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Abstract

In this paper, we characterize generalized PP-rings and their gener-
alizations via P-injectivity, AP-injectivity or AGP-injectivity.

1. Introduction

Throughout this paper, R is an associative ring with identity 1 �= 0 and all
modules are unitary modules. We write MR (resp. RM) to indicate that M is
a right (resp. left) R-module. The category of right (resp. left) R-module is
denoted by Mod-R (resp. R-Mod).

Let M be a right R-module, we denote the injective hull of M by E(M).
The notation A ≤ M (resp. A < M) stands for the fact that A is a submodule
(resp. a proper submodule) of M . The right and left annihilators of a subset
X of a ring R are denoted by r(X) and l(X), respectively.

Let M be an R-module and I a right ideal of R, and let f be an R-
homomorphism of I to M . Consider the following diagram.
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If there exists h ∈ HomR(R, M) for every principal right ideal I in R and
any f ∈ HomR(I, M), then we say that M is principally injective, or P-injective
for short; or equivalently, f is the left multiplication by some element m ∈ M
with I. This is equivalent to saying that lMrR(a) = Ma for all a ∈ R, where l
and r are the left and right annihilators, respectively. If a ring R is P-injective
as a right R-module, then R is called a right P-injective ring.

A ring is called a right PP-ring if all principal right ideals are projective.

For basic concepts and results that are not defined here we refer to the
texts: Anderson and Fuller [1], Faith [3] and Wisbauer [11].

As is known, a ring R is right PP if and only if every factor module of an
P-injective module is P-injective and if and only if every factor module of an
injective module is P-injective. In this note, we will characterize certain classes
of rings that are generalizations of PP-rings.

2. Hereditary, Semihereditary and PP-Rings

A right module MR is called F-injective (FP-injective, resp.) if for any finitely
generated right ideal K of R (R(N), resp.), any right R-homomorphism g : K →
M can be extended to R → M (R(N) → M , resp.). It follows that FP-injectivity
implies F-injectivity. A ring R is called right hereditary (semihereditary, resp.)
if every (finitely generated, resp.) right ideal of R is projective. The following
results give us some characterizations of a semihereditary or a hereditary ring
via FP-, F- or injectivity.

In this section we mention some well-known results of the characterization
of hereditary rings, semihereditary rings and PP-rings. In the next section
we follow this line to characterize some rings that are generalizations of right
PP-rings.

Theorm 2.1. The following conditions are equivalent for a ring R.

(i) R is a right semihereditary ring.

(ii) Every factor module of an FP-injective right R-module is FP-injective.

(iii) Every factor module of an injective envelope E(RR) is FP-injective.

Theorem 2.2. For a ring R the following conditions are equivalent:

(i) R is a right hereditary ring.

(ii) Every factor module of an injective right R-module is injective.



Dinh D. Tai and Le V. Thuyet 103

Theorem 2.3. For a ring R the following conditions are equivalent:

(i) R is a right PP-ring.

(ii) Every factor module of an P-injective right R-module is P-injective.

(iii) Every factor module of an injective right R-module is P-injective.

For the proofs of these theorems see, for example, [11, 39.13, 39.16] and [11,
Exercise 4(i), p. 340], respectively.

Moreover, the following result from [4] is useful in our study of PP-rings.

Theorem 2.4. For a ring R the following conditions are equivalent:

(i) R is a right PP-ring.

(ii) For each element a ∈ R and for the homomorphism ϕ : R −→ aR defined
by ϕ(r) = ar splits, i.e., Ker ϕ is a direct summand of R.

(iii) The right annihilator of each element of R is generated by an idempotent.

3. Generalized PP-Rings

A ring R is called generalized right PP if for any 0 �= x ∈ R and for some
positive n, depending on x, the right nonzero ideal xnR is projective.

Lemma 3.1. For a ring R the following conditions are equivalent:

(i) R is a generalized right PP-ring.

(ii) For each element x ∈ R, the right annihilator of non-zero element xn is
generated by an idempotent for some positive n, depending on x.

Proof: Straightforward.

Following [5] and [7] a right R-module M is called GP-injective (= YJ-
injective in [6] or in [12]) if for every 0 �= a ∈ R there exists n ∈ N with an �= 0
and every right R-homomorphism anR −→ M extends to R −→ M.

Proposition 3.2. For a right R-module M the following conditions are equiv-
alent:

(i) M is GP-injective.

(ii) For each element 0 �= a ∈ R, there exists n ∈ N with an �= 0, lM (rR(an)) =
Man.
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Proof. By Lemma 1.3 of [9].

A ring R is called right GP-injective if the right R-module RR is GP-
injective, or equivalently if for every 0 �= a ∈ R there exists n ∈ N with an �= 0
and lr(an) = Ran. The ring R in the following example was essentially given
by Clark [2] proved that the GP-injectivity is a proper generalization of the
P-injectivity.

Example 3.3. Let Z2 be the field of integers modulo 2 and A be the subring
of Z

N

2 consisting of elements of the form

{(a1, a2, ..., an, a, a, ...)| a1, a2, ...., an, a ∈ Z2}.

Let

R =
(

Z2 Z2

0 A

)

then R is right GP-injective but not P-injective. �

Characterizations of some classes of rings via GP-injectivity have been stud-
ied by many authors (e.g, [5], [6], [7], [12], ... ). It is known that if R is a von
Neumann regular ring, then every right (left) R-module is GP-injective ([7]).
Wongwai [10, Theorem 2.6] prove Theorem 2.3 in the module case. We now
obtain the following result.

Theorem 3.4. For a ring R the following conditions are equivalent:

(i) R is a generalized right PP-ring.

(ii) Every factor module of an P-injective right R-module is GP-injective.

(iii) Every factor module of an injective right R-module is GP-injective.

Proof. (i) =⇒ (ii). Let R be a generalized right PP-ring and NR be an P-
injective module. For every X ≤ N ,we will prove that N/X is also an GP -
injective module. For every 0 �= b ∈ R, there exists n ∈ N such that bn �= 0
and bnR is projective and then for any R-homomorphism ϕ : bnR −→ N/X,
there exists an R-homomorphism ϕ′ : bnR −→ N such that ηXϕ′ = ϕ, i.e. the
following diagram is commutative

bnR R

N N/X 0
�

ϕ
�

�
���
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�
�

���
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in which ηX : N −→ N/X is the natural epimorphism. Since N is P-injective,
ϕ′ can be extended to ϕ̂′ : R → N and then ϕ can be extended to ϕ̂ = ηXϕ̂′.
So N/X is GP - injective.

(ii) =⇒ (iii) is clear.
(iii) =⇒ (i). For every 0 �= x ∈ R, we consider the epimorphism h : A → B,

in which A, B are any right R-modules. By (iii), E(A)/Ker(h) is GP-injective,
so there exists n ∈ N such that xn �= 0 and every R-homomorphism of xnR to
E(A)/Ker(h) extends to R.

Since B ∼= A/Ker(h) ≤ E(A)/Ker(h),

α : xnR → E(A)/Ker(h)
a �−→ α(a) = α(a)

is an R-homomorphism and can be extended to α̂ : R → E(A)/Ker(h).
Since RR is projective, there exists an R-homomorphism g : R −→ E(A)

such that pg = α̂, i.e., the following diagram commutes

xnR R

A B 0

E(R) E(A)/Ker(h) 0

�

α

�
�

�
�

���

ϕ

�

�

�h

�

j

�

�p �

in which p : E(A) −→ E(A)/Ker(h) is the natural epimorphism and p|A = h.
It is easy to see that g(xnR) ≤ A, so there exists an R-homomorphism ϕ :

xnR −→ A such that ϕ = g|xnR. Since pg = α̂, it follows that pg|xnR = α̂|xnR,
i.e., hϕ = α. Hence xnR is projective, proving (i). �

4. Rings with condition (*)

Condition (*). A ring R is said to satisfy the condition (*) if in R every
principal right ideal is a direct sum of a projective right ideal and a right ideal
not containing a nonzero projective right ideal. It is clear that PP-ring implies
condition (*).

A module M is said to be almost principally injective (or AP-injective
for short) if, for any a ∈ R, there exists a S-submodule X of M such that
lM rR(a) = Ma ⊕ X, as a direct sum of EndR(M)-modules.
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A ring R is called right AP-injective if RR is AP-injective ([9]).

Lemma 4.1. ([9], Lemma 1.2) Let MR be a module, S = End(M), and a ∈ R.

(i) If lM (rR(a)) = Ma⊕X for some X ⊆ M as a left S-module, then we have
HomR(aR, M) = HomR(R, M) ⊕ Γ as a left S-module, where Γ = {f ∈
HomR(aR, M) : f(a) ∈ X}.

(ii) If HomR(aR, M) = HomR(R, M)⊕Γ as a left S-module, then lM (rR(a)) =
Ma ⊕ X as a left S-module, where X = {f(a) : f ∈ Γ}.

(iii) Ma is a summand of lM (rR(a)) as a left S-module iff HomR(R, M) is a
summand of HomR(aR, M) as a left S-module. �

We obtain the following result that gives us the characterization of a ring
satisfying (*) via AP-injective modules.

Theorem 4.2. For a ring R the following conditions are equivalent:

(i) R satisfies (*).

(ii) Every factor module of an AP-injective right R-module is AP-injective.

(iii) Every factor module of an P-injective right R-module is AP-injective.

(iv) Every factor module of an injective right R-module is AP-injective.

Proof. (i) =⇒ (ii). Assume (i). Let MR be an AP-injective module, N ≤ M
and a ∈ R. Then lM (rR(a)) = Ma⊕X for some X ⊆ M as left S-module. By
Lemma 4.1, we have HomR(aR, M) = HomR(R, M)⊕Γ as left S-module, where
Γ = {f ∈ HomR(aR, M) : f(a) ∈ X}. We will prove that HomR(aR, M/N) =
HomR(R, M/N) ⊕ Γ′ as left S-module. In fact, since aR = P ⊕ Y where P

is projective and some Y ≤ aR, aR/Y
β� P. Let f : aR −→ M/N be an R-

homomorphism, there exists an R-homomorphism θ : aR/Y −→ M such that
ηNθ = fjβ where j : P −→ aR is the inclusion and ηN : M −→ M/N is the
natural epimorphism.

P

aR/Y aR

M M/N 0

�

j

�

θ

�
�

���β

�
�

�
��

θηY

�

f

�
ηN

�
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Take θ′ = θηY where ηY : aR −→ aR/Y is the natural epimorphism.
Then θ′ = θ1 ⊕ γ where θ1 ∈ HomR(R, M) and γ ∈ Γ. From this ηNθ1 ∈
HomR(R, M/N) and ηNγ ∈ Γ′.

(ii) =⇒ (iii) and (iii) =⇒ (iv) are clear.
(iv) =⇒ (i). Assume (iv). For every a ∈ R, we take I the sum of all right

ideal of aR not containing a nonzero projective right ideal. We prove that aR/I
is projective. Let h : A → B be any R-epimorphism, in which A, B are any
right R-modules and α : aR/I −→ B be any R-homomorphisms.

Since B ∼= A/Ker(h)
j

↪→ E(A)/Ker(h),

α′ : aR/I → E(A)/Ker(h)
a �−→ α′(a) = α(a)

is an R-homomorphism. We set α = α′ηI = jαηI , in which ηI is the natu-
ral epimorphism. By (iv), E(A)/Ker(h) is AP-injective, so there exist f1, f2 ∈
HomR(aR, E(A)/Ker(h)) such that f1 can be extended to f̂1 : R → E(A)/Ker(h).

Since RR is projective, there exists an R-homomorphism g : R −→ E(A)
such that pg = f̂1, i.e., the following diagram commutes

0 aR R

aR/I

A B 0

E(A) E(A)/Kerh 0

�

�

ηI

	
	

	
	

	
	

	
		


ϕ′

�

�
�

�
�

���
ϕ

�
α

�

�
h

�
j

�

�
p

�

in which p : E(A) −→ E(A)/Ker(h) is the natural epimorphism and p|A = h.
It is easy to see that g(aR) ≤ A, so there exists an R-homomorphism

ϕ′ : aR −→ A such that ϕ′ = g|aR.
Now we prove that I ≤ Ker(ϕ′). In fact, for any i ∈ I, jαηI(i) = 0 =

f1(i) + f2(i) and then f1(i) = −f2(i). By Lemma 4.1,

lE(A)/Ker(h)(rR(i)) = (E(A)/Ker(h))i ⊕ X

as left S-module, where X ≤ E(A)/Ker(h). So f2(i) = f1(i) = 0, i.e., i ∈
Ker(f1)∩aR = Ker(ϕ′). Then there exists ϕ : aR/I −→ A such that ϕηI = ϕ′.

Since pg = f̂1, it follows that pg|aR = f̂1|aR, i.e., hϕ′ = αηI . It follows that
hϕηI = αηI and since ηI is epimorphism, hϕ = α. Hence aR/I is projective.
Set P = aR/I we have aR ∼= P ⊕ I, proving (i). �



108 On Generalized PP-rings

5. Rings with condition (**)

Condition (**). A ring R in which for every 0 �= a ∈ R, there exists n ∈ N

such that an �= 0 and anR is a direct sum of a projective right ideal and a
right ideal not containing a nonzero projective right ideal. It is clear that
”generalized PP-ring” implies condition (**).

A module M is said to be almost general principally injective ([9]) (or AGP-
injective for short) if, for any 0 �= a ∈ R, there exist a positive integer n = n(a)
and an S-submodule X of M such that an �= 0 and lMrR(an) = Man ⊕ X as
a direct sum of EndR(M)-modules.

A ring R is called right AGP-injective if RR is AGP-injective.
The following result provides a characterization of rings satisfying (**) via

AGP-injective modules.

Theorem 5.1. For a ring R the following conditions are equivalent:

(i) R satisfies (**).

(ii) Every factor module of a AP-injective right R-module is AGP-injective.

(iii) Every factor module of a P-injective right R-module is AGP-injective.

(iv) Every factor module of an injective right R-module is AGP-injective.

Proof. By the same argument of proving Theorem 3.3 and 4.2. �

6. Remarks

6.1. In [4], a ring R is called a generalized right PP-ring if for any x ∈ R,
the right ideal xnR is projective for some positive integer n, depending on x,
or equivalently, if for any x ∈ R, the right annihilator of xn is generated by
an idempotent for some positive integer n, depending on x. They gave an
example of a generalized PP non PP-ring as follows. Let Z2 be the field of
integers modulo 2, and

R = {a0 + a1i + a2j + a3k|ai ∈ Z2 for i = 0, 1, 2, 3}

be the Hamilton quaternions over Z2.
Let RZ be the ring of quaternions over Z, where Z is the ring of integers

and I = {a0 + a1i + a2j + a3k|ai ∈ 2Z, i = 0, 1, 2, 3} be the ideal of RZ. Then

R � RZ/I.
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Note that by the definition of [4], if a ring R is generalized PP, we only need
to find a positive integer n such that xnR is projective for each non-nilpotent
x ∈ R. Therefore, the defenition of a generalized PP-ring in this paper is
different from that in [4]. We have the following implications:

PP − rings =⇒ generalized PP − rings (in this paper) =⇒
generalized PP − rings in the sense of [4]

but the converses are not true, in general.
Since (a0+a1i+a2j+a3k)2 = a2

0−a2
1−a2

2−a2
3 ∈ Z2 with a0+a1i+a2j+a3k ∈

R, so (a0 + a1i + a2j + a3k)2R = 0 or R, i.e., R is generalized PP in the sense
of [4]. But R is not a generalized PP-ring in the sense of this paper. In fact,
all idempotents in R are 0 and 1 and (1 + i)2 = 0, so 1 + i ∈ rR(1 + i) and
1 �∈ rR(1 + i) show that rR(1 + i) cannot be generated by an idempotent in R.
It is clear that R is not a PP-ring by our definition. �

6.2. Many examples of a right AP-injective ring which is not right GP-injective
were given by [9]. For example, let R = Z4 ∝ (Z4⊕Z4) be the trivial extension
of Z4 by the Z4-module Z4 ⊕ Z4. Let a = (0̄, 1̄, 0̄). Then a2 = 0 and lr(a) =
0 ∝ (Z4 ⊕ Z4) �= 0 ∝ (Z4 ⊕ 0) = Ra. Therefore, R is not GP-injective. �
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