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Abstract

We present a new method for solving generalized variational inequal-
ities on polyhedra. The method is based on an interior-quadratic term
which replaces the usual quadratic term. This leads to an interior prox-
imal type algorithm. We first solve a monotone generalized variational
inequalities satisfying a certain Lipschitz condition. Next, we combine
this technique with line search technique to obtain a convergent algo-
rithm for monotone generalized variational inequalities without Lipschitz
condition. Finally some preliminary computational results are given.

1 Introduction

Let C be a polyhedral set on the real Euclidean space IR™ defined by
C:={zeR": Az <b},

where A is an p X n matrix, b € IRP, p > n. We suppose that the matrix A is
of maximal rank, i. e., rankA = n and intC' = {z : Az < b} is nonempty. Let
F be a continuous mapping from D into IR", and ¢ be a lower semicontinuous
convex function from C into IR. We say that a point z* is a solution of the
following generalized variational inequality if it satisfies

(F(z*),z —2") + o(x) —p(z*) > 0 Vz € C, (VIP)
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where (.,.) denotes the standard dot product in IR™. Throughout the paper,
we assume that the mapping F' is monotone over C'.

This generalized variational inequality problem have many important ap-
plications in economics, nonlinear analysis and have been studied by many
researchers (see [9, 13, 15, 17, 19, 22, 24]).

It is well-known that the interior-quadratic technique is a powerfull tool
for analyzing and solving optimization problems (see [6, 23]). Recently this
technique has been used to develop proximal iterative algorithm for variational
inequalities (see [5, 6, 8]).

In our recent paper [1] we have used the logrithmic quadratic function for
pseudomonotone equilibrium on R" := {z = (z1,...,2,) € R": z; >0 Vi=
1,...,n} and developed algorithms for solving them.

In this paper we extend our results in [1, 2, 3] to the generalized variational
inequality problem (VIP). Namely, we first develop a convergent algorithm
for (VIP) with F' being monotone function satisfying a certain Lipschitz type
condition on C' by using the interior-quadratic function. Next, in order to
avoid the Lipschitz condition we will combine the line search method and this
function to obtain a convergent algorithm for solving the generalized variational
inequality problem (VIP) with the monotone function F.

The remaining part of the paper is structured as follows. In Section 2, we
present a convergent algorithm for monotone and Lipschitz generalized vari-
ational inequality problems. In Section 3, we modify the algorithm by com-
bining a line search with the interior-quadratic function, which allows avoiding
the Lipschitz condition. Section 4 deals with some preliminary results of the
proposed method.

2 Preliminaries on the interior-quadratic func-
tion

First, let us recall the well known concepts of monotonicity that will be used
in the sequel.

Definition 2.1 Let C be a conver set in IR™, and F : C — IR™. The function
F is said to be
(i) monotone on C if for each x,y € C, we have

(F(z) — F(y),z —y) > 0;
(i) strongly monotone on C' with constant 3 > 0 if for each x,y € C, we have

(F(z) = F(y),x —y) = Blle —yll*;
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(iii) Lipschitz with constant L > 0 on C (shortly L— Lipschitz), if we have

|1F(z) = F(y)ll < Lllz —y|| Va,yeC.

Remark 2.2 Let A be p x n matriz, rankA = n,C := {x € R" : Az < b},
and F : C — IR™ be L—Lipschitz on C. Then we have

|F(x) = F(y)|| < LI|A(z — y)|| Va,y € C,
where A := (@ij)nxn is a submatriz of A such that rank A=n and

|A7Y] = sup [[A7"al],

[lzf|=1

and L = L||A7Y|].
Indeed, from
|F(z) = F(y)ll < Lllz —y|| Va,y€C,

and
|z —yll = [|[AT Az = )| < [|A7Y] [JA(e = y)l| Va,y € R",
it follows that

1F(2) = F)ll < LIATH| [[A(z =)l Yo,y € C.

Note that when ¢ is differentiable on some open set containing C', then,
since ¢ is lower semicontinuous proper convex, the variational inequality (VIP)
is equivalent to the following one (see [11, 12]):

Find z* € C such that
(F(z*) 4+ vp(z*),z —2*) >0 Vo e C.

In special case ¢ = 0, problem (VIP) can be written by the following:
Find z* € C such that

(F(z*),x —a*) >0 Ve eC. (VI)

It is well known that the problem (VI) can be formulated as finding the zero
point of the operator T(x) = ¢(x) + N¢ () where

(2.1)

Ne () {lyeC: (y,z—x)<0,VzeC} ifzel,
xTr) =
¢ 0 otherwise.

A classical method to solve this problem is the proximal point algorithm (see
[2, 21]), which starting with any point 2° € C and Ay > X > 0, iteratively
updates 2¥*! conforming the following problem:

0 € \eT(2) + Vah(z, zb), (2.2)
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where 1
h(z,a*) = o[|z — 2F| .
2
Recently, Auslender et al. [7] have proposed a new type of proximal inte-
rior method for solving problem (VI) on C' = IR} through replacing function
h(z,z*) by dy(z,z*) which is defined as

= vy ta)
=1

where
v 2 .
¢(t):{§(t—1) T u(t—logt —1) ift >0, 23)

400 otherwise,

with v > p > 0. The fundamental difference here is that the term dg is used
to force the iteratives {zF1} to stay in the interior of IR".

Applying this idea to problem (VIP), in this paper we use the following
function

d(o,g) = {%le— Y1+ Yy R (Elog — &4 1) if 2> 0,

D (24
400 otherwise,

with g € (0,1) and y € C. Let a; denotes the rows of the matrix A, and define
the following quantities:

li(x) = bi — (@i, ),
l(z) = (L(z),la(x), ... (),
D(z,y) = d(I(x), 1(y))-

We denote by V1 D(x,y) the gradient of f(.,y) at x for every y € C. It is easy
to see that

ViD(a.y) = ~AT(I(0) - (5) + nX, gy 7). (25)

where X, = diag(ly(y), ..., [,(y)) and 1oglgr)) (1og§igz§, ...,log ;)

Now we consider the following gap function:

g(w) = min{(F(z),y — =) + ¢(y) — ¢(x) + D(y,z) : y € C}. (2.6)

Since C' is closed convex and the objective function are strongly convex, the
mathematical programming problem ( 2.6) is always solvable for any x € C.
Let h(x) denote the unique solution to problem( 2.6). h is a marginal mapping
onto C. Observe that when ¢ is a constant function and D(z,y) = 3|z — y||?,
h concides and becomes the marginal mapping for the projection gap function
introduced in Fukushima (1992) (see [16]). The following lemma characterizes
the solutions to problem (VIP) by means of the mapping h.
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Lemma 2.3 Suppose that the generalized variational inequality problem (VIP)
has a solution. Then a point x* is a solution to problem (VIP) if and only if
x* = h(z*).

Proof. Let x* be a solution to problem (VIP) and h(x*) be the unique solution
to problem ( 2.6). Then

(F(z7), h(z") — 27) + p(h(z7)) = (") = 0. (2.7)

Since h(z*) is the solution to problem ( 2.6), there exists a z* € 9,(h(z*)) such
that
(F(z*)+ V1iD(h(z*), ")+ 2",y — h(z™)) > 0 Vy e C. (2.8)

Replacing y = «* in ( 2.8) we get
(F(z*) + ViD(h(z™), ")+ 2", 2" — h(z*)) > 0 Vy € C. (2.9)
Adding two inequalities ( 2.7) and ( 2.9) we obtain
(ViD(h(z"),z%), 2" — h(z")) =2 (", h(z") — ") + o(z") — o(h(z")). (2.10)
Since z* € 0, (h(z*)), we have
(2", 2" — h(z7)) < p(z7) — (h(z7)).

Thus
(2%, 2" = h(z")) — p(z*) + (h(z")) < 0. (2.11)

From inequalities ( 2.10) and ( 2.11), it follows that
(ViD(h(z*),z*),z* — h(z*)) > 0.

By strongly monotonicity of Vi D(.,z*) and ViD(z*,z*) = 0, we have z* =
h(z*).
Conversely, suppose now h(z*) = z*. Then, by ( 2.8) we have

(F(z*)+ 2", y—h(z")) >0 Yy e C.
Since z* € 0, (h(z*)),
(2" y—a") < oply) —p(z”) Vel
Adding the last two inqualities we have
(F(z),y —a") + ¢(y) —p(z") 20 vy e C,

which means that z* is solution to problem (VIP).
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Lemma 2.3 shows that the solution of the generalized variational inequality
(VIP) can be approximated by an itertive procedure z*+! = h(2*),k = 0,1, ...
where ¢ > 0, 2° is any starting point in C' and h(2*) is the unique solution of
the strongly convex program

min{(F(z*),y) + ¢(y) + D(y,2*) : y € C}.

Howerer, generally, the sequence {z*};>0 does not converge to a solution of
problem (VIP) (see [13, 18]). Our goal now is to construct iteratively a sequence
such that it converges to a solution to problem (VIP).

Algorithm 2.4 Step 0. Choose 2° € C,k := 0, a positive sequence {cy}
such that ¢, — ¢ >0 as k — +o0.
Step 1. Solve the strongly convex program:

min{ (F(z*),y — z*) + p(y) + iD(y, ¥y y e} (2.12)

to obtain the unique solution y*.

If y* = xF, then terminate: z* is a solution to problem (VIP).

Otherwise go to Step 2.

Step 2. Find x**1 which is the unique solution to the strongly convex program.:

min{ (F ()5 1) + () + --D(y.a") : < O},
Step 3. Set k:=k+ 1, and return to Step 1.
In the next proposition, we justify the stopping criterion.
Proposition 2.5 If y* = 2%, then 2* is a solution to problem (VIP).

Proof. If the algorithm terminates at Stepl, then y* = 2*. It means that z*
is the solution to problem ( 2.6). By Lemma 2.3 it is a solution to problem
(VIP).

O

In order to prove the convergence of Algorithm 2.4, we give the following
key property of the sequence {z*}>0 generated by the algorithm.

Lemma 2.6 Suppose that the function F : C' — IR™ U {400} is monotone,
L—Lipschitz on C, and ¢ is convez function on C. Then, if the algorithm does
not terminate, then we have

* * 1—3M—Ck||A_l||2
JA(@*F T —27)[]? <||A(z® — 2*)||* - 5 AT —o)])?
1—5[&—0in2
—ﬁHA(JJ‘k—yk)HQ,

where x* is any solution to problem (VIP).
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Proof. Since y* is the solution to problem ( 2.12), from an optimization results
in convex programming [20], we have

1
0= F(xk) —+ w1 + c—le(yk, xk),
k
where w; € dp(y*). It follows that
1
—(ViD(",2%),y = of) = ~(P@") + w1,y —of) Wy eC. (2.13)
k

Since wy € dp(y*), we have
e(y) — (") > (wi,y —y*) VyeC.
From ( 2.13) and this inequality it follows that

1

o (ViD(y*, 2%),y — ") > (F(@"), 4" —y) + o(4*) —o(y) VyeC. (2.14)

Replacing y by x*, we obtain

i(le(yk, 2b), = y*) = (F(ah), o —2%) + oy) = o(a®).  (2.15)
Note that «* is a solution to probem (VIP),
(F(z*),z—2") + o(z) —p(z*) >0 Vz e C.
By mononicity of F', it follows that
(F(z*), 2% — %) + p(z¥) — p(z™) > 0. (2.16)

Combinating ( 2.15) and ( 2.16) we obtain that

éWlD(y’“, af),at — o) > (FF), 0" —2%) + o) —o(@®).  (217)

k

On the other hand, since z**! is the solution to the strongly convex program

. 1
min{(F(y"),y) +¢(y) + —-Dly.") : ye C},
in the same way, we also have

(VD o), @ k) 2 (), M g et — ). (2.18)
k
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Now, applying the Lipschitz condition of F' and Remark 2.2 with x = 2%,y =
y*, we obtain

(F(2") = F(y"), 2™ —y*) <[|F@@") = F)I| ]2 = o]
1 1
<SIFQD = FEOIP+ Sl =

1A~ 1||2

EQ k k 2 k+1 ky\p2
5 A" = 25" + A =%

IN

Hence,

EQ
(F(y"), et = o) Z(F(ah), o™ = o) = Z-[]AW" =257

A 1112
AR - g (2.19)

From ( 2.5), ( 2.18) and ( 2.19), we have

),
<A($k+1 _ xk),A( * k+1)>

LR
N<Xr’cl09%,fl(@~* 2PN 4 e (F(2%), 241 — )

+epp(@™) = erp(y*) - (" =)
c A—l 2
Sl A e )

If y = %+, inequality ( 2.14) becomes

(P, 01 = ) + o) = p0F) 2 (V2D a0 21

i<AT(l(xk) _ l(yk) _ ,uerlogl(yk)),yk _ xk+1>

T ‘ I(x*)
k
- imxﬁlog%ik% (- ). (2.21)

From ( 2.20) and ( 2.21), it follows that
(A( T — ) A" — 2P >

I(xFHL . cx L2
pXog e A — a41) - S - 2|

cll A2
AR A =)

k
;L(erlogggk; ,A(yF — F 1Y), (2.22)

+ (AW = ab), Ayt - ) —
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Substituting
JA(z" —2)[]* =[| A(a® ~a* )P+ AT =) [P+2( A" —ab), A(e™—a" )
into ( 2.22), we obtain the estimation

A" —2)[[* > [|A(e® — ™ )2 + ||A@EM = 2)])? = e L2 A(y" — )|
( k—‘rl)

+ 2(A(yF — 2F), A(yF — ) + 2M<ka10gllgng), A(z* —2Fth)

I(y* -
— 2u(Xulogp U] AW ) - all AT PAGH - )

Combining this inequality with the following equality

A" =a®)|2 = [|AGM =) PHI A" =) [P+2(A T —y), Ay —2?)),

we have
AP =22 < [JA@® — 2P = [JAGE = y")|P = [|A@® - )|
A-112 k41 kY12 I(zM ) * k+1
+ el [ATPIJAET =y — 20(X 1 log 1) A" —2"7))
1(y*) ko k41 72 ko ky(2
(X elog s, A ) LA, — PP (223)
For each ¢ > 0 we have 1 — % <logt < t—1, then we obtain after multiplication
by l;(z*) > 0 for each i =1, ..., p,
li(xk“
li(xk)li(x*)logm < Li(z*) (L) = 1;(28)), (2.24)
and after multiplication by —I;(z**1) <0 for each i = 1, ..., p,
1; (zk+1) 1;(z%)
kN (kL i < (2PN (25 (1 - U
Ll o T < () (1 - )
=1 (") (Li(2%) — L (2" ). (2.25)

Adding two inequalities ( 2.24) and ( 2.25), we obtain
=l (2*) — 1i(2*) 2 + |Li(a®) — L))
— L@ — L@ Vi=1,...,p.
These inequalities deduce that

I(zk+h)
I(x*)
A" — 2*)[1? + [|A(z® — 2" FY)]2 = || =29, (2.26)

LA —27)) <

2(Xrlog
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In the same way, we also have

2<ka1°g%afl(yk—xk+l)> < AP =) P+ Al =2 P [ Ay =) 2.
(2.27)
Adding the inequalities ( 2.23), ( 2.26) and ( 2.27), we get
AP = 2] < |JA@® — 2)|* = [JAGE = yP)|1P = [|A® — o)
+ ek L2 A®Y" — 2P + el [ATH P AT = )P+ p(l| A" — 2]
+ (A" = P2 = A = 2)|P) + (A" - 2P
| A@EM =22 = [JAGEET = PP,

and consequently

L+ WA —2")|]? <
L+ @A@Y = a)|P = (1 + p— al[ATHP) AR = )]
— (L= p— e L[| A(® — o)1 + 2u| | A("H — 2®)]%,
(2.28)
Applying the following inequality
A = 2P)|P < 2| A — o)1 + 2| A - M) 2
to the last term in the right hand side of ( 2.28), we obtain

(L+ p)||A@z*H — 2| <
(L+ p||A@@* — 27)|]> — (1 = 3p — x| [A7H]?)|| AR — 7)) 2
— (1= 5p — e L?)||A(z" — M) 2,

which proves this lemma. o
The following theorem establishes the convergence of the algorithm.

Theorem 2.7 Suppose that the function F' is monotone and L— Lipschitz on
C, that ¢ is conver and lower semicontinuous on C. Then, if the algorithm
does not terminate and

1—e—cp||A7Y)? 1 —€—cpL?

0<é€0<p<min{ 3 , 7 1,

then the sequence {x*}r>0 converges to a solution to problem (VIP).

Proof. From

—e—ci]|A7Y)? 1—6—0@2}
3 ’ 5

1
0 < g < min{
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and € > 0, we have
1—-3p—cgl]AY*>0 and 1 —5u—cxL?> >0 Yk =0,1,....
Then, using Lemma 2.6 we obtain that
[[A(zF T —2%)|]2 < ||A(z — 2*)||* VE=0,1,... (2.29)

It means that the sequence {||A(z* — z*)||}r>0 is nonincreasing. Since it is
bounded below by 0, it must be convergent. Since A is of maximal rank the
function u — ||ul|a := ||Aul| is norm on IR™ and it follows that the sequence
{||z* — 2*||}x>0 converges. Then the sequence {z¥};>¢ is bounded and it has
a subsequence {x"i};>¢ such that ¥ — Z as i — +00. From Lemma 2.6, we
get

1 —5u—c,L? N .
T AGR g < AGE =P = A =) v = 0,1,

Applying these inequalities iteratively, we obtain

n

1—5u— cpL? N " N
> e AGE I < (1A — a2~ A" 2| ? E 20,
k=0

As the sequence {||A(z" ™! —z*)||}x>0 is convergent, passing n — 400 we have

1 =3u—c[AT
lim
k—+o0 1+u

P Ak k2 —
[|A(z" = y")[|” = 0.

Using this with the assumption 1 — 5p — ¢ L? > € > 0, we get

. k_ k|| —
Jim el A - b))l =0,

which implies

Tim (A - )| = 0.
1—+00
It holds that
lim yri =z

Recall that 4% is the solution of the problem
. . 1 .
min{(F(@*),y) + ¢(y) + —Dly,=") : y € C}.
Then

L 1 . . 1 .
<F(x'“),y’“>+<p(ykl)+c—hD(y’“,x’“) < <F(x'“),y>+<ﬂ(y)+c—hD(y,xkl) vy € C.
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Using the continuity of F', upper semicontinuity of D(y, .), passing to the limit
as ¢ — 400 we obtain

(F(2),y =) + () ~ 9l@) + 2D(y,) 20 Yy € C.
Then, there exists a @ € dp(Z) such that
(F(z) 4w+ %VlD(i,i),y —Z) >0 VyeC.
As V1 D(z,z) = 0, this reduces to
(F(z)+w,y—z) >0 VyeC.
Combining this inequality with the convexity of ¢,
e(y) — (@) 2 (0,y —x) Vy €C,
we obtain that
(F(z),y =)+ ¢(y) —p(x) 20 Vy e C.

So Z is a solution to problem (VIP).
Replacing z* by Z in ( 2.29) fields

A" — )] < A" —2)|| VE=0,1,..

which implies that the sequence {||A(z* — Z)||}x>0 is convergent. We then
have that the sequence {||z* — Z||}r>0 is convergent. By the above proof, the
sequence {Jik}kzo has a subsequense converging to Z, we deduce that the whole
sequence {x*};>0 converges to the solution Z of problem (VIP).

d

3 The interior-quadratic proximal
linesearch method

Convergence of Algorithm 2.4 requires that the function F' satisfies the Lip-
schitz condition on C. This condition depends on positive constant L and in
cases, it is unknown or difficult to approximate. So in this section, in order
to avoid this assumption, we combine the interior-quadratic function with line
search technique. This technique has been used widely in descent method for
solving variational inequalitie problem (VI) on C' := IR" (see [13, 23]).

The algorithm then can be described as follows.
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Algorithm 3.1 Step 0. Take2° € C,k := 0 and a sequence i, € (0;2) Vk >
0.
Step 1. Find y* which is the solution to the strongly convex program:

min{(F(z*), ) + o () + émy,x'f) . yec). (3.1)

If y* = ¥, then stop.
Otherwise go to Step 2.
Step 2. Find A\, € (0,1) as the smallest number such that

(F((1=Ae)z"+Ay"), y’“—xk>+<p(y’“)—w((l—kk)x’“Hky’“H%D(y’“,x’“) <0.
* (3.2)
Set 2k := (1 — A\p)z* + My, choose g € F(2F) + 0p(2F).
If ¢* =0, then stop.
Otherwide go to Step 3.
M ((FR) 25 —y") (=) —o(r™)
A=X)llg"I?

$k+1 _ Pc(xk _ 5kgk),

Step 3. Set 0 =i and

k:=k+ 1 and return to Step 1.

Recall that Po(x) denotes the projection of 2 on C.

First we have to show that there always exists Ay € (0,1) as the smallest
number satisfies ( 3.2). We suppose on the contrary that for every A € (0, 1),
we have

1
(F((L=Ak)e" +y®), ") +0(y") —o((1=M)z® + M) + ED(yk,xk) > 0.

Passing to the limit in the above inequality (as A — 07), by the continuity of
F(y), we obtain

(Fa). g —a%) + o) - o) + 5 DF k) 0. (33)

Since y* is a solution to ( 3.1), it follows that
1 1
(F(@*),y) +¢ly) + Dy a*) 2 (F@*),y") + o(y") + D", "),

Replacing y by «* in the above inequality, we have

0> (F(*), 4" — 2% + p(s*) — o(c*) + émy’tx’f). (3.4)

Then from ( 3.3) and ( 3.4) it follows that D(z*,y*) =0, i.e., d(I(z¥),l(y*)) =
0. Since I(x) = b — Az and A is maximal rank, we obtain z* = y*. This
contracdicts to z* # y* in Step 1.
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Remark 3.2 The smallest number A\, € (0,1) in Step 2 of Aglgorithm 3.1
can be replaced by the following: With 8 € (0,1), we find n as the smallest
natural number such that

<F(6"x’“+(1—6")y’“),y’“—x’“>+<p(y’“)—w(ﬁ"x’“+(1—6")y’“)+ﬁl?(y’“,x’“) <0,

then set A\, :=1— (™.

In the next proposition, we justify the stopping criterion.

k

Proposition 3.3 If y* = 2% or g8 = 0, then 2* is a solution to problem

(VIP).

Proof. If the algorithm terminates at Step 1, then 3* = 2*. It means that z*
is the solution to problem ( 3.1). Then

(F(z"),9) + ¢(y) + D(y,2*) = (F(a*),2") + o(z*) + D(a",2") vy e C.

From D(z*, 2%) = 0, this inequality follows that z* is a solution to problem
(VIP).
If the algorithm terminates at Step 2, then g* = 0, that means 0 € F(z*) +
dp(2¥). Thus 0 = F(z*) 4+ w*, where w* € dp(2*). Hence
p(x) = p(") > (", x - 2F)
= —(F(z"),z - 2" vezecC.

So z* is a solution to problem (VIP). O

In order to prove the convergence of Algorithm 3.1, we give the following
key property of the sequence {z*}>¢ generated by the algorithm.

Lemma 3.4 Suppose that the function F is monotone on C and @ is convex
on C. Then, if the algorithm does not terminate, then we have

(2 — n)d;
[a* T — 2¥|? < |2 — 2¥]]? — —=E|gF|?,

where * is any solution to problem (VIP).
Proof. We have

[+ = 2|12 = || Pu(a = 8eg") - 7|2
< [|o* = o — dug|?

= |2 — 2*||* — 261 (g", «* — =) + (3kllg"II)*. (3.5)



Puam Ncoc ANH 97

Note that, since z* is a solution to problem (VIP),
(F(z7),y — ") + ¢(y) — p(z%) 20 vy € C.

Then by monotonicity, it follows that

(F(2F), 2" —a*) + (zF) = p(a*) 2 0.
Combining this with

(gF, 2% — &) = (g%, & — 2F) + (g*, 2% — z%)

> (g",a® = 2F) + o(2h) — p(a®) — (F(F), 2" — 25),

we obtain

<gkaxk - x*> Z <gkaxk - Zk>

> 1o (FGE 2 =) + o) = e(yh)

Ok
%H%HQ- (3.6)

From ( 3.2) it follows that (F(z%), y* — 2%) + p(y*) — p(2¥) < 0. Hence
M ((F(25), 2% — o) + (%) — ("))
(1= Ao)llg™ 12

Then from ( 3.5), ( 3.6) and ( 3.7), we have

Ok = Yk > 0. (3.7)

* * 52
et = a2 < o = - 2 g2+ )2
Yk
gz 2=
= ||z — &> — (616512,
Yk

which proves the above lemma.

d

Now we are in a position to consider a convergence of Algorithm 3.1 in a
case which does not terminate.

Theorem 3.5 Suppose that the sequences vy, € (0,2),cx — € as k — oo, and
functions F, ¢ satisfies the following conditions:

(a) liminf (2 — ) > 0.

(b) f is monotone on C.

(¢c) ¢ is lower semicontinuous on C.

Then, if Algorithm 3.1 doesn’t terminate at Step 1 or Step 2, then the sequence
{2} k>0 converges to x* which is a solution to problem (VIP).



98 An Interior Proximal Method for Solving...

Proof. From Lemma 3.4, we have

— Tk * *
> 2l I < Yot Y
Yk P

k=0

||x — | = [Ja" " = 2*[]* ¥n > 0.

On the other hand, also since Lemma 3.4 deduces that {||z* — z*||} is a
decreasing sequence and is lower bounded by ||z — 2*||, then it must converge.

It means that
o0

19"[)* < +oo.
k=0

Hence 9
. — & k2
lim —=(§
i e (Skllg"11)

which together with klim inf(2 — yx)v, > 0 implies

i Ak ((F(27), 2% — ) + (%) — o(y¥))

=0.
koo (1= X&)llg¥|

From the convergence of {||z* —2*||}1>0, we have that the sequence {z*}x>0 is
bounded. Then by the maximum theorem [4], we can deduce that the sequence
{g*}x>0 is bounded too. Thus

A ((F(29), 25 = oF) + o(2F) — 0(y"))

klirgo = =0. (3.8)
According to the rule ( 3.2), it is easy to see that
1
ED(‘U , k) < —(F (%), 4* = a®) = o(y*) + o("). (3.9)

We consider two cases: - -
Case 1: If klim sup A\r, > 0, then there exists A € (0, 1] such that A, > A VE > 0.

From ( 3.8) and inequality ( 3.9), we have

[Jim D@y, z%) = 0. (3.10)
Since the sequence {z*})>0 is bounded, hence it has a subsequence {z* : k €
M} converging to a point Z. Using the limit (3.10) we see that the subsequence

{y* : k € M} also converges to z. Note that y* is a solution to problem ( 3.1),
hence

(Fa").9) + oly) + =Dl a") = (Fah). ) +90) + —- Dl ah) Wy € C.
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Passing to the limit as k¥ — oo and using the continuity of F', the lower semi-
continuity of ¢, we have

(F(@).9) + o) + émy, £) > (F(2),2) + (@) + iD(f’ %) WyeC.

By Lemma 2.3, T is a solution to problem (VIP), thus the proof of the theorem
in this case is complete.
Case 2: If klim sup Ay = 0, then since {z*} is bounded, we have some subse-

quence {z¥ : k € M} converging to some point # as k — co. From Step 1 of
Algorithm 3.1, by lower semicontinuity of (F(z*),.) + ¢(.) + =D(.,z"*), the
sequence {y*}1>o is bounded too (see [4]). Thus, by taking a subsequence, if
necessary, we may assume that the subsequence {y* : k € M} also converges
to some point y. From

(F(2*),9) +oy) + imy’a ) > (F(), ") + o(y*) + imy’a ) Wyec,

by the lower semicontinuity of F, D and ¢, taking the limit as k — oo, we can
write

(F(2),9) + #0) + =D, 7) 2 (F(2),5) + 9(@) + =D(5,7) Yy € C. (3.11)

Substituting y = £ we then have
1
02 (F(2),9) +¢(y) — () + —D(5, 2). (3.12)

On the other hand, by Step 2 in Algorithm 3.1, since \;, € (0, 1) is the smallest
number satisfying

1
(F((1=A)z" + M), y’“—xk>+<ﬂ(yk)—@((1—Ak)xk+kkyk)+§1?(yk, z) <0.
k
We deduce that

1 1 1 1 1
F(1=5 0" + 5 M%), v =) +o (") = (1=5 M) + 5 M)+ 5—D(y*a*) > 0.
2 2 2 2 2¢k,
Passing £ — oo,k € M the above inequality and using klim sup Ay, = 0, we
obtain

(F(@),7 - 7) +9(5) — #(7) + 5=D(F,7) 2 0

This together with ( 3.12) implies D(Z,7) = 0, hence T = §. Then replacing §
in ( 3.11) by Z, we deduce that

(F(2),y—7) +0(y) — (@) + émy,@ >0 e

The proof is complete.
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4 Numerical Results

The airm of this section is to illustrate the proposed algorithms on a class of
generalized variational inequality (VIP) where

C:=R},¢=0,and F(x) = D(z) + Mz +q,

with the components of the D(z) are D;(z) = d; * arctan(z;) ¥j > 1, d; is
chosen randomly in (0,1). The matrix M = ATA with A is n x n matrix
whose entries are randomly generalized in the interval (—1,3). It is given by
A. Bnouhachem (see [9]). Under these assumptions, it can be prove that F is
continuous and monotone, that F' is Lipschitz with constant L < 1+ ||M]|].

Note that in this case, the subproblem
1
o = argmin{ (F(z), y — %) + —d(y,2*) - y e C}
k

where d is defined by ( 2.4). It is written as
’ 1 I~ Vi Yi Vi
k k 2 k2 ky2

_ i L Y— — y— L ; (—1 — = 1) : Cyl,
o mermmin{ (), gy e (sl < 01
where

Ciy={zxeR": z;>0 Vi=1,..,n}.

It is not difficult to see that if we denote y* = (yf, ..., y¥) and F(z) = (Fi(z), ..., Fa(2))

for all z € C', then for every i = 1,...,n, we have y¥ is the unique solution to
the strongly convex problem

1
min{§t2 + s t+ &g tlogt = t € (0, +00)},

where

i = e Fi(a®) — af — pak loga® — pak, &y = pak vi=1,...n.

In test we take the logarithmic parameter u = 0.01, ¢ = 0.01 Vk > 1 and
the tolerance 10~7. We obtained the following computational results.
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Tter(k) ¥ ok ok % ¥ Tk ok

1 1 1 1 1 1 1
1.0470 | 0.8957 | 1.0302 | 1.0030 | 0.9289 | 0.9641 | 0.9084
1.0886 | 0.8120 | 1.0654 | 1.0099 | 0.8549 | 0.9311 | 0.8199
1.1243 | 0.7436 | 1.1005 | 1.0155 | 0.7793 | 0.8975 | 0.7347
1.1528 | 0.6847 | 1.1296 | 1.0134 | 0.7022 | 0.8584 | 0.6540
1.1735 | 0.6296 | 1.1475 | 0.9976 | 0.6232 | 0.8095 | 0.5793
1.1864 | 0.5710 | 1.1496 | 0.9632 | 0.5422 | 0.7473 | 0.5112
1.1915 | 0.5067 | 1.1344 | 0.9088 | 0.4597 | 0.6706 | 0.4497
1.1887 | 0.4364 | 1.1014 | 0.8340 | 0.3763 | 0.5794 | 0.3946
1.1779 | 0.3601 | 1.0502 | 0.7383 | 0.2926 | 0.4733 | 0.3455
1.1590 | 0.2774 | 0.9801 | 0.6214 | 0.2095 | 0.3522 | 0.3020
1.1317 | 0.1882 | 0.8906 | 0.4829 | 0.1277 | 0.2159 | 0.2640

© 00 g Tk WhN O

— =
=)

Table 1. Numerical results: Algorithm 2.4 with n = 7.

The approximate solution obtained after eleven iterations is

219 = (1.1317,0.1882, 0.8906, 0.4829,0.1277,0.2159, 0.2640) T
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