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Abstract

Using a technique of Kannapan from 2003, four functional equations,
resemble certain well-known hyperbolic sine-cosine identities and gener-
alizing the classical d’Alembert functional equation, are solved and inter-
relations among the solution functions are investigated.

1 Introduction

The two trigonometric functions g(x) = cosx, f(x) = sinx clearly satisfy the
following four sine-cosine type functional equations over R

g(x − y) = g(x)g(y) + f(x)f(y) (1.1)
g(x + y) = g(x)g(y) − f(x)f(y) (1.2)
f(x + y) = f(x)g(y) + g(x)f(y) (1.3)
f(x − y) = f(x)g(y) − g(x)f(y). (1.4)

In 1953, V.L. Klee posed the following problem in [6].
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Suppose that f, g : R → R satisfy the functional equation (1.1) with f(t) = 1
and g(t) = 0 for some t �= 0. Prove that f and g satisfy the functional equations
(1.2), (1.3) and (1.4).

A solution by T.S. Chihara appeared in [3], but it unfortunately had a gap.
In 2003, Kannappan, [5], gave a general solution of (1.1) without any additional
conditions by proving:

Theorem 1.1. Let (G, +) be a two-divisible abelian group (i.e., a group for
which to each x ∈ G, there exists a unique y ∈ G such that x = 2y). If the
functions f, g : G → C satisfy the functional equation (1.1), then they also
satisfy the equations (1.2), (1.3) and (1.4).

Moreover, the solution functions are given by

g(x) =
1
2

(E(x) + E∗(x)) , f(x) = b0 (E(x) − E∗(x)) , (1.5)

where b2
0 = −1/4, and the function E : G → C∗ := C \ {0} satisfies the

(exponential) Cauchy functional equation E(x + y) = E(x)E(y) with E∗(x) =
1/E(x).

Theorem 1.1 leads to ([1], [4]):

Corollary 1.2. If f, g : R → C are nonconstant solutions of (1.1) and g is
continuous, then f is also continuous, g(x) = cos(k0x) and f(x) = b0 sin(k0x),
where b2

0 = −1/4, k0 ∈ C.

One of the main tools used in the proof of Theorem 1.1 is the following
result about d’Alembert functional equation appeared in [4], see also [2].

Theorem 1.3. Let (G, ∗) be a group. Then every solution function f : G → C

of the d’Alembert’s functional equation

f(x ∗ y) + f(x ∗ y−1) = 2f(x)f(y) (1.6)

also satisfies
f(x ∗ y ∗ z) = f(x ∗ z ∗ y) (1.7)

and is of the form

f(x) =
h(x) + h∗(x)

2
, (1.8)

where h is a homomorphism on G into C∗ and h∗(x) = 1/h(x).

Since the hyperbolic sine and hyperbolic cosine functions G(x) = cosh x, F(x) =
sinh x satisfy the functional equation

G(x − y) = G(x)G(y) −F(x)F(y), (1.9)

motivated by the above results of Kannappan, we ask whether results analogous
to Theorem 1.1 and Corollary 1.2 hold for the hyperbolic sine-cosine functions.
Using a modification of Kannappan’s technique, here we affirmatively answer
this query by proving:
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Theorem 1.4. Let (G, +) be a two-divisible abelian group and let F , G : G → C

be solutions of the functional equation (1.9).

I. If one of the functions F , G is a constant function, then the other is also
a constant function and the two constant functions are F ≡ d, G ≡ c
with c = c2 − d2.

II. If both F , G are nonconstant functions, then they also satisfy

G(x + y) = G(x)G(y) + F(x)F(y), (1.10)
F(x ± y) = F(x)G(y) ± G(x)F(y). (1.11)

and the solution functions are given by

G(x) =
1
2

(E(x) + E∗(x)) , F(x) = b1 (E(x) − E∗(x)) , (1.12)

where b2
1 = 1/4 and the function E : G → C

∗ satisfies the (exponential) Cauchy
functional equation E(x + y) = E(x)E(y).

Immediate from Theorem 1.4 is:

Corollary 1.5. If F , G : R → C are nonconstant solutions of (1.9) and
G is continuous, then F is also continuous, G(x) = cosh(c1x) and F(x) =
b1 sinh(c1x) where b2

1 = 1/4, c1 ∈ C.

2 Proof of Theorem 1.4

Note first that by symmetry, the functional equation (1.9) yields

G(y − x) = G(y)G(x) − F(y)F(x) = G(x)G(y) −F(x)F(y) = G(x − y),

implying that G is an even function.
I. Assume first that G(x) ≡ c, a constant function. If F(x) �≡ 0, there is

α ∈ G such that F(α) �= 0. Substituting into (1.9) yields

F(x) =
c2 − c

F(α)
=: d

and so c = c2 − d2. The same assertion trivially holds if F(x) ≡ 0.
Next assume F(x) ≡ d, a constant function. Replacing y by −y in (1.9)

and using the evenness of G, we obtain

G(x + y) = G(x − y). (2.1)

Putting x = u+v
2

, y = u−v
2

(u, v ∈ G) in (2.1), we get

G(u) = G(x + y) = G(x − y) = G(v), (2.2)
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i.e., G is a constant function and the two constants are related as shown before.
II. Consider nonconstant solutions F and G of the equation (1.9). Using

(1.9) and the evenness of G, we obtain

G(x + y) = G(x − (−y)) = G(x)G(−y) − F(x)F(−y) = G(x)G(y) − F(x)F(−y).
(2.3)

Similarly,

G(x + y) = G(−x − y) = G(−x)G(y) − F(−x)F(y) = G(x)G(y) − F(−x)F(y).
(2.4)

The equations (2.3) and (2.4) together give

F(x)F(−y) = F(−x)F(y).

Since F(x) �≡ 0, there is α ∈ G such that F(α) �= 0. Thus,

F(x) =
F(−α)
F(α)

F(−x) = kF(−x) = k × kF(x) = k2F(x),

where k := F(−α)/F(α). Clearly, k = ± 1.
If k = 1, then F(x) = F(−x), i.e., F is an even function. This together

with (1.9) and (2.3) show that G(x − y) = G(x + y). By the same argument
as that leading to (2.2), we conclude that G is a constant function, which is
a contradiction. Hence, k = −1, and so F(x) = −F(−x), i.e., F is an odd
function. Using this and (2.3), we see that (1.10) holds. Using (1.10) twice, we
get

G((x + y) + z) = G(x)G(y)G(z) + F(x)F(y)G(z) + F(x + y)F(z), (2.5)

and

G (x + (y + z)) = G(x)G(y)G(z) + G(x)F(y)F(z) + F(x)F(y + z). (2.6)

Equating (2.5) and (2.6) and simplifying, we have

F(x) (F(y)G(z) −F(y + z)) = (G(x)F(y) − F(x + y))F(z).

Putting z = α and noting F(α) �= 0, we have

G(x)F(y) −F(x + y) = h(y)F(x), (2.7)

where h(y) := 1
F(α) (F(y)G(α) − F(y + α)) . Replacing x by −x in (2.7), using

the oddness of F and the evenness of G, we get

−F(x − y) = F(−x + y) = G(−x)F(y) − h(y)F(−x) = G(x)F(y) + h(y)F(x),
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and so
F(x − y) = −G(x)F(y) − h(y)F(x). (2.8)

Incorporating (2.7) and (2.8), we get

F(x + y) + F(x − y) = −2h(y)F(x). (2.9)

Interchanging x and y in (2.9) and using the oddness of F , we have

F(x + y) −F(x − y) = −2h(x)F(y). (2.10)

Adding (2.9) to (2.10), we have

F(x + y) = −h(y)F(x) − h(x)F(y). (2.11)

Combining (2.7) and (2.11), we get

G(x)F(y) = −h(x)F(y),

and so

G(x) = −F(α)
F(α)

h(x) = −h(x).

Putting this last relation back into the equation (2.7), we get one of the two
relations in (1.11), namely,

F(x + y) = G(x)F(y) + G(y)F(x). (2.12)

Replacing y by −y in (2.12), using the oddness of F and the evenness of G, we
have

F(x − y) = G(x)F(−y) + G(−y)F(x) = F(x)G(y) − G(x)F(y) (2.13)

which is the other equation in (1.11).
There remains to find general shapes of the two solution functions. From

(1.9) and (1.10), we have

G(x + y) + G(x − y) = 2G(x)G(y) (2.14)

which is the d’Alembert functional equation and by Theorem 1.3, we have

G(x) =
E(x) + E∗(x)

2
, (2.15)

where E : G → C∗ satisfies E(x + y) = E(x)E(y) and E∗(x) = 1/E(x). To
find F , using (1.9), we have

E(x)E(−y) + E∗(x)E∗(−y)
2

=
E(x − y) + E∗(x − y)

2
= G(x − y)

= G(x)G(y) − F(x)F(y) =
(

E(x) + E∗(x)
2

)(
E(y) + E∗(y)

2

)
−F(x)F(y),
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i.e.,

F(x)F(y) =
(

E(x) + E∗(x)
2

) (
E(y) + E∗(y)

2

)
− E(x)E(−y) + E∗(x)E∗(−y)

2

=
1
4

(E(x) − E∗(x)) (E(y) − E∗(y)) .

Consequently,

F(x) =
1
4

(E(α) − E∗(α))
F(α)

(E(x) − E∗(x)) = b1 (E(x) − E∗(x)) , (2.16)

where b2
1 = 1/4.
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