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Abstract

In this paper, we prove the fixed theorem for a countable family of
maps that satisfy a general contractive condition dependent on another
function.

1 Introduction

Let (X, d) be a complete metric space and let F = {Tα : α ∈ I} be a family of
maps which map X into itself. A point u ∈ X is a common fixed point of F iff
u = Tα(u) for each Tα ∈ F . In [3], Ćirić proved the following result.

Theorem 1.1. (Ćirić) Let (X, d) be a complete metric space and let {Sn : n =
0, 1, 2, ...} be a sequence of maps which map X into itself. If for some q ∈ (0, 1)

d(S0x, Sny) � q max
{

d(x, y), d(x, S0x), d(y, Sny),
1
2
(
d(x, Sny) + d(y, S0x)

)}

holds for each n = 1, 2, ... and all x, y ∈ X, then {Sn : n = 0, 1, 2, ..} has a
unique fixed point.
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Applying above theorem for F is a singleton, we can get the following
corollary.

Corollary 1.2. ([2]) Let S be a X complete space and let S : X → X be a
map. If for some q ∈ (0, 1)

d(Sx, Sy) � q max{d(x, y), d(x, Sx), d(y, Sy),
1
2
(
d(x, Sy) + d(Sx, y)

)
} (1)

holds for every x, y ∈ X, then S has a unique fixed point.

Recently, A. Beiranvand, S. Moradi,... (see[1]) have provided the result on
the existence of fixed points for new contractive mappings. We recall some
concepts.

Definition 1.3. ([1]) Let (X, d) be a metric and T, S : X → X be two func-
tions. A mapping S is called to be a T -contraction if there exists q ∈ (0, 1)
such that

d(TSx, TSy) � qd(Tx, Ty), ∀x, y ∈ X.

Clearly, if we choose Tx = x for all x ∈ X then T -contraction mapping
becomes to a contraction. Note that, one can give an example which states
that the map S is a T−contraction but T is not a contraction (see[1]). We
recall the concept of generalized contraction maps.

Definition 1.4. ([2],[3]) Let (X, d) be a metric and S : X → X be a function.
A mapping S is said to be a generalized contraction if there exists q ∈ (0, 1)
such that

d(Sx, Sy) � q max{d(x, y), d(x, Sx), d(y, Sy),
1
2
(
d(x, Sy)+d(Sx, y)

)
}, ∀x, y ∈ X.

In [2], authors give an example that states that the map S is a generalized
contraction, but S is not a contraction. By the ideas of combining the Definition
1.3 and Definition 1.4, we have the following concept.

Definition 1.5. Let (X, d) be a metric and T, S : X → X be two functions.
A mapping S is called a T -generalized contraction if there exists q ∈ (0, 1) such
that

d(TSx, TSy) � q max
{
d(Tx, Ty), d(Tx, TSx), d(Ty, TSy),

1
2
(
d(Tx, TSy) + d(TSx, Ty)

)}
, ∀x, y ∈ X.

(2)

Definition 1.6. ([1]) Let (X, d) be a metric. A mapping T : X → X is called
sequentially convergent if for every sequence {yn}, if {Tyn} is convergent, then
{yn} is also convergent.
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2 The main results

The aim of this work is to prove the following result.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X be
an one-to-one, continuous and sequentially convergent mapping. If for some
q ∈ (0, 1)

d(TS0x, TSny) � q max
{
d(Tx, Ty), d(Tx, TS0x), d(Ty, TSny),

1
2
(
d(Tx, TSny) + d(Ty, TS0x)

)} (3)

holds for each n = 1, 2, ... and all x, y ∈ X, then {Sn : n = 0, 1, 2, ..} has a
unique fixed point.

Remark 2.2. By the above theorem and taking Tx = x, ∀x ∈ X, we obtain
Theorem 1.1.

Next, applying Theorem 2.1 for the family F = {Sn : n = 0, 1, 2, ...} with
Sn = S for all n, we can get the following result.

Corollary 2.3. Let X a complete metric space and T : X → X be an
one-to-one, continuous and sequentially convergent mapping. Then every T -
generalized contraction continuous function S : X → X, S has a unique fixed
point.

The following example is due to [4]. It shows that the Corollary 2.3 is
stronger than Corollary 1.2.

Example 2.4. Let X = [1, +∞) be a subset of reals with the usual metric.
Define S : X → X by

Sx = 4
√

x, ∀x ∈ X.

It is easy to see that a = 16 is unique of S. If (1) holds for some q ∈ (0, 1) then

d(Sx, Sy) < max
{

d(x, y), d(x, Sx), d(y, Sy),
1
2
(
d(x, Sy) + d(y, Sx)

)}
,

for every x, y ∈ X. But by taking x = 1, y = 4 we have

d(Sx, Sy) = max
{

d(x, y), d(x, Sx), d(y, Sy),
1
2
(
d(x, Sy) + d(y, Sx)

)}
= 4.

We get a contradiction. So, we cannot apply Corollary 2.1 for the map S. How-
ever, S will satisfy Corollary 2.3 if we choose T (x) = ln(ex). Indeed, obviously
T is one-to-one, continuous and sequentially convergent and

d(TSx, TSy) = | ln(e4
√

x) − ln(e4
√

y)| =
1
2

∣∣ ln
x

y

∣∣

=
1
2
| ln(ex) − ln(ey)| =

1
2
d(Tx, Ty)

� 1
2

max
{

d(Tx, Ty),d(Tx, TSx), d(Ty, TSy),
1
2
(
d(Tx, TSy) + d(TSx, Ty)

)}
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for every x, y ∈ X.

We need following lemma for the proof of Theorem 2.1. It is a generalization
of the result of [3].

Lemma 2.5. Let (X, d) is a metric space, T : X → X, which is one-to-one
and S0, S : X → X be two maps on X. If

d(TS0x, TSy) � q max
{
d(Tx, Ty), d(Tx, TS0x), d(Ty, TSy), d(Tx, TSy), d(Ty, TS0x)

}

(4)
holds for some q, 0 < q < 1 and every x, y ∈ X and {x ∈ X : S0(x) = x} is a
non empty set, then {x ∈ X : S0(x) = x} is a singleton and

{x ∈ X : S0(x) = x} = {x ∈ X : S(x) = x}.

Proof Let a ∈ {x ∈ X : S0x = x} be any fixed point. Then, by (4)

d(Ta, TSa) = d(TS0a, TSa) � q max
{

d(Ta, Ta), d(Ta, TS0a), d(Ta, TSa),

d(Ta, TSa), d(Ta, TS0a)
}

� q max{d(Ta, TSa), 0} = qd(Ta, TSa).

Since q ∈ (0, 1), we have d(Ta, TSa) = 0. It implies that Ta = TSa. By the
fact that T is one-to-one, we get that Sa = a. Hence a ∈ {x ∈ X : Sx = x}.
Next, let a′ ∈ {x ∈ X : S0x = x} be arbitrary. Then a′ ∈ {x ∈ X : Sx = x}
and by (4),

d(Ta, Ta′) = d(TS0a, TSa′) � q max{d(Ta, Ta′), d(Ta, TS0a), d(Ta′, TSa′),
d(Ta, TSa′), d(Ta′, TS0a

′)}
= q max{0, d(Ta, Ta′)} = qd(Ta, Ta′).

.

It follows that d(Ta, Ta′) = 0. Since T is one-to-one, we have a = a′. Therefore

{x ∈ X : S0(x) = x} = {a} = {x ∈ X : S(x) = x}.

�

Proof of Theorem 2.1 Fix x0 ∈ X. Consider the sequence {xn} define by
x0, x1 = S0x0, x2 = S1x1, x3 = S0x2, x4 = S2x3, ..., x2n−1 = S0x2n−2, x2n =
Snx2n−1, . . . . For each n = 0, 1, 2, ..., we set yn = Txn. We claim that {yn} is
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a Cauchy sequence. Indeed, for each n = 1, 2, ..., we have

d(y2n, y2n−1) = d(Tx2n, Tx2n−1) = d(TS0x2n−2, TSnx2n−1)

� q max
{

d(Tx2n−2, Tx2n−1),d(Tx2n−2, TS0x2n−2), d(Tx2n−1, TSnx2n−1),

1
2
(
d(Tx2n−2, TSnx2n−1) + d(Tx2n−1, TS0x2n−2)

)}

= q max
{
d(y2n−2, y2n−1),d(y2n−2, y2n−1), d(y2n−1, y2n),

1
2
(
d(y2n−2, y2n) + d(y2n−1, y2n−1)

)}

= q max
{
d(y2n−2, y2n−1),d(y2n−1, y2n),

1
2
d(y2n−2, y2n)

}
.

Since q ∈ (0, 1), we infer that

d(y2n, y2n−1) � q max
{
d(y2n−2, y2n−1),

1
2
d(y2n−2, y2n)

}
.

We now show that

d(y2n, y2n−1) � qd(y2n−2, y2n−1).

Suppose that
1
2
d(y2n−2, y2n) > d(y2n−2, y2n−1). Then

2d(y2n−2, y2n−1) < d(y2n−2, y2n) � d(y2n−2, y2n−1) + d(y2n−1, y2n).

Hence d(y2n−2, y2n−1) < d(y2n−1, y2n). We obtain

d(y2n, y2n−1) � q max
{

d(y2n−2, y2n−1),
1
2
d(y2n−2, y2n)

}

� q max
{

d(y2n−2, y2n−1,
1
2
(
d(y2n−2, y2n−1) + d(y2n−1, y2n)

)}

< q max
{
d(y2n−1, y2n),

1
2
(
d(y2n−1, y2n) + d(y2n−1, y2n

)}

= qd(y2n−1, y2n).

Since q ∈ (0, 1) , we get a contracdition. Thus
1
2
d(y2n−2, y2n) � d(y2n−2, y2n−1).

It follows that

d(y2n, y2n−1) � q max
{
d(y2n−2, y2n−1),

1
2
d(y2n−2, y2n)

}
= qd(y2n−2, y2n−1).

By the same way, we get that

d(y2n−2, y2n−1) � qd(y2n−3, y2n−2), ∀n = 1, 2, ....
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It implies that

d(y2n+1, y2n) � qd(y2n−2, y2n−1) � q2d(y2n−3, y2n−2) � ... � q2n−1d(y0, y1).

By an elementary computation, we can take

d(yk, yk+p) � d(yk, yk+1) + ... + d(yk+p−1, yk+p) � qk d(y0, y1)
1 − q

, ∀p ∈ N.

Therefore, {yn} is a Cauchy sequence. The claim is proved.
Since X is complete, we have lim

n→∞yn = Txn = u ∈ X. By the fact that T

is a continuous and sequentially convergent mapping, we infer

lim
n→∞xn = a ∈ X and Ta = u.

We need to show that Sna = a for all n = 0, 1, 2, . . . . By the triangle inequality
and (3), we have

d(Ta,TS0a) � d(Ta, y2n) + d(y2n, TS0a) = d(u, y2n) + (Tx2n, TS0a)
= d(u, y2n) + d(TSnx2n−1, TS0a)

� d(u, y2n) + q max
{

d(Tx2n−1, Ta), d(Ta, TS0a), d(Tx2n−1, TSnx2n−1),

1
2
(
d(Ta, TSnx2n−1) + d(Tx2n−1, TS0a)

)}

= d(u, y2n) + q max
{

d(y2n−1, u), d(Ta, TS0a), d(y2n−1, y2n)

1
2
(
d(u, y2n) + d(y2n−1, TS0a)

)}
.

Since

1
2
d(y2n−1, TS0a) � d(y2n−1, TS0a) � d(y2n−1, Ta) + d(Ta, TS0a),

we have

d(Ta, TS0a) = d(u, y2n) + q max
{

d(y2n−1, u), d(Ta, TS0a), d(y2n−1, y2n)

1
2
(
d(u, y2n) + d(y2n−1, TS0a)

)}

� d(u,y2n) + q
(
d(y2n−1, u) + d(Ta, TS0a) + d(y2n−1, y2n) + d(u, y2n)

)
.

It follows that

d(Ta, TS0a) � 1
1 − q

(
(1 + q)d(u, y2n) + qd(y2n−1, u) + qd(y2n−1, y2n)

)
, ∀n.

Combining this and the fact that lim
n→∞ yn = u, we get d(Ta, TS0a) = 0. Since

T is one-in-one, we must have S0a = a. By (3), it follows that d(TS0x, TSny) �
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q max
{
d(Tx, Ty), d(Tx, TS0x), d(Ty, TSny), d(Tx, TSny), d(Ty, TS0x)

}
. Apply-

ing Lemma 2.5, we can conclude that Sna = a for all n = 1, 2, ... and a is unique
fixed point of {Sn : n = 0, 1, 2, ...}, and our proof is now completed. �
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