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Abstract

In this paper, we prove the fixed theorem for a countable family of
maps that satisfy a general contractive condition dependent on another
function.

1 Introduction

Let (X, d) be a complete metric space and let F = {7, : o € Z} be a family of
maps which map X into itself. A point u € X is a common fixed point of F iff
u = T, (u) for each T, € F. In [3], Ciri¢ proved the following result.

Theorem 1.1. (Ciri¢) Let (X, d) be a complete metric space and let {S, :n =
0,1,2,...} be a sequence of maps which map X into itself. If for some g € (0,1)

1
d(Sox, Spy) < gmax {d(x, y), d(x, Sox), d(y, Sny), 3 (d(x, Sny) + d(y, ng))}

holds for each n = 1,2,... and all z,y € X, then {S, : n = 0,1,2,..} has a
unique fized point.
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Applying above theorem for F is a singleton, we can get the following
corollary.

Corollary 1.2. ([2]) Let S be a X complete space and let S : X — X be a
map. If for some q € (0,1)

d(Sz, Sy) < qmax{d(x,y),d(z, Sz), d(y, Sy), (d(x, Sy) + d(Sx,y))} (1)

[N

holds for every x,y € X, then S has a unique fized point.

Recently, A. Beiranvand, S. Moradi,... (see[1]) have provided the result on
the existence of fixed points for new contractive mappings. We recall some
concepts.

Definition 1.3. ([1]) Let (X, d) be a metric and T, S : X — X be two func-
tions. A mapping S is called to be a T-contraction if there exists ¢ € (0,1)
such that

d(T Sz, TSy) < qd(Tx,Ty), Vx,y € X.

Clearly, if we choose Tx = x for all x € X then T-contraction mapping
becomes to a contraction. Note that, one can give an example which states
that the map S is a T—contraction but 7' is not a contraction (see[l]). We
recall the concept of generalized contraction maps.

Definition 1.4. ([2],[3]) Let (X, d) be a metric and S : X — X be a function.
A mapping S is said to be a generalized contraction if there exists ¢ € (0,1)
such that

d(Sz, Sy) < gmax{d(x,y),d(x, Sx),d(y, Sy), (d(x, Sy)—!—d(Sx,y))}, Vr,y € X.

N =

In [2], authors give an example that states that the map S is a generalized
contraction, but S is not a contraction. By the ideas of combining the Definition
1.3 and Definition 1.4, we have the following concept.

Definition 1.5. Let (X, d) be a metric and 7,5 : X — X be two functions.
A mapping S is called a T-generalized contraction if there exists g € (0, 1) such
that

d(T Sz, TSy) < gmax {d(Tx, Ty),d(Tx,TSx),d(Ty, T'Sy),

1 (2)
§(d(Tx, TSy) +d(TSz, Ty)) }, Yo,y € X.

Definition 1.6. ([1]) Let (X, d) be a metric. A mapping T : X — X is called
sequentially convergent if for every sequence {y,}, if {Ty,} is convergent, then
{yn} is also convergent.
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2 The main results

The aim of this work is to prove the following result.

Theorem 2.1. Let (X,d) be a complete metric space and T : X — X be
an one-to-one, continuous and sequentially convergent mapping. If for some
q€(0,1)
d(T'Soxz, TSny) < ¢gmax {d(Tx, Ty),d(Tx, TSox),d(Ty, T'Sny),
3)
1 (
5 (d(T2, TS,y) + d(Ty, TSOx))}

holds for each n = 1,2,... and all z,y € X, then {S, : n = 0,1,2,..} has a
unique fized point.

Remark 2.2. By the above theorem and taking Tr = z,Vx € X, we obtain
Theorem 1.1.

Next, applying Theorem 2.1 for the family F = {S, : n = 0,1,2, ...} with
Sy, = S for all n, we can get the following result.

Corollary 2.3. Let X a complete metric space and T : X — X be an
one-to-one, continuous and sequentially convergent mapping. Then every T-
generalized contraction continuous function S : X — X, S has a unique fized
point.

The following example is due to [4]. It shows that the Corollary 2.3 is
stronger than Corollary 1.2.

Example 2.4. Let X = [1,4+00) be a subset of reals with the usual metric.
Define S : X — X by
St = 4/z,Vr € X.

It is easy to see that a = 16 is unique of S. If (1) holds for some ¢ € (0, 1) then
d(Sz, Sy) < max {d(x, y), d(z, Sz), d(y, Sy), %(d(x, Sy) + d(y, Sx)) },
for every z,y € X. But by taking x = 1,y = 4 we have
d(Sz, Sy) = max {d(x, y),d(x, Sx), d(y, Sy), %(d(x, Sy) + d(y, Sx))} =4.

We get a contradiction. So, we cannot apply Corollary 2.1 for the map S. How-
ever, S will satisfy Corollary 2.3 if we choose T'(x) = In(ex). Indeed, obviously
T is one-to-one, continuous and sequentially convergent and

d(TSz, TSy) = | In(edv/z) — In(edy/7)| = %| In §|

d(Tx,Ty)

N~

= 2lInfex) — Iney)| =

1
< -~ max {d(Tx, Ty),d(Tx,TSz),d(Ty, TSy),

! (d(T2, TSy) + d(TS, Ty)) }

N~
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for every z,y € X.

We need following lemma for the proof of Theorem 2.1. It is a generalization
of the result of [3].

Lemma 2.5. Let (X,d) is a metric space, T : X — X, which is one-to-one
and Sy, S : X — X be two maps on X. If

d(T'Soxz, TSy) < gmax {d(Tx, Ty),d(Tx,TSox),d(Ty, TSy),d(Txz, TSy),d(Ty, TSO:U)}
(4)

holds for some q, 0 < g <1 and every x,y € X and {x € X : So(x) =z} is a
non empty set, then {x € X : So(x) = x} is a singleton and

{zeX: :S(@x)=z}={zreX:S()=c}

Proof Let a € {x € X : Spxz = z} be any fixed point. Then, by (4)

d(Ta,TSa) = d(TSpa, T'Sa) < gmax {d(Ta, Ta),d(Ta,TSoa),d(Ta,TSa),

d(Ta,TSa),d(Ta, TSoa)}
< gmax{d(Ta,TSa),0} = qd(Ta,TSa).
Since ¢ € (0,1), we have d(Ta,TSa) = 0. It implies that Ta = T'Sa. By the
fact that T' is one-to-one, we get that Sa = a. Hence a € {z € X : Sz = z}.

Next, let ' € {z € X : Syz = x} be arbitrary. Then a’ € {z € X : Sz = z}
and by (4),

d(Ta,Ta") = d(TSpa, TSa") < qmax{d(Ta,Ta’),d(Ta,TSoa),d(Ta’,TSa'),
d(Ta,TSa"),d(Ta',TSya’)}
= gmax{0,d(Ta,Ta’)} = qd(Ta,Td’).

It follows that d(Ta,Ta’) = 0. Since T is one-to-one, we have a = a’. Therefore
{zeX:S@x)=z}={a}={z e X:5(z) ==z}

O

Proof of Theorem 2.1 Fix zy € X. Consider the sequence {z,} define by

o, L1 = S().CC(),J?Q = S’lxl,xg = SQ$2,$4 = SQJ?g, ey L2p—1 = S(]x2n_2,x2n =
SnTan—1,.... Foreach n =0,1,2,..., we set y, = Tz,,. We claim that {y,} is
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a Cauchy sequence. Indeed, for each n = 1,2, ..., we have
d(Yon, Yon—1) = d(Txon, Txon—1) = d(TSox2n—2, TSnTan—1)
< gmax {d(T$2n—2, Txon-1),d(Tx2n—2, TSoxon—2), d(Txon—1,TSnTon—1),

1
§(d(T$2n—2, TSpxon—1) + d(Txon—_1, TSOZUQn—z)) }

= gmax {d(yzn—z, an—l),d(yzn—z, yzn—l), d(yzn—l, an),

1
§(d(92n—2, Yon) + d(Yan—1, an—l)) }

1
= gmax {d(?ﬂn—z, Yon—1),d(Y2n—1,Y2n), §d(92n—2, y2n)}-

Since ¢ € (0, 1), we infer that

1
d(Y2n, Y2n—1) < gmax {d(yzn—z, Yon—1)s §d(:‘/2n—2; an)}

We now show that

d(Y2n, Yon—1) < qd(Y2n—2,Y2n—1)-
1
Suppose that §d(y2n_2, Yon) > d(Yan—2, Y2n—1)- Then

2d(yan—2, Y2n—1) < d(Yon—2; Y2n) < d(Y2n—2, Y2n—1) + d(Y2n—1, Y2n)-

Hence d(ygn_g, y2n—1) < d(ygn_l, ygn). We obtain

1
d(Yan, Yon—1) < gmax {d(yzn—z, Yon—1)s §d(y2n_2, an)}

1

< qmax § d(Y2n—2, Y2n—1, 5(d(W2n—2, Y2n—1) + d(Y2n—1,Y2n))
2

1
< gmax {d(an—l, Yon), §(d(92n—1, Yon) + d(y2n—1, an)}

= qd(y2n—1, Y2n)-

1
Since ¢ € (0, 1), we get a contracdition. Thus §d(y2n_2, Yon) < d(Y2n—2, Yon—1)-
It follows that

1
d(an, y2n—1) < gmax {d(yzn—z, y2n—1), §d(92n—2, an)} = qd(an—Q, yzn—l)-
By the same way, we get that

d(Yan—2, Y2n—-1) < qd(Yon—3, Yan—2),Vn =1,2, ...
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It implies that
d(Yon+1,Y2n) < qd(Yan—2,Yon—1) < ¢*d(Y2n—3, Yon—2) < ... < ¢ d(yo, 1)
By an elementary computation, we can take

d(yo,
A(Yks Yrtp) < A(Yks Y1) + oo+ AYrtp—1, Ytp) < qk(lyofyql), Vp € N.

Therefore, {y,} is a Cauchy sequence. The claim is proved.
Since X is complete, we have lim y, = Tz, = u € X. By the fact that T
n—oo

is a continuous and sequentially convergent mapping, we infer

lim z, =a € X and Ta = u.

n—oo

We need to show that S,a = a for alln =0, 1,2, .... By the triangle inequality
and (3), we have

d(Ta,TSpa) < d(Ta,yon) + d(yan, T'Soa) = d(u, yan) + (Txan, T'Soa)
- d(u; an) + d(TSnxQn—la TSOCL)

< d(u, y2n) + ¢ max {d(Txgn_l, Ta),d(Ta,TSoa),d(Txon—1,TSnxon—1),
1
§(d(TCL, TSnxgn_l) + d(TJ?Qn_l, TS()CL)) }

= d(ua an) + gmax {d(y%—l, ’U,), d(TCL, TSOCL)) d(yQTL—la an)

1
5(Auy20) + (201, TS00)) }.
Since
1
§d(92n—1, TSoa) < d(y2n—1,T'Soa) < d(y2n—1,Ta) + d(Ta, TSpa),

we have

d(TCL, TSOCL) = d(ua an) + ¢max {d(y%—l, ’U,), d(TCL, TSOCL)) d(yQTL—la an)

(0, 20) + Ay 1, TS0m) }

< d(uy2n) + Q(d(yzn—l, u) 4+ d(Ta, TSoa) + d(Yon—1, Y2n) + d(u, yzn))
It follows that

1
A(Ta, TSoa) < 7 (1 +0)dut y20) + 9d(y2n-1,0) + 420 -1,920) ) .

Combining this and the fact that lim y, = u, we get d(Ta, T'Spa) = 0. Since

n—oo

T is one-in-one, we must have Spa = a. By (3), it follows that d(T'Sox, T Spy) <
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g max {d(Tx, Ty), d(T, TSox), d(Ty, TSpy), d(T, TSny), d(Ty, TSox) } Apply-
ing Lemma 2.5, we can conclude that S,a = a for alln = 1,2, ... and a is unique
fixed point of {S,, : n =0,1,2,...}, and our proof is now completed. O
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