SOME HYPERBOLIC SINE-COSINE TYPE FUNCTIONAL EQUATIONS

Charinthip Hengkrawit ${ }^{1}$, Vichian Laohakosol ${ }^{2}$, Patanee Udomkavanich ${ }^{1}$ and Janyarak Tongsomporn ${ }^{1}$

${ }^{1}$ Department of Mathematics,
Chulalongkorn University, Bangkok, Thailand
email: hengkrawit_c@hotmail.com, pattanee.u@chula.ac.th, yaba973@gmail.com
${ }^{2}$ Department of Mathematics,
Kasetsart University, Bangkok, Thailand
email: fscivil@ku.ac.th

Abstract

Using a technique of Kannapan from 2003, four functional equations, resemble certain well-known hyperbolic sine-cosine identities and generalizing the classical d'Alembert functional equation, are solved and interrelations among the solution functions are investigated.

1 Introduction

The two trigonometric functions $g(x)=\cos x, f(x)=\sin x$ clearly satisfy the following four sine-cosine type functional equations over \mathbb{R}

$$
\begin{align*}
& g(x-y)=g(x) g(y)+f(x) f(y) \tag{1.1}\\
& g(x+y)=g(x) g(y)-f(x) f(y) \tag{1.2}\\
& f(x+y)=f(x) g(y)+g(x) f(y) \tag{1.3}\\
& f(x-y)=f(x) g(y)-g(x) f(y) . \tag{1.4}
\end{align*}
$$

In 1953, V.L. Klee posed the following problem in [6].

[^0]Suppose that $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the functional equation (1.1) with $f(t)=1$ and $g(t)=0$ for some $t \neq 0$. Prove that f and g satisfy the functional equations (1.2), (1.3) and (1.4).

A solution by T.S. Chihara appeared in [3], but it unfortunately had a gap. In 2003, Kannappan, [5], gave a general solution of (1.1) without any additional conditions by proving:
Theorem 1.1. Let $(G,+)$ be a two-divisible abelian group (i.e., a group for which to each $x \in G$, there exists a unique $y \in G$ such that $x=2 y$). If the functions $f, g: G \rightarrow \mathbb{C}$ satisfy the functional equation (1.1), then they also satisfy the equations (1.2), (1.3) and (1.4).

Moreover, the solution functions are given by

$$
\begin{equation*}
g(x)=\frac{1}{2}\left(E(x)+E^{*}(x)\right), \quad f(x)=b_{0}\left(E(x)-E^{*}(x)\right) \tag{1.5}
\end{equation*}
$$

where $b_{0}^{2}=-1 / 4$, and the function $E: G \rightarrow \mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$ satisfies the (exponential) Cauchy functional equation $E(x+y)=E(x) E(y)$ with $E^{*}(x)=$ $1 / E(x)$.

Theorem 1.1 leads to ([1], [4]):
Corollary 1.2. If $f, g: \mathbb{R} \rightarrow \mathbb{C}$ are nonconstant solutions of (1.1) and g is continuous, then f is also continuous, $g(x)=\cos \left(k_{0} x\right)$ and $f(x)=b_{0} \sin \left(k_{0} x\right)$, where $b_{0}^{2}=-1 / 4, k_{0} \in \mathbb{C}$.

One of the main tools used in the proof of Theorem 1.1 is the following result about d'Alembert functional equation appeared in [4], see also [2].
Theorem 1.3. Let $(G, *)$ be a group. Then every solution function $f: G \rightarrow \mathbb{C}$ of the d'Alembert's functional equation

$$
\begin{equation*}
f(x * y)+f\left(x * y^{-1}\right)=2 f(x) f(y) \tag{1.6}
\end{equation*}
$$

also satisfies

$$
\begin{equation*}
f(x * y * z)=f(x * z * y) \tag{1.7}
\end{equation*}
$$

and is of the form

$$
\begin{equation*}
f(x)=\frac{h(x)+h^{*}(x)}{2} \tag{1.8}
\end{equation*}
$$

where h is a homomorphism on G into \mathbb{C}^{*} and $h^{*}(x)=1 / h(x)$.
Since the hyperbolic sine and hyperbolic cosine functions $\mathcal{G}(x)=\cosh x, \mathcal{F}(x)=$ $\sinh x$ satisfy the functional equation

$$
\begin{equation*}
\mathcal{G}(x-y)=\mathcal{G}(x) \mathcal{G}(y)-\mathcal{F}(x) \mathcal{F}(y) \tag{1.9}
\end{equation*}
$$

motivated by the above results of Kannappan, we ask whether results analogous to Theorem 1.1 and Corollary 1.2 hold for the hyperbolic sine-cosine functions. Using a modification of Kannappan's technique, here we affirmatively answer this query by proving:

Theorem 1.4. Let $(G,+)$ be a two-divisible abelian group and let $\mathcal{F}, \mathcal{G}: G \rightarrow \mathbb{C}$ be solutions of the functional equation (1.9).
I. If one of the functions \mathcal{F}, \mathcal{G} is a constant function, then the other is also a constant function and the two constant functions are $\mathcal{F} \equiv d, \mathcal{G} \equiv c$ with $c=c^{2}-d^{2}$.
II. If both \mathcal{F}, \mathcal{G} are nonconstant functions, then they also satisfy

$$
\begin{align*}
& \mathcal{G}(x+y)=\mathcal{G}(x) \mathcal{G}(y)+\mathcal{F}(x) \mathcal{F}(y) \tag{1.10}\\
& \mathcal{F}(x \pm y)=\mathcal{F}(x) \mathcal{G}(y) \pm \mathcal{G}(x) \mathcal{F}(y) \tag{1.11}
\end{align*}
$$

and the solution functions are given by

$$
\begin{equation*}
\mathcal{G}(x)=\frac{1}{2}\left(E(x)+E^{*}(x)\right), \quad \mathcal{F}(x)=b_{1}\left(E(x)-E^{*}(x)\right) \tag{1.12}
\end{equation*}
$$

where $b_{1}^{2}=1 / 4$ and the function $E: G \rightarrow \mathbb{C}^{*}$ satisfies the (exponential) Cauchy functional equation $E(x+y)=E(x) E(y)$.

Immediate from Theorem 1.4 is:
Corollary 1.5. If $\mathcal{F}, \mathcal{G}: \mathbb{R} \rightarrow \mathbb{C}$ are nonconstant solutions of (1.9) and \mathcal{G} is continuous, then \mathcal{F} is also continuous, $\mathcal{G}(x)=\cosh \left(c_{1} x\right)$ and $\mathcal{F}(x)=$ $b_{1} \sinh \left(c_{1} x\right)$ where $b_{1}^{2}=1 / 4, c_{1} \in \mathbb{C}$.

2 Proof of Theorem 1.4

Note first that by symmetry, the functional equation (1.9) yields

$$
\mathcal{G}(y-x)=\mathcal{G}(y) \mathcal{G}(x)-\mathcal{F}(y) \mathcal{F}(x)=\mathcal{G}(x) \mathcal{G}(y)-\mathcal{F}(x) \mathcal{F}(y)=\mathcal{G}(x-y)
$$

implying that \mathcal{G} is an even function.
I. Assume first that $\mathcal{G}(x) \equiv c$, a constant function. If $\mathcal{F}(x) \not \equiv 0$, there is $\alpha \in G$ such that $\mathcal{F}(\alpha) \neq 0$. Substituting into (1.9) yields

$$
\mathcal{F}(x)=\frac{c^{2}-c}{\mathcal{F}(\alpha)}=: d
$$

and so $c=c^{2}-d^{2}$. The same assertion trivially holds if $\mathcal{F}(x) \equiv 0$.
Next assume $\mathcal{F}(x) \equiv d$, a constant function. Replacing y by $-y$ in (1.9) and using the evenness of \mathcal{G}, we obtain

$$
\begin{equation*}
\mathcal{G}(x+y)=\mathcal{G}(x-y) \tag{2.1}
\end{equation*}
$$

Putting $x=\frac{u+v}{2}, y=\frac{u-v}{2} \quad(u, v \in G)$ in (2.1), we get

$$
\begin{equation*}
\mathcal{G}(u)=\mathcal{G}(x+y)=\mathcal{G}(x-y)=\mathcal{G}(v) \tag{2.2}
\end{equation*}
$$

i.e., \mathcal{G} is a constant function and the two constants are related as shown before.
II. Consider nonconstant solutions \mathcal{F} and \mathcal{G} of the equation (1.9). Using (1.9) and the evenness of \mathcal{G}, we obtain
$\mathcal{G}(x+y)=\mathcal{G}(x-(-y))=\mathcal{G}(x) \mathcal{G}(-y)-\mathcal{F}(x) \mathcal{F}(-y)=\mathcal{G}(x) \mathcal{G}(y)-\mathcal{F}(x) \mathcal{F}(-y)$.

Similarly,

$$
\begin{equation*}
\mathcal{G}(x+y)=\mathcal{G}(-x-y)=\mathcal{G}(-x) \mathcal{G}(y)-\mathcal{F}(-x) \mathcal{F}(y)=\mathcal{G}(x) \mathcal{G}(y)-\mathcal{F}(-x) \mathcal{F}(y) \tag{2.4}
\end{equation*}
$$

The equations (2.3) and (2.4) together give

$$
\mathcal{F}(x) \mathcal{F}(-y)=\mathcal{F}(-x) \mathcal{F}(y)
$$

Since $\mathcal{F}(x) \not \equiv 0$, there is $\alpha \in G$ such that $\mathcal{F}(\alpha) \neq 0$. Thus,

$$
\mathcal{F}(x)=\frac{\mathcal{F}(-\alpha)}{\mathcal{F}(\alpha)} \mathcal{F}(-x)=k \mathcal{F}(-x)=k \times k \mathcal{F}(x)=k^{2} \mathcal{F}(x)
$$

where $k:=\mathcal{F}(-\alpha) / \mathcal{F}(\alpha)$. Clearly, $k= \pm 1$.
If $k=1$, then $\mathcal{F}(x)=\mathcal{F}(-x)$, i.e., \mathcal{F} is an even function. This together with (1.9) and (2.3) show that $\mathcal{G}(x-y)=\mathcal{G}(x+y)$. By the same argument as that leading to (2.2), we conclude that \mathcal{G} is a constant function, which is a contradiction. Hence, $k=-1$, and so $\mathcal{F}(x)=-\mathcal{F}(-x)$, i.e., \mathcal{F} is an odd function. Using this and (2.3), we see that (1.10) holds. Using (1.10) twice, we get

$$
\begin{equation*}
\mathcal{G}((x+y)+z)=\mathcal{G}(x) \mathcal{G}(y) \mathcal{G}(z)+\mathcal{F}(x) \mathcal{F}(y) \mathcal{G}(z)+\mathcal{F}(x+y) \mathcal{F}(z) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{G}(x+(y+z))=\mathcal{G}(x) \mathcal{G}(y) \mathcal{G}(z)+\mathcal{G}(x) \mathcal{F}(y) \mathcal{F}(z)+\mathcal{F}(x) \mathcal{F}(y+z) \tag{2.6}
\end{equation*}
$$

Equating (2.5) and (2.6) and simplifying, we have

$$
\mathcal{F}(x)(\mathcal{F}(y) \mathcal{G}(z)-\mathcal{F}(y+z))=(\mathcal{G}(x) \mathcal{F}(y)-\mathcal{F}(x+y)) \mathcal{F}(z)
$$

Putting $z=\alpha$ and noting $\mathcal{F}(\alpha) \neq 0$, we have

$$
\begin{equation*}
\mathcal{G}(x) \mathcal{F}(y)-\mathcal{F}(x+y)=h(y) \mathcal{F}(x) \tag{2.7}
\end{equation*}
$$

where $h(y):=\frac{1}{\mathcal{F}(\alpha)}(\mathcal{F}(y) \mathcal{G}(\alpha)-\mathcal{F}(y+\alpha))$. Replacing x by $-x$ in (2.7), using the oddness of \mathcal{F} and the evenness of \mathcal{G}, we get
$-\mathcal{F}(x-y)=\mathcal{F}(-x+y)=\mathcal{G}(-x) \mathcal{F}(y)-h(y) \mathcal{F}(-x)=\mathcal{G}(x) \mathcal{F}(y)+h(y) \mathcal{F}(x)$,
and so

$$
\begin{equation*}
\mathcal{F}(x-y)=-\mathcal{G}(x) \mathcal{F}(y)-h(y) \mathcal{F}(x) \tag{2.8}
\end{equation*}
$$

Incorporating (2.7) and (2.8), we get

$$
\begin{equation*}
\mathcal{F}(x+y)+\mathcal{F}(x-y)=-2 h(y) \mathcal{F}(x) \tag{2.9}
\end{equation*}
$$

Interchanging x and y in (2.9) and using the oddness of \mathcal{F}, we have

$$
\begin{equation*}
\mathcal{F}(x+y)-\mathcal{F}(x-y)=-2 h(x) \mathcal{F}(y) \tag{2.10}
\end{equation*}
$$

Adding (2.9) to (2.10), we have

$$
\begin{equation*}
\mathcal{F}(x+y)=-h(y) \mathcal{F}(x)-h(x) \mathcal{F}(y) \tag{2.11}
\end{equation*}
$$

Combining (2.7) and (2.11), we get

$$
\mathcal{G}(x) \mathcal{F}(y)=-h(x) \mathcal{F}(y)
$$

and so

$$
\mathcal{G}(x)=-\frac{\mathcal{F}(\alpha)}{\mathcal{F}(\alpha)} h(x)=-h(x)
$$

Putting this last relation back into the equation (2.7), we get one of the two relations in (1.11), namely,

$$
\begin{equation*}
\mathcal{F}(x+y)=\mathcal{G}(x) \mathcal{F}(y)+\mathcal{G}(y) \mathcal{F}(x) \tag{2.12}
\end{equation*}
$$

Replacing y by $-y$ in (2.12), using the oddness of \mathcal{F} and the evenness of \mathcal{G}, we have

$$
\begin{equation*}
\mathcal{F}(x-y)=\mathcal{G}(x) \mathcal{F}(-y)+\mathcal{G}(-y) \mathcal{F}(x)=\mathcal{F}(x) \mathcal{G}(y)-\mathcal{G}(x) \mathcal{F}(y) \tag{2.13}
\end{equation*}
$$

which is the other equation in (1.11).
There remains to find general shapes of the two solution functions. From (1.9) and (1.10), we have

$$
\begin{equation*}
\mathcal{G}(x+y)+\mathcal{G}(x-y)=2 \mathcal{G}(x) \mathcal{G}(y) \tag{2.14}
\end{equation*}
$$

which is the d'Alembert functional equation and by Theorem 1.3, we have

$$
\begin{equation*}
\mathcal{G}(x)=\frac{E(x)+E^{*}(x)}{2} \tag{2.15}
\end{equation*}
$$

where $E: G \rightarrow \mathbb{C}^{*}$ satisfies $E(x+y)=E(x) E(y)$ and $E^{*}(x)=1 / E(x)$. To find \mathcal{F}, using (1.9), we have

$$
\begin{aligned}
& \frac{E(x) E(-y)+E^{*}(x) E^{*}(-y)}{2}=\frac{E(x-y)+E^{*}(x-y)}{2}=\mathcal{G}(x-y) \\
& =\mathcal{G}(x) \mathcal{G}(y)-\mathcal{F}(x) \mathcal{F}(y)=\left(\frac{E(x)+E^{*}(x)}{2}\right)\left(\frac{E(y)+E^{*}(y)}{2}\right)-\mathcal{F}(x) \mathcal{F}(y)
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
\mathcal{F}(x) \mathcal{F}(y) & =\left(\frac{E(x)+E^{*}(x)}{2}\right)\left(\frac{E(y)+E^{*}(y)}{2}\right)-\frac{E(x) E(-y)+E^{*}(x) E^{*}(-y)}{2} \\
& =\frac{1}{4}\left(E(x)-E^{*}(x)\right)\left(E(y)-E^{*}(y)\right) .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\mathcal{F}(x)=\frac{1}{4} \frac{\left(E(\alpha)-E^{*}(\alpha)\right)}{\mathcal{F}(\alpha)}\left(E(x)-E^{*}(x)\right)=b_{1}\left(E(x)-E^{*}(x)\right) \tag{2.16}
\end{equation*}
$$

where $b_{1}^{2}=1 / 4$.

References

[1] J. Aczél, "Lectures on Functional Equations and Their Applications", Academic Press, New York, 1966.
[2] J. Aczél and J. Dhombres, "Functional Equations in Several Variables", Cambridge University Press, Cambridge, 1988.
[3] T. S. Chihara, Solution to E1079. Amer. Math. Monthly 61 (1954), 197.
[4] Pl. Kannappan, The functional equations $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$ for groups. Proc. Amer. Math. Soc. 19 (1968), 69-74.
[5] Pl. Kannappan, Klee's trigonometry problem. Amer. Math. Monthly 110 (2003), 940-944.
[6] V. L. Klee, Problem E1079. Amer. Math. Monthly 60 (1953), 479.

[^0]: Supported by the Commission on Higher Education and the Thailand Research Fund RTA5180005.
 Key words: trigonometric sine-cosine functional equations, hyperbolic sine-cosine functional equations
 2000 Mathematics Subject Classification: 39B32

