ON γ -LABELING THE ALMOST-BIPARTITE GRAPH $K_{m.n} + e$

S. I. El-Zanati, W. A. O'Hanlon and E. R. Spicer

Mathematics Department Illinois State University Normal, Illinois 61790-4520, U.S.A. E-mail: saad@ilstu.edu

Mathematics Department Illinois Central College East Peoria, IL 61635-0001, U.S.A.

> Pensacola Junior College Pensacola, FL 32507, U.S.A

Abstract

Let G be a graph with n edges and let k be a positive integer. A G-design of order k is a G-decomposition of K_k . A labeling of G is an assignment of non-negative integers to the vertices of G. Some labelings of such a G lead to cyclic G-designs of order 2nx + 1. Until recently, such labelings were restricted to bipartite graphs only. An almost-bipartite graph is a non-bipartite graph with the property that the removal of a particular single edge renders the graph bipartite. A graph labeling of order 2nx + 1 was recently introduced by Blinco, El-Zanati, and Vanden Eynden. They called such a labeling a γ -labeling. In this note, we survey almost-bipartite graphs that admit γ -labelings and find necessary and sufficient conditions for a γ -labeling of $K_{m,n} + e$.

1 Introduction

If a and b are integers we denote $\{a, a + 1, ..., b\}$ by [a, b] (if a > b, $[a, b] = \emptyset$). Let \mathbb{N} denote the set of nonnegative integers and \mathbb{Z}_n the group of integers modulo n. For a graph G, let V(G) and E(G) denote the vertex set of G and

Key words: G-design, almost-bipartite graph, γ -labeling. 2000 AMS Mathematics Subject Classification: 05C69, 05C75

the edge set of G, respectively. The order and the size of a graph G are |V(G)| and |E(G)|, respectively.

Let $V(K_k) = \mathbb{Z}_k$ and let G be a subgraph of K_k . By clicking G, we mean applying the isomorphism $i \to i+1$ to V(G). Let H and G be graphs such that G is a subgraph of H. A *G*-decomposition of H is a set $\Delta = \{G_1, G_2, \ldots, G_t\}$ of pairwise edge-disjoint subgraphs of H each of which is isomorphic to G and such that $E(H) = \bigcup_{i=1}^t E(G_i)$. A *G*-decomposition of K_k is also known as a (K_k, G) -design. A (K_k, G) -design Δ is cyclic if clicking is a permutation of Δ . For a comprehensive source on graph decompositions we refer the reader to [5]. For recent surveys on *G*-designs, see [1] and [6].

Let $V(K_k) = \{0, 1, ..., k-1\}$. The *length* of an edge $\{i, j\}$ in K_k is min $\{|i-j|, k-|i-j|\}$. Note that clicking an edge does not change its length. Also note that if k is odd, then K_k consists of k edges of length i for $i = 1, 2, ..., \frac{k-1}{2}$.

For any graph G, a one-to-one function $f: V(G) \to \mathbb{N}$ is called a *labeling* (or a *valuation*) of G. In [12], Rosa introduced a hierarchy of labelings. We add a few items to this hierarchy. Let G be a graph with n edges and no isolated vertices and let f be a labeling of G. Let $f(V(G)) = \{f(u) : u \in V(G)\}$. Define a function $\overline{f}: E(G) \to \mathbb{Z}^+$ by $\overline{f}(e) = |f(u) - f(v)|$, where $e = \{u, v\} \in E(G)$. We will refer to $\overline{f}(e)$ as the *label* of e. Let $\overline{E}(G) = \{\overline{f}(e) : e \in E(G)\}$. Consider the following conditions:

- $\ell 1: f(V(G)) \subseteq [0, 2n],$
- $\ell 2: f(V(G)) \subseteq [0, n],$
- ℓ 3: $\bar{E}(G) = \{x_1, x_2, ..., x_n\}$, where for each *i* ∈ [1, *n*] either $x_i = i$ or $x_i = 2n + 1 i$,
- $\ell 4: \bar{E}(G) = [1, n].$

If in addition G is bipartite with bipartition $\{A, B\}$ of V(G) (with every edge in G having one endvertex in A and the other in B) consider also

- l5: for each $\{a, b\} ∈ E(G)$ with a ∈ A and b ∈ B, we have f(a) < f(b),
- *l*6: there exists an integer λ (called the *boundary value* of f) such that $f(a) \leq \lambda$ for all $a \in A$ and $f(b) > \lambda$ for all $b \in B$.

Then a labeling satisfying the conditions:

- $\ell 1, \ell 3$: is called a ρ -labeling;
- $\ell 1, \ell 4$: is called a σ -labeling;
- $\ell 2, \ell 4$: is called a β -labeling.

A β -labeling is necessarily a σ -labeling which in turn is a ρ -labeling. If G is bipartite and a ρ , σ or β -labeling of G also satisfies (ℓ 5), then the labeling is ordered and is denoted by ρ^+ , σ^+ or β^+ , respectively. If in addition (ℓ 6) is satisfied, the labeling is *uniformly-ordered* and is denoted by ρ^{++} , σ^{++} or β^{++} , respectively.

A β -labeling is better known as a graceful labeling and a uniformly-ordered β -labeling is an α -labeling as introduced in [12]. Labelings of the types above are called *Rosa-type* because of Rosa's original article [12] on the topic. For a survey of Rosa-type labelings and their graph decomposition applications, see [9]. A dynamic survey on general graph labelings is maintained by Gallian [11].

Labelings are critical to the study of cyclic graph decompositions as seen in the following two results from Rosa [12] and El-Zanati, Vanden Eynden and Punnim [10], respectively.

Theorem 1 Let G be a graph with n edges. There exists a cyclic G-decomposition of K_{2n+1} if and only if G has a ρ -labeling.

Theorem 2 Let G be a graph with n edges that has a ρ^+ -labeling. Then there exists a cyclic G-decomposition of K_{2nx+1} for all positive integers x.

If G with n edges is not bipartite, then the best that could be obtained until recently from a Rosa-type labeling was a cyclic G-decomposition of K_{2n+1} . A non-bipartite graph G is almost-bipartite if G contains an edge e whose removal renders the remaining graph bipartite (for example, odd cycles are almost-bipartite). In [4], Blinco, El-Zanati, and Vanden Eynden introduced a variation of a ρ -labeling of an almost-bipartite graph G of size n that yields cyclic G-decompositions of K_{2nx+1} . They called this labeling a γ -labeling.

In this note, we survey the known γ -labelings of almost-bipartite graphs and show that the class of almost-bipartite graphs obtained from $K_{m,n}$ by adding an edge joining distinct vertices in the *n*-vertex part of $V(K_{m,n})$ has a γ -labeling if and only if $n \geq 3$.

2 Definition of γ -labeling and Some Known Results

Let G be a graph with n edges and h a labeling of the vertices of G. We call $h \neq \gamma$ -labeling of G if the following conditions hold.

- **g1:** The function h is a ρ -labeling of G.
- **g2:** The graph G is tripartite with vertex tripartition A, B, C with $C = \{c\}$ and $\hat{b} \in B$ such that $\{\hat{b}, c\}$ is the unique edge joining an element of B to c.
- **g3:** If $\{a, v\}$ is an edge of G with $a \in A$, then h(a) < h(v).
- **g4:** We have $h(c) h(\hat{b}) = n$.

Note that if a non-bipartite graph G has a γ -labeling, then it is almostbipartite as defined earlier. In this case, removing the edge $\{c, \hat{b}\}$ from Gproduces a bipartite graph. Figure 1 shows γ -labelings of C_5 and of C_7 , respectively.

Figure 1: γ -labelings of C_5 and of C_7 .

Theorem 3 Let G be a graph with n edges having a γ -labeling. Then G divides K_{2nx+1} cyclically for all positive integers x.

We illustrate how Theorem 3 works. See [4] for a complete proof. Let G have n edges and let h be a γ -labeling for G, with A, B, C, c, and \hat{b} as in the above definition. Let B_1, B_2, \ldots, B_x be x vertex-disjoint copies of B, and let c_1, c_2, \ldots, c_x be x new vertices. The vertex in B_i corresponding to $b \in B$ will be called b_i . Let $B^* = \bigcup_1^x B_i$ and $C^* = \{c_1, c_2, \ldots, c_x\}$. We define a new graph G^* with vertex set $A \bigcup B^* \bigcup C^*$ and edges $\{a, v_i\}, 1 \leq i \leq x$, whenever $a \in A$ and $\{a, v\}$ is an edge of G, and $\{\hat{b}_i, c_i\}, 1 \leq i \leq x$. Clearly G^* has nx edges and G divides G^* . Define a labeling h^* on G^* by

$$h^{*}(v) = \begin{cases} h(v) & v \in A, \\ h(b) + (i-1)2n & v = b_{i} \in B_{i}, \\ h(c) + (x-i)2n & v = c_{i}. \end{cases}$$

The labeling h^* is a ρ -labeling of G^* and thus the result follows by Theorem 1.

We illustrate the previous result with an example where $G = C_5$ and x = 3. Figure 2 shows a A γ -labeling of C_5 and the three starters in a cyclic C_5 -decomposition of K_{31} .

Figure 2: A γ -labeling of C_5 and the three starters in a cyclic (K_{31}, C_5) -design.

Blinco, El-Zanati, and Vanden Eynden [4] showed that odd cycles other than C_3 admit γ -labelings. These results were extended in [8].

Theorem 4 Every 2-regular graph with exactly one odd component, except for C_3 and $C_3 \cup C_4$, admits a γ -labeling.

In his PhD dissertation [3], Blinco showed that if $m \ge 5$ is odd, then $C_m + e$ admits a γ -labeling. In [2], it is shown that if $C_{2m} + e$ is almost-bipartite, then it admits a γ -labeling if and only if m > 2. In [7], it is shown that $P_m + e$, where $m \ge 4$ and e is an edge joining two vertices in the same part in the bipartition of $V(P_m)$ admits a γ -labeling.

3 γ -labelings of $K_{m,n} + e$

Theorem 5 Let G denote the almost-bipartite graph obtained from $K_{m,n}$ by adding an edge e between two vertices in the part of $V(K_{m,n})$ of size n. Then G has a γ -labeling if and only if n > 2.

Proof. We show sufficiency first. Assume $n \ge 3$. Let $U = \{(u_1, u_2, \ldots, u_m)\}$ and $V = \{v_1, v_2, \ldots, v_n\}$ be the vertex sets in the bipartition of $K_{m,n}$ and let $e = \{v_2, v_n\}$. Define a labeling f of G as follows:

$$f(x) = \begin{cases} (i-1)n & \text{if } x = u_i, \ 1 \le i \le m, \\ (m-1)n+i & \text{if } x = v_j, \ 1 \le j \le n-1, \\ (2m-1)n+3 & \text{if } x = v_n. \end{cases}$$

Figure 3 shows such labelings of $K_{2,4}+e$ and of $K_{3,5}+e$. We will show that f is a γ -labeling of G. Clearly G is almost-bipartite with tripartition (A, B, C) where $A = U, B = V \setminus \{v_n\}$ and $C = \{v_n\}$. If we let $\hat{b} = v_2$ and $c = v_n$, then condition **g2** is satisfied. Moreover, since $f(c) - f(\hat{b}) = (2m-1)n + 3 - ((m-1)n+2) = mn + 1$, condition **g4** is satisfied. Also note that since $f(u_i) < f(v_j)$, for every edge $\{u_i, v_j\}$, condition **g3** is satisfied. Thus it remains to show that the induced labeling is a ρ -labeling.

Figure 3: γ -labelings of $K_{2,4} + e$ and of $K_{3,5} + e$.

For $1 \leq i \leq m$ and $1 \leq j \leq n-1$, the edge $\{u_i, v_j\}$ has label (m-1)n + j - (m-i)n = (i-1)n + j, which is also its length. While the edge $\{u-i, v_n\}$ has label (2m-1)n + 3 - (m-i)n = mn + (i-1)n + 3, which is edge length (m-i+1)n. Thus in $G - v_n$, the set of labels of edges incident with u_i is $\{(i-1)n+j: 1 \leq j \leq n-1\} = [(i-1)n+1, (i-1)n+n-1]$. These edge labels are distinct for different *i*'s and their union is $\bigcup_{i=1}^m [(i-1)n+1, (i-1)n+n-1] = [0, mn] \setminus \{(i)n: 1 \leq i \leq m\}$. Finally, the set of labels of edges incident with v_n is $\{(m+i-1)n+3: 1 \leq i \leq m\} \bigcup \{mn+1\}$. But these labels correspond precisely to edge lengths $\{(i)n: 1 \leq i \leq m\} \bigcup \{mn+1\}$. Thus *f* is a ρ -labeling and hence a γ -labeling.

Now let n = 2 and let U and V be as before. In a γ -labeling of $K_{m,2} + e$, the edge e must have label 2m + 1. Without loss of generality, assume $\hat{b} = v_1$ (and thus $c = v_2$). Let u_i be the vertex in A incident with the edge f of length 1. Note that $f(v_2) - f(u_i) = f(v_1) + 2m + 1 - f(u_i)$. Thus if the label of f is 1, u_i must be adjacent to v_1 , while if the label on f is 2m + 2, then u_i must be adjacent to v_2 . In the first case $f(v_2) - f(u_i) = 2m + 2$, while in the second case $f(v_1) - f(u_i) = 2m + 1$. Either way we have two edges with length 2m + 1. \Box

In light of Theorem 3, we have the following corollary.

Corollary 6 Let G denote the almost-bipartite graph obtained from $K_{m,n}$ by adding an edge e between two vertices in the part of $V(K_{m,n})$ of size n and let k = mn + 1. Then there exists a cyclic (K_{2kx+1}, G) -design for every positive integer x.

Although the graph G in Corollary 6 does not admit a γ -labeling when n = 2, we expect that a cyclic (K_{2kx+1}, G) -design will exist in that case too. However, this design cannot be found using a γ -labeling of G.

References

- P. Adams, D. Bryant, and M. Buchanan, A survey of the existence of G-designs, J. Comb. Designs, to appear.
- [2] G. Blair, D. Bowman, S. I. El-Zanati, S. Hlad, M. Priban, and K. Sebesta, On cyclic $(C_m + e)$ -designs, submitted.
- [3] A. Blinco, Graph decompositions, theta graphs and related labelling techniques, Ph.D. Thesis, Department of Mathematics, The University of Queensland, 2003.
- [4] A. Blinco, S.I. El-Zanati, and C. Vanden Eynden, On the cyclic decomposition of complete graphs into almost-bipartite graphs, *Discrete Math.* 284 (2004), 71–81.
- [5] J. Bosák, *Decompositions of Graphs*, Kluwer Academic Publishers Group, Dordrecht, 1990.

- [6] D. Bryant and S. El-Zanati, Graph Decompositions, in The CRC Handbook of Combinatorial Designs, 2nd Edition, (J. H. Dinitz and C. J. Colbourn Eds) CRC Press, Boca Raton, FL, 477-486 (2007).
- [7] R. C. Bunge, S. I. El-Zanati, W. A. O'Hanlon, and C. Vanden Eynden, On γ -labeling the almost-bipartite graph $P_m + e$, Ars Combinatoria, to appear.
- [8] R.C. Bunge, S.I. El-Zanati, and C. Vanden Eynden, On γ -labelings of 2-regular almost-bipartite graphs, in preparation.
- [9] S.I. El-Zanati and C. Vanden Eynden, On Rosa-type labelings and cyclic graph decompositions, *Mathematica Slovaca*, to appear.
- [10] S.I. El-Zanati, C. Vanden Eynden and N. Punnim, On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209–219.
- [11] J.A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, Dynamic Survey 6, 148 pp.
- [12] A. Rosa, On certain valuations of the vertices of a graph, in: Théorie des graphes, journées internationales d'études, Rome 1966 (Dunod, Paris, 1967), 349–355.