2 n-2}, y_{2 n-1}\right), \frac{1}{2} d\left(y_{2 n-2}, y_{2 n}\right)\right\}
$$

We now show that

$$
d\left(y_{2 n}, y_{2 n-1}\right) \leqslant q d\left(y_{2 n-2}, y_{2 n-1}\right)
$$

Suppose that $\frac{1}{2} d\left(y_{2 n-2}, y_{2 n}\right)>d\left(y_{2 n-2}, y_{2 n-1}\right)$. Then

$$
2 d\left(y_{2 n-2}, y_{2 n-1}\right)<d\left(y_{2 n-2}, y_{2 n}\right) \leqslant d\left(y_{2 n-2}, y_{2 n-1}\right)+d\left(y_{2 n-1}, y_{2 n}\right)
$$

Hence $d\left(y_{2 n-2}, y_{2 n-1}\right)<d\left(y_{2 n-1}, y_{2 n}\right)$. We obtain

$$
\begin{aligned}
d\left(y_{2 n}, y_{2 n-1}\right) & \leqslant q \max \left\{d\left(y_{2 n-2}, y_{2 n-1}\right), \frac{1}{2} d\left(y_{2 n-2}, y_{2 n}\right)\right\} \\
& \leqslant q \max \left\{d\left(y_{2 n-2}, y_{2 n-1}, \frac{1}{2}\left(d\left(y_{2 n-2}, y_{2 n-1}\right)+d\left(y_{2 n-1}, y_{2 n}\right)\right)\right\}\right. \\
& <q \max \left\{d\left(y_{2 n-1}, y_{2 n}\right), \frac{1}{2}\left(d\left(y_{2 n-1}, y_{2 n}\right)+d\left(y_{2 n-1}, y_{2 n}\right)\right\}\right. \\
& =q d\left(y_{2 n-1}, y_{2 n}\right)
\end{aligned}
$$

Since $q \in(0,1)$, we get a contracdition. Thus $\frac{1}{2} d\left(y_{2 n-2}, y_{2 n}\right) \leqslant d\left(y_{2 n-2}, y_{2 n-1}\right)$. It follows that

$$
d\left(y_{2 n}, y_{2 n-1}\right) \leqslant q \max \left\{d\left(y_{2 n-2}, y_{2 n-1}\right), \frac{1}{2} d\left(y_{2 n-2}, y_{2 n}\right)\right\}=q d\left(y_{2 n-2}, y_{2 n-1}\right)
$$

By the same way, we get that

$$
d\left(y_{2 n-2}, y_{2 n-1}\right) \leqslant q d\left(y_{2 n-3}, y_{2 n-2}\right), \forall n=1,2, \ldots
$$

It implies that

$$
d\left(y_{2 n+1}, y_{2 n}\right) \leqslant q d\left(y_{2 n-2}, y_{2 n-1}\right) \leqslant q^{2} d\left(y_{2 n-3}, y_{2 n-2}\right) \leqslant \ldots \leqslant q^{2 n-1} d\left(y_{0}, y_{1}\right)
$$

By an elementary computation, we can take

$$
d\left(y_{k}, y_{k+p}\right) \leqslant d\left(y_{k}, y_{k+1}\right)+\ldots+d\left(y_{k+p-1}, y_{k+p}\right) \leqslant q^{k} \frac{d\left(y_{0}, y_{1}\right)}{1-q}, \forall p \in \mathbb{N}
$$

Therefore, $\left\{y_{n}\right\}$ is a Cauchy sequence. The claim is proved.
Since $X$ is complete, we have $\lim _{n \rightarrow \infty} y_{n}=T x_{n}=u \in X$. By the fact that $T$ is a continuous and sequentially convergent mapping, we infer

$$
\lim _{n \rightarrow \infty} x_{n}=a \in X \text { and } T a=u
$$

We need to show that $S_{n} a=a$ for all $n=0,1,2, \ldots$ By the triangle inequality and (3), we have

$$
\begin{aligned}
& d\left(T a, T S_{0} a\right) \leqslant d\left(T a, y_{2 n}\right)+d\left(y_{2 n}, T S_{0} a\right)=d\left(u, y_{2 n}\right)+\left(T x_{2 n}, T S_{0} a\right) \\
& \quad=d\left(u, y_{2 n}\right)+d\left(T S_{n} x_{2 n-1}, T S_{0} a\right) \\
& \leqslant d\left(u, y_{2 n}\right)+q \max \left\{d\left(T x_{2 n-1}, T a\right), d\left(T a, T S_{0} a\right), d\left(T x_{2 n-1}, T S_{n} x_{2 n-1}\right)\right. \\
& \left.\frac{1}{2}\left(d\left(T a, T S_{n} x_{2 n-1}\right)+d\left(T x_{2 n-1}, T S_{0} a\right)\right)\right\} \\
& =d\left(u, y_{2 n}\right)+q \max \left\{d\left(y_{2 n-1}, u\right), d\left(T a, T S_{0} a\right), d\left(y_{2 n-1}, y_{2 n}\right)\right. \\
& \left.\frac{1}{2}\left(d\left(u, y_{2 n}\right)+d\left(y_{2 n-1}, T S_{0} a\right)\right)\right\}
\end{aligned}
$$

Since

$$
\frac{1}{2} d\left(y_{2 n-1}, T S_{0} a\right) \leqslant d\left(y_{2 n-1}, T S_{0} a\right) \leqslant d\left(y_{2 n-1}, T a\right)+d\left(T a, T S_{0} a\right)
$$

we have

$$
\begin{gathered}
d\left(T a, T S_{0} a\right)=d\left(u, y_{2 n}\right)+q \max \left\{d\left(y_{2 n-1}, u\right), d\left(T a, T S_{0} a\right), d\left(y_{2 n-1}, y_{2 n}\right)\right. \\
\left.\frac{1}{2}\left(d\left(u, y_{2 n}\right)+d\left(y_{2 n-1}, T S_{0} a\right)\right)\right\} \\
\leqslant d\left(u, y_{2 n}\right)+q\left(d\left(y_{2 n-1}, u\right)+d\left(T a, T S_{0} a\right)+d\left(y_{2 n-1}, y_{2 n}\right)+d\left(u, y_{2 n}\right)\right) .
\end{gathered}
$$

It follows that

$$
d\left(T a, T S_{0} a\right) \leqslant \frac{1}{1-q}\left((1+q) d\left(u, y_{2 n}\right)+q d\left(y_{2 n-1}, u\right)+q d\left(y_{2 n-1}, y_{2 n}\right)\right), \quad \forall n
$$

Combining this and the fact that $\lim _{n \rightarrow \infty} y_{n}=u$, we get $d\left(T a, T S_{0} a\right)=0$. Since $T$ is one-in-one, we must have $S_{0} a=a$. By (3), it follows that $d\left(T S_{0} x, T S_{n} y\right) \leqslant$
$q \max \left\{d(T x, T y), d\left(T x, T S_{0} x\right), d\left(T y, T S_{n} y\right), d\left(T x, T S_{n} y\right), d\left(T y, T S_{0} x\right)\right\}$. Applying Lemma 2.5, we can conclude that $S_{n} a=a$ for all $n=1,2, \ldots$ and $a$ is unique fixed point of $\left\{S_{n}: n=0,1,2, \ldots\right\}$, and our proof is now completed.

Acknowledgments. The authors are greatly indebted to Professor Tran Van An for many valuable discussions.

## References

[1] A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh, Two Fixed-Point Theorems for Special Mapppings, arXiv:0903.1504.
[2] L.B. Ćirić, Genralized contraction and fixed point theorems, Publ. Inst. Math., 12(36), (1971), 19-26.
[3] L.B. Ćirić, On a family of contractive maps and fixed point, Publ. Inst. Math., $\mathbf{1 7}$ (31), (1974), 45-51.
[4] S. Moradi, Fixed-point theorems for mapppings satisfying a general contractive condition of integral type depended an another function, arXiv:0903.1574.

