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Abstract

We present a new method for solving generalized variational inequal-
ities on polyhedra. The method is based on an interior-quadratic term
which replaces the usual quadratic term. This leads to an interior prox-
imal type algorithm. We first solve a monotone generalized variational
inequalities satisfying a certain Lipschitz condition. Next, we combine
this technique with line search technique to obtain a convergent algo-
rithm for monotone generalized variational inequalities without Lipschitz
condition. Finally some preliminary computational results are given.

1 Introduction

Let C be a polyhedral set on the real Euclidean space IRn defined by

C := {x ∈ IRn : Ax ≤ b},

where A is an p × n matrix, b ∈ IRp, p ≥ n. We suppose that the matrix A is
of maximal rank, i. e., rankA = n and intC = {x : Ax < b} is nonempty. Let
F be a continuous mapping from D into IRn, and ϕ be a lower semicontinuous
convex function from C into IR. We say that a point x∗ is a solution of the
following generalized variational inequality if it satisfies

〈F (x∗), x− x∗〉 + ϕ(x) − ϕ(x∗) ≥ 0 ∀x ∈ C, (V IP )
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where 〈., .〉 denotes the standard dot product in IRn. Throughout the paper,
we assume that the mapping F is monotone over C.

This generalized variational inequality problem have many important ap-
plications in economics, nonlinear analysis and have been studied by many
researchers (see [9, 13, 15, 17, 19, 22, 24]).

It is well-known that the interior-quadratic technique is a powerfull tool
for analyzing and solving optimization problems (see [6, 23]). Recently this
technique has been used to develop proximal iterative algorithm for variational
inequalities (see [5, 6, 8]).

In our recent paper [1] we have used the logrithmic quadratic function for
pseudomonotone equilibrium on IRn := {x = (x1, ..., xn) ∈ IRn : xi ≥ 0 ∀i =
1, ..., n} and developed algorithms for solving them.

In this paper we extend our results in [1, 2, 3] to the generalized variational
inequality problem (VIP). Namely, we first develop a convergent algorithm
for (VIP) with F being monotone function satisfying a certain Lipschitz type
condition on C by using the interior-quadratic function. Next, in order to
avoid the Lipschitz condition we will combine the line search method and this
function to obtain a convergent algorithm for solving the generalized variational
inequality problem (VIP) with the monotone function F .

The remaining part of the paper is structured as follows. In Section 2, we
present a convergent algorithm for monotone and Lipschitz generalized vari-
ational inequality problems. In Section 3, we modify the algorithm by com-
bining a line search with the interior-quadratic function, which allows avoiding
the Lipschitz condition. Section 4 deals with some preliminary results of the
proposed method.

2 Preliminaries on the interior-quadratic func-

tion

First, let us recall the well known concepts of monotonicity that will be used
in the sequel.

Definition 2.1 Let C be a convex set in IRn, and F : C → IRn. The function
F is said to be
(i) monotone on C if for each x, y ∈ C, we have

〈F (x) − F (y), x − y〉 ≥ 0;

(ii) strongly monotone on C with constant β > 0 if for each x, y ∈ C, we have

〈F (x) − F (y), x − y〉 ≥ β||x − y||2;
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(iii) Lipschitz with constant L > 0 on C (shortly L−Lipschitz), if we have

||F (x)− F (y)|| ≤ L||x− y|| ∀x, y ∈ C.

Remark 2.2 Let A be p × n matrix, rankA = n, C := {x ∈ IRn : Ax ≤ b},
and F : C → IRn be L−Lipschitz on C. Then we have

||F (x)− F (y)|| ≤ L̄||A(x − y)|| ∀x, y ∈ C,

where Ā := (aij)n×n is a submatrix of A such that rank Ā=n and

||Ā−1|| = sup
||x||=1

||Ā−1x||,

and L̄ = L||Ā−1||.
Indeed, from

||F (x)− F (y)|| ≤ L||x− y|| ∀x, y ∈ C,

and

||x− y|| = ||Ā−1(Ā(x − y))|| ≤ ||Ā−1|| ||Ā(x − y)|| ∀x, y ∈ IRn,

it follows that

||F (x)− F (y)|| ≤ L||Ā−1|| ||A(x− y)|| ∀x, y ∈ C.

Note that when ϕ is differentiable on some open set containing C, then,
since ϕ is lower semicontinuous proper convex, the variational inequality (VIP)
is equivalent to the following one (see [11, 12]):

Find x∗ ∈ C such that

〈F (x∗) + 	ϕ(x∗), x − x∗〉 ≥ 0 ∀x ∈ C.

In special case ϕ = 0, problem (VIP) can be written by the following:
Find x∗ ∈ C such that

〈F (x∗), x − x∗〉 ≥ 0 ∀x ∈ C. (V I)

It is well known that the problem (VI) can be formulated as finding the zero
point of the operator T (x) = ϕ(x) + NC (x) where

NC(x) =

{
{y ∈ C : 〈y, z − x〉 ≤ 0, ∀z ∈ C} if x ∈ C,

∅ otherwise.
(2.1)

A classical method to solve this problem is the proximal point algorithm (see
[2, 21]), which starting with any point x0 ∈ C and λk ≥ λ > 0, iteratively
updates xk+1 conforming the following problem:

0 ∈ λkT (x) + ∇xh(x, xk), (2.2)
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where
h(x, xk) =

1
2
||x− xk||2.

Recently, Auslender et al. [7] have proposed a new type of proximal inte-
rior method for solving problem (VI) on C = IRn

+ through replacing function
h(x, xk) by dφ(x, xk) which is defined as

dφ(x, y) =
n∑

i=1

y2
i φ(y−1

i xi),

where

φ(t) =

{
ν
2 (t − 1)2 + μ(t − logt − 1) if t > 0,

+∞ otherwise,
(2.3)

with ν > μ > 0. The fundamental difference here is that the term dφ is used
to force the iteratives {xk+1} to stay in the interior of IRn

+.
Applying this idea to problem (VIP), in this paper we use the following

function

d(x, y) =

{
1
2 ||x− y||2 + μ

∑n
i=1 y2

i (xi

yi
logxi

yi
− xi

yi
+ 1) if x > 0,

+∞ otherwise,
(2.4)

with μ ∈ (0, 1) and y ∈ C. Let ai denotes the rows of the matrix A, and define
the following quantities:

li(x) = bi − 〈ai, x〉,
l(x) = (l1(x), l2(x), ..., lp(x)),
D(x, y) = d(l(x), l(y)).

We denote by ∇1D(x, y) the gradient of f(., y) at x for every y ∈ C. It is easy
to see that

∇1D(x, y) = −AT
(
l(x) − l(y) + μXylog

l(x)
l(y)

)
, (2.5)

where Xy = diag
(
l1(y), ..., lp(y)

)
and log l(x)

l(y)
=

(
log l1(x)

l1(y)
, ...,log lp(x)

lp(y)

)
.

Now we consider the following gap function:

g(x) = min{〈F (x), y − x〉 + ϕ(y) − ϕ(x) + D(y, x) : y ∈ C}. (2.6)

Since C is closed convex and the objective function are strongly convex, the
mathematical programming problem ( 2.6) is always solvable for any x ∈ C.
Let h(x) denote the unique solution to problem( 2.6). h is a marginal mapping
onto C. Observe that when ϕ is a constant function and D(x, y) = 1

2 ||x− y||2,
h concides and becomes the marginal mapping for the projection gap function
introduced in Fukushima (1992) (see [16]). The following lemma characterizes
the solutions to problem (VIP) by means of the mapping h.
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Lemma 2.3 Suppose that the generalized variational inequality problem (VIP)
has a solution. Then a point x∗ is a solution to problem (VIP) if and only if
x∗ = h(x∗).

Proof. Let x∗ be a solution to problem (VIP) and h(x∗) be the unique solution
to problem ( 2.6). Then

〈F (x∗), h(x∗) − x∗〉 + ϕ(h(x∗)) − ϕ(x∗) ≥ 0. (2.7)

Since h(x∗) is the solution to problem ( 2.6), there exists a z∗ ∈ ∂ϕ(h(x∗)) such
that

〈F (x∗) + ∇1D(h(x∗), x∗) + z∗, y − h(x∗)〉 ≥ 0 ∀y ∈ C. (2.8)

Replacing y = x∗ in ( 2.8) we get

〈F (x∗) + ∇1D(h(x∗), x∗) + z∗, x∗ − h(x∗)〉 ≥ 0 ∀y ∈ C. (2.9)

Adding two inequalities ( 2.7) and ( 2.9) we obtain

〈∇1D(h(x∗), x∗), x∗ − h(x∗)〉 ≥ 〈z∗, h(x∗) − x∗〉 + ϕ(x∗) − ϕ(h(x∗)). (2.10)

Since z∗ ∈ ∂ϕ(h(x∗)), we have

〈z∗, x∗ − h(x∗)〉 ≤ ϕ(x∗) − ϕ(h(x∗)).

Thus
〈z∗, x∗ − h(x∗)〉 − ϕ(x∗) + ϕ(h(x∗)) ≤ 0. (2.11)

From inequalities ( 2.10) and ( 2.11), it follows that

〈∇1D(h(x∗), x∗), x∗ − h(x∗)〉 ≥ 0.

By strongly monotonicity of ∇1D(., x∗) and ∇1D(x∗, x∗) = 0, we have x∗ =
h(x∗).

Conversely, suppose now h(x∗) = x∗. Then, by ( 2.8) we have

〈F (x∗) + z∗, y − h(x∗)〉 ≥ 0 ∀y ∈ C.

Since z∗ ∈ ∂ϕ(h(x∗)),

〈z∗, y − x∗〉 ≤ ϕ(y) − ϕ(x∗) ∀y ∈ C.

Adding the last two inqualities we have

〈F (x∗), y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ 0 ∀y ∈ C,

which means that x∗ is solution to problem (VIP).
�
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Lemma 2.3 shows that the solution of the generalized variational inequality
(VIP) can be approximated by an itertive procedure xk+1 = h(xk), k = 0, 1, ...
where c > 0, x0 is any starting point in C and h(xk) is the unique solution of
the strongly convex program

min{〈F (xk), y〉 + ϕ(y) + D(y, xk) : y ∈ C}.
Howerer, generally, the sequence {xk}k≥0 does not converge to a solution of
problem (VIP) (see [13, 18]). Our goal now is to construct iteratively a sequence
such that it converges to a solution to problem (VIP).

Algorithm 2.4 Step 0. Choose x0 ∈ C, k := 0, a positive sequence {ck}
such that ck → c > 0 as k → +∞.
Step 1. Solve the strongly convex program:

min{〈F (xk), y − xk〉 + ϕ(y) +
1
ck

D(y, xk) : y ∈ C} (2.12)

to obtain the unique solution yk.
If yk = xk, then terminate: xk is a solution to problem (VIP).
Otherwise go to Step 2.
Step 2. Find xk+1 which is the unique solution to the strongly convex program:

min{〈F (yk), y − yk〉 + ϕ(y) +
1
ck

D(y, xk) : y ∈ C}.

Step 3. Set k := k + 1, and return to Step 1.

In the next proposition, we justify the stopping criterion.

Proposition 2.5 If yk = xk, then xk is a solution to problem (VIP).

Proof. If the algorithm terminates at Step1, then yk = xk. It means that xk

is the solution to problem ( 2.6). By Lemma 2.3 it is a solution to problem
(VIP).

�

In order to prove the convergence of Algorithm 2.4, we give the following
key property of the sequence {xk}k≥0 generated by the algorithm.

Lemma 2.6 Suppose that the function F : C → IRn ∪ {+∞} is monotone,
L−Lipschitz on C, and ϕ is convex function on C. Then, if the algorithm does
not terminate, then we have

||A(xk+1 − x∗)||2 ≤||A(xk − x∗)||2 − 1 − 3μ − ck||Ā−1||2
1 + μ

||A(xk+1 − yk)||2

− 1 − 5μ − ckL̄2

1 + μ
||A(xk − yk)||2,

where x∗ is any solution to problem (VIP).
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Proof. Since yk is the solution to problem ( 2.12), from an optimization results
in convex programming [20], we have

0 = F (xk) + w1 +
1
ck

∇1D(yk , xk),

where w1 ∈ ∂ϕ(yk). It follows that

1
ck

〈∇1D(yk , xk), y − yk〉 = −〈F (xk) + w1, y − yk〉 ∀y ∈ C. (2.13)

Since w1 ∈ ∂ϕ(yk), we have

ϕ(y) − ϕ(yk) ≥ 〈w1, y − yk〉 ∀y ∈ C.

From ( 2.13) and this inequality it follows that

1
ck

〈∇1D(yk , xk), y − yk〉 ≥ 〈F (xk), yk − y〉 + ϕ(yk) − ϕ(y) ∀y ∈ C. (2.14)

Replacing y by x∗, we obtain

1
ck

〈∇1D(yk , xk), x∗ − yk〉 ≥ 〈F (xk), yk − x∗〉 + ϕ(yk) − ϕ(x∗). (2.15)

Note that x∗ is a solution to probem (VIP),

〈F (x∗), x− x∗〉 + ϕ(x) − ϕ(x∗) ≥ 0 ∀x ∈ C.

By mononicity of F , it follows that

〈F (xk), xk − x∗〉 + ϕ(xk) − ϕ(x∗) ≥ 0. (2.16)

Combinating ( 2.15) and ( 2.16) we obtain that

1
ck

〈∇1D(yk , xk), x∗ − yk〉 ≥ 〈F (yk), yk − xk〉 + ϕ(yk) − ϕ(xk). (2.17)

On the other hand, since xk+1 is the solution to the strongly convex program

min{〈F (yk), y〉 + ϕ(y) +
1
ck

D(y, xk) : y ∈ C},

in the same way, we also have

1
ck

〈∇1D(xk+1, xk), x∗−xk+1〉 ≥ 〈F (yk), xk+1−yk〉+ϕ(xk+1)−ϕ(yk). (2.18)
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Now, applying the Lipschitz condition of F and Remark 2.2 with x = xk, y =
yk , we obtain

〈F (xk) − F (yk), xk+1 − yk〉 ≤ ||F (xk) − F (yk)|| ||xk+1 − yk||
≤ 1

2
||F (yk) − F (xk)||2 +

1
2
||xk+1 − yk||2

≤ L̄2

2
||A(yk − xk)||2 +

||Ā−1||2
2

||A(xk+1 − yk)||2.
Hence,

〈F (yk), xk+1 − yk〉 ≥〈F (xk), xk+1 − yk〉 − L̄2

2
||A(yk − xk)||2

− ||Ā−1||2
2

||A(xk+1 − yk)||2. (2.19)

From ( 2.5), ( 2.18) and ( 2.19), we have

〈A(xk+1 − xk), A(x∗ − xk+1)〉 ≥

μ〈Xxk log
l(xk+1)
l(xk)

, A(x∗ − xk+1)〉 + ck〈F (xk), xk+1 − yk〉

+ ckϕ(xk+1) − ckϕ(yk) − ckL̄2

2
||A(yk − xk)||2

− ck||Ā−1||2
2

||A(xk+1 − yk)||2. (2.20)

If y = xk+1, inequality ( 2.14) becomes

〈F (xk), xk+1 − yk〉 + ϕ(xk+1) − ϕ(yk) ≥ 1
ck

〈∇1D(yk , xk), yk − xk+1〉

=
1
ck

〈AT
(
l(xk) − l(yk) − μXxk log

l(yk)
l(xk)

)
, yk − xk+1〉

=
1
ck

〈A(yk − xk), A(yk − xk+1〉

− 1
ck

μ〈Xxk log
l(yk)
l(xk)

, A(yk − xk+1)〉. (2.21)

From ( 2.20) and ( 2.21), it follows that

〈A(xk+1 − xk),A(x∗ − xk+1)〉 ≥

μ〈Xxk log
l(xk+1)
l(xk)

, A(x∗ − xk+1)〉 − ckL̄2

2
||A(yk − xk)||2

+ 〈A(yk − xk), A(yk − xk+1)〉 − ck||Ā−1||2
2

||A(xk+1 − yk)||2.

− μ〈Xxk log
l(yk)
l(xk)

, A(yk − xk+1)〉. (2.22)
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Substituting

||A(xk−x∗)||2 =||A(xk−xk+1)||2+||A(xk+1−x∗)||2+2〈A(xk+1−xk), A(x∗−xk+1)〉
into ( 2.22), we obtain the estimation

||A(xk−x∗)||2 ≥ ||A(xk − xk+1)||2 + ||A(xk+1 − x∗)||2 − ckL̄2||A(yk − xk)||2

+ 2〈A(yk − xk), A(yk − xk+1)〉 + 2μ〈Xxk log
l(xk+1)
l(xk)

, A(x∗ − xk+1)〉

− 2μ〈Xxk log
l(yk)
l(xk)

, A(yk − xk+1)〉 − ck||Ā−1||2||A(xk+1 − yk)||2.

Combining this inequality with the following equality

||A(xk+1−xk)||2 = ||A(xk+1−yk)||2+||A(xk−yk)||2+2〈A(xk+1−yk), A(yk−xk)〉,
we have

||A(xk+1 − x∗)||2 ≤ ||A(xk − x∗)||2 − ||A(xk+1 − yk)||2 − ||A(xk − yk)||2

+ ck||Ā−1||2||A(xk+1 − yk)||2 − 2μ〈Xxk log
l(xk+1)
l(xk)

, A(x∗ − xk+1)〉

+ 2μ〈Xxk log
l(yk)
l(xk)

, A(yk − xk+1)〉 + ckL̄2||A(yk − xk)||2. (2.23)

For each t > 0 we have 1− 1
t ≤ log t ≤ t−1, then we obtain after multiplication

by li(x∗) ≥ 0 for each i = 1, ..., p,

li(xk)li(x∗)log
li(xk+1)
li(xk)

≤ li(x∗)
(
li(xk+1) − li(xk)

)
, (2.24)

and after multiplication by −li(xk+1) ≤ 0 for each i = 1, ..., p,

−li(xk)li(xk+1)log
li(xk+1)
li(xk)

≤ −li(xk)li(xk+1)
(
1 − li(xk)

li(xk+1)
)

= li(xk)
(
li(xk) − li(xk+1)

)
. (2.25)

Adding two inequalities ( 2.24) and ( 2.25), we obtain

=|li(xk) − li(x∗)|2 + |li(xk) − li(xk+1)|2
− |li(xk+1) − li(x∗)|2 ∀i = 1, ..., p.

These inequalities deduce that

2〈Xxk log
l(xk+1)
l(xk)

, A(xk+1 − x∗)〉 ≤

||A(xk − x∗)||2 + ||A(xk − xk+1)||2 − ||A(xk+1 − x∗)||2. (2.26)
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In the same way, we also have

2〈Xxk log
l(yk)
l(xk)

, A(yk−xk+1)〉 ≤ ||A(xk−yk)||2+||A(xk−xk+1)||2−||A(yk−xk+1)||2.
(2.27)

Adding the inequalities ( 2.23), ( 2.26) and ( 2.27), we get

||A(xk+1 − x∗)||2 ≤ ||A(xk − x∗)||2 − ||A(xk+1 − yk)||2 − ||A(xk − yk)||2
+ ckL̄2||A(yk − xk)||2 + ck||Ā−1||2||A(xk+1 − yk)||2 + μ(||A(xk − x∗)||2
+ ||A(xk − xk+1)||2 − ||A(xk+1 − x∗)||2) + μ(||A(yk − xk)||2
+ ||A(xk+1 − xk)||2 − ||A(xk+1 − yk)||2),

and consequently

(1 + μ)||A(xk+1 − x∗)||2 ≤
(1 + μ)||A(xk − x∗)||2 − (1 + μ − ck||Ā−1||2)||A(xk+1 − yk)||2
− (1 − μ − ckL̄2)||A(xk − yk)||2 + 2μ||A(xk+1 − xk)||2.

(2.28)

Applying the following inequality

||A(xk+1 − xk)||2 ≤ 2||A(xk+1 − yk)||2 + 2||A(xk − yk)||2

to the last term in the right hand side of ( 2.28), we obtain

(1 + μ)||A(xk+1 − x∗)||2 ≤
(1 + μ)||A(xk − x∗)||2 − (1 − 3μ − ck||Ā−1||2)||A(xk+1 − yk)||2

− (1 − 5μ − ckL̄2)||A(xk − yk)||2,
which proves this lemma. �

The following theorem establishes the convergence of the algorithm.

Theorem 2.7 Suppose that the function F is monotone and L−Lipschitz on
C, that ϕ is convex and lower semicontinuous on C. Then, if the algorithm
does not terminate and

0 < ε, 0 < μ < min{1− ε − ck||Ā−1||2
3

,
1 − ε − ckL̄2

5
},

then the sequence {xk}k≥0 converges to a solution to problem (VIP).

Proof. From

0 < μ < min{1 − ε − ck||Ā−1||2
3

,
1 − ε − ckL̄2

5
}
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and ε > 0, we have

1 − 3μ − ck||Ā−1||2 > 0 and 1 − 5μ − ckL̄2 > 0 ∀k = 0, 1, ....

Then, using Lemma 2.6 we obtain that

||A(xk+1 − x∗)||2 ≤ ||A(xk − x∗)||2 ∀k = 0, 1, ... (2.29)

It means that the sequence {||A(xk − x∗)||}k≥0 is nonincreasing. Since it is
bounded below by 0, it must be convergent. Since A is of maximal rank the
function u → ||u||A := ||Au|| is norm on IRn and it follows that the sequence
{||xk − x∗||}k≥0 converges. Then the sequence {xk}k≥0 is bounded and it has
a subsequence {xki}i≥0 such that xki → x̄ as i → +∞. From Lemma 2.6, we
get

1 − 5μ − ckL̄2

1 + μ
||A(xk−yk)||2 ≤ ||A(xk−x∗)||2−||A(xk+1−x∗)||2 ∀k = 0, 1, ...

Applying these inequalities iteratively, we obtain

n∑
k=0

1 − 5μ − ckL̄2

1 + μ
||A(xk − yk)||2 ≤ ||A(x0 −x∗)||2 − ||A(xn+1 −x∗)||2 ∀k ≥ 0.

As the sequence {||A(xn+1−x∗)||}k≥0 is convergent, passing n → +∞ we have

lim
k→+∞

1 − 3μ − ck||Ā−1||2
1 + μ

||A(xk − yk)||2 = 0.

Using this with the assumption 1 − 5μ − ckL̄2 > ε > 0, we get

lim
k→+∞

ε||A(xk − yk)|| = 0,

which implies
lim

i→+∞
||A(x̄− yki )|| = 0.

It holds that
lim

i→∞
yki = x̄.

Recall that yki is the solution of the problem

min{〈F (xki), y〉 + ϕ(y) +
1

cki

D(y, xki ) : y ∈ C}.

Then

〈F (xki), yki〉+ϕ(yki )+
1

cki

D(yki , xki) ≤ 〈F (xki), y〉+ϕ(y)+
1

cki

D(y, xki ) ∀y ∈ C.
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Using the continuity of F , upper semicontinuity of D(y, .), passing to the limit
as i → +∞ we obtain

〈F (x̄), y − x̄〉 + ϕ(y) − ϕ(x̄) +
1
c
D(y, x̄) ≥ 0 ∀y ∈ C.

Then, there exists a w̄ ∈ ∂ϕ(x̄) such that

〈F (x̄) + w̄ +
1
c
∇1D(x̄, x̄), y − x̄〉 ≥ 0 ∀y ∈ C.

As ∇1D(x̄, x̄) = 0, this reduces to

〈F (x̄) + w̄, y − x̄〉 ≥ 0 ∀y ∈ C.

Combining this inequality with the convexity of ϕ,

ϕ(y) − ϕ(x̄) ≥ 〈w̄, y − x̄〉 ∀y ∈ C,

we obtain that

〈F (x̄), y − x̄〉 + ϕ(y) − ϕ(x̄) ≥ 0 ∀y ∈ C.

So x̄ is a solution to problem (VIP).
Replacing x∗ by x̄ in ( 2.29) fields

||A(xk+1 − x̄)|| ≤ ||A(xk − x̄)|| ∀k = 0, 1, ...

which implies that the sequence {||A(xk − x̄)||}k≥0 is convergent. We then
have that the sequence {||xk − x̄||}k≥0 is convergent. By the above proof, the
sequence {xk}k≥0 has a subsequense converging to x̄, we deduce that the whole
sequence {xk}k≥0 converges to the solution x̄ of problem (VIP).

�

3 The interior-quadratic proximal

linesearch method

Convergence of Algorithm 2.4 requires that the function F satisfies the Lip-
schitz condition on C. This condition depends on positive constant L and in
cases, it is unknown or difficult to approximate. So in this section, in order
to avoid this assumption, we combine the interior-quadratic function with line
search technique. This technique has been used widely in descent method for
solving variational inequalitie problem (VI) on C := IRn

+ (see [13, 23]).
The algorithm then can be described as follows.
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Algorithm 3.1 Step 0. Take x0 ∈ C, k := 0 and a sequence γk ∈ (0; 2) ∀k ≥
0.
Step 1. Find yk which is the solution to the strongly convex program:

min{〈F (xk), y〉 + ϕ(y) +
1
ck

D(y, xk) : y ∈ C}. (3.1)

If yk = xk, then stop.
Otherwise go to Step 2.
Step 2. Find λk ∈ (0, 1) as the smallest number such that

〈F ((1−λk)xk+λkyk), yk−xk〉+ϕ(yk)−ϕ((1−λk)xk+λkyk)+
1

2ck
D(yk , xk) ≤ 0.

(3.2)
Set zk := (1 − λk)xk + λkyk, choose gk ∈ F (zk) + ∂ϕ(zk).
If gk = 0, then stop.
Otherwide go to Step 3.

Step 3. Set δk := γk
λk

(
〈F (zk),zk−yk〉+ϕ(zk)−ϕ(yk)

)
(1−λk)||gk||2 and

xk+1 = PC(xk − δkgk),

k := k + 1 and return to Step 1.

Recall that PC(x) denotes the projection of x on C.
First we have to show that there always exists λk ∈ (0, 1) as the smallest

number satisfies ( 3.2). We suppose on the contrary that for every λ ∈ (0, 1),
we have

〈F ((1−λk)xk +λkyk), yk〉+ϕ(yk)−ϕ((1−λk)xk +λkyk)+
1

2ck
D(yk , xk) > 0.

Passing to the limit in the above inequality (as λ → 0+), by the continuity of
F (y), we obtain

〈F (xk), yk − xk〉 + ϕ(yk) − ϕ(xk) +
1

2ck
D(yk , xk) ≥ 0. (3.3)

Since yk is a solution to ( 3.1), it follows that

〈F (xk), y〉 + ϕ(y) +
1
ck

D(y, xk) ≥ 〈F (xk), yk〉 + ϕ(yk) +
1
ck

D(yk , xk).

Replacing y by xk in the above inequality, we have

0 ≥ 〈F (xk), yk − xk〉 + ϕ(yk) − ϕ(xk) +
1
ck

D(yk , xk). (3.4)

Then from ( 3.3) and ( 3.4) it follows that D(xk, yk) = 0, i.e., d
(
l(xk), l(yk)

)
=

0. Since l(x) = b − Ax and A is maximal rank, we obtain xk = yk . This
contracdicts to xk �= yk in Step 1.
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Remark 3.2 The smallest number λk ∈ (0, 1) in Step 2 of Aglgorithm 3.1
can be replaced by the following: With β ∈ (0, 1), we find n as the smallest
natural number such that

〈F (βnxk+(1−βn)yk), yk−xk〉+ϕ(yk)−ϕ(βnxk+(1−βn)yk)+
1

2ck
D(yk , xk) ≤ 0.

then set λk := 1 − βn.

In the next proposition, we justify the stopping criterion.

Proposition 3.3 If yk = xk or gk = 0, then xk is a solution to problem
(VIP).

Proof. If the algorithm terminates at Step 1, then yk = xk. It means that xk

is the solution to problem ( 3.1). Then

〈F (xk), y〉 + ϕ(y) + D(y, xk) ≥ 〈F (xk), xk〉 + ϕ(xk) + D(xk, xk) ∀y ∈ C.

From D(xk, xk) = 0, this inequality follows that xk is a solution to problem
(VIP).

If the algorithm terminates at Step 2, then gk = 0, that means 0 ∈ F (zk)+
∂ϕ(zk). Thus 0 = F (zk) + wk, where wk ∈ ∂ϕ(zk). Hence

ϕ(x) − ϕ(zk) ≥ 〈wk, x − zk〉
= −〈F (zk), x− zk〉 ∀x ∈ C.

So zk is a solution to problem (VIP). �

In order to prove the convergence of Algorithm 3.1, we give the following
key property of the sequence {xk}k≥0 generated by the algorithm.

Lemma 3.4 Suppose that the function F is monotone on C and ϕ is convex
on C. Then, if the algorithm does not terminate, then we have

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − (2 − γk)δ2
k

γk
||gk||2,

where x∗ is any solution to problem (VIP).

Proof. We have

||xk+1 − x∗||2 = ||Pk

(
xk − δkgk

) − x∗||2
≤ ||xk − x∗ − δkgk||2
= ||xk − x∗||2 − 2δk〈gk, xk − x∗〉 + (δk||gk||)2. (3.5)
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Note that, since x∗ is a solution to problem (VIP),

〈F (x∗), y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ 0 ∀y ∈ C.

Then by monotonicity, it follows that

〈F (zk), zk − x∗〉 + ϕ(zk) − ϕ(x∗) ≥ 0.

Combining this with

〈gk, xk − x∗〉 = 〈gk, xk − zk〉 + 〈gk, zk − x∗〉
≥ 〈gk, xk − zk〉 + ϕ(zk) − ϕ(x∗) − 〈F (zk), x∗ − zk〉,

we obtain

〈gk, xk − x∗〉 ≥ 〈gk, xk − zk〉
=

λk

1 − λk
〈gk, zk − yk〉

≥ λk

1 − λk

(〈F (zk), zk − yk〉 + ϕ(zk) − ϕ(yk)
)

=
δk

γk
||gk||2. (3.6)

From ( 3.2) it follows that 〈F (zk), yk − zk〉 + ϕ(yk) − ϕ(zk) < 0. Hence

δk := γk
λk

(〈F (zk), zk − yk〉 + ϕ(zk) − ϕ(yk)
)

(1 − λk)||gk||2 > 0. (3.7)

Then from ( 3.5), ( 3.6) and ( 3.7), we have

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − 2
δ2
k

γk
||gk||2 + (δk||gk||)2

= ||xk − x∗||2 − 2 − γk

γk
(δk||gk||)2,

which proves the above lemma.
�

Now we are in a position to consider a convergence of Algorithm 3.1 in a
case which does not terminate.

Theorem 3.5 Suppose that the sequences γk ∈ (0, 2), ck → c̄ as k → ∞, and
functions F, ϕ satisfies the following conditions:
(a) lim inf γk(2 − γk) > 0.
(b) f is monotone on C.
(c) ϕ is lower semicontinuous on C.
Then, if Algorithm 3.1 doesn’t terminate at Step 1 or Step 2, then the sequence
{xk}k≥0 converges to x∗ which is a solution to problem (VIP).
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Proof. From Lemma 3.4, we have

n∑
k=0

2 − γk

γk
(δk||gk||)2 ≤

n∑
k=0

(||xk − x∗||2 − ||xk+1 − x∗||2)

= ||x0 − x∗||2 − ||xn+1 − x∗||2 ∀n ≥ 0.

On the other hand, also since Lemma 3.4 deduces that {||xk − x∗||} is a
decreasing sequence and is lower bounded by ||x0−x∗||, then it must converge.
It means that ∞∑

k=0

2 − γk

γk
(δk||gk||)2 < +∞.

Hence
lim

k→∞
2 − γk

γk
(δk||gk||)2 = 0,

which together with lim
k→∞

inf(2 − γk)γk > 0 implies

lim
k→∞

λk

(〈F (zk), zk − yk〉 + ϕ(zk) − ϕ(yk)
)

(1 − λk)||gk|| = 0.

From the convergence of {||xk−x∗||}k≥0, we have that the sequence {xk}k≥0 is
bounded. Then by the maximum theorem [4], we can deduce that the sequence
{gk}k≥0 is bounded too. Thus

lim
k→∞

λk

(〈F (zk), zk − yk〉 + ϕ(zk) − ϕ(yk)
)

1 − λk
= 0. (3.8)

According to the rule ( 3.2), it is easy to see that

1
2ck

D(yk, xk) ≤ −〈F (zk), yk − xk〉 − ϕ(yk) + ϕ(zk). (3.9)

We consider two cases:
Case 1: If lim

k→∞
sup λk > 0, then there exists λ̄ ∈ (0, 1] such that λk ≥ λ̄ ∀k ≥ 0.

From ( 3.8) and inequality ( 3.9), we have

lim
k→∞

D(yk , xk) = 0. (3.10)

Since the sequence {xk}k≥0 is bounded, hence it has a subsequence {xk : k ∈
M} converging to a point x̄. Using the limit (3.10) we see that the subsequence
{yk : k ∈ M} also converges to x̄. Note that yk is a solution to problem ( 3.1),
hence

〈F (xk), y〉 + ϕ(y) +
1
ck

D(y, xk) ≥ 〈F (xk), yk〉 + ϕ(yk) +
1
ck

D(yk , xk) ∀y ∈ C.
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Passing to the limit as k → ∞ and using the continuity of F , the lower semi-
continuity of ϕ, we have

〈F (x̄), y〉 + ϕ(y) +
1
ck

D(y, x̄) ≥ 〈F (x̄), x̄〉 + ϕ(x̄) +
1
ck

D(x̄, x̄) ∀y ∈ C.

By Lemma 2.3, x̄ is a solution to problem (VIP), thus the proof of the theorem
in this case is complete.
Case 2: If lim

k→∞
sup λk = 0, then since {xk} is bounded, we have some subse-

quence {xk : k ∈ M} converging to some point x̄ as k → ∞. From Step 1 of
Algorithm 3.1, by lower semicontinuity of 〈F (xk), .〉 + ϕ(.) + 1

ck
D(., xk), the

sequence {yk}k≥0 is bounded too (see [4]). Thus, by taking a subsequence, if
necessary, we may assume that the subsequence {yk : k ∈ M} also converges
to some point ȳ. From

〈F (xk), y〉+ ϕ(y) +
1
ck

D(yk, xk) ≥ 〈F (xk), yk〉+ ϕ(yk)+
1
ck

D(yk, xk) ∀y ∈ C,

by the lower semicontinuity of F, D and ϕ, taking the limit as k → ∞, we can
write

〈F (x̄), y〉 + ϕ(y) +
1
c̄
D(y, x̄) ≥ 〈F (x̄), ȳ〉 + ϕ(ȳ) +

1
c̄
D(ȳ, x̄) ∀y ∈ C. (3.11)

Substituting y = x̄ we then have

0 ≥ 〈F (x̄), ȳ〉 + ϕ(ȳ) − ϕ(x̄) +
1
c̄
D(ȳ, x̄). (3.12)

On the other hand, by Step 2 in Algorithm 3.1, since λk ∈ (0, 1) is the smallest
number satisfying

〈F ((1−λk)xk+λkyk), yk−xk〉+ϕ(yk)−ϕ((1−λk)xk+λkyk)+
1

2ck
D(yk , xk) ≤ 0.

We deduce that

〈F ((1−1
2
λk)xk+

1
2
λkyk), yk−xk〉+ϕ(yk)−ϕ((1−1

2
λk)xk+

1
2
λkyk)+

1
2ck

D(yk,xk)> 0.

Passing k → ∞, k ∈ M the above inequality and using lim
k→∞

sup λk = 0, we

obtain
〈F (x̄), ȳ − x̄〉 + ϕ(ȳ) − ϕ(x̄) +

1
2c̄

D(ȳ, x̄) ≥ 0.

This together with ( 3.12) implies D(x̄, ȳ) = 0, hence x̄ = ȳ. Then replacing ȳ
in ( 3.11) by x̄, we deduce that

〈F (x̄), y − x̄〉 + ϕ(y) − ϕ(x̄) +
1
c̄
D(y, x̄) ≥ 0 ∀y ∈ C.

The proof is complete.
�
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4 Numerical Results

The airm of this section is to illustrate the proposed algorithms on a class of
generalized variational inequality (VIP) where

C := IRn
+, ϕ = 0, and F (x) = D(x) + Mx + q,

with the components of the D(x) are Dj(x) = dj ∗ arctan(xj) ∀j ≥ 1, dj is
chosen randomly in (0, 1). The matrix M = AT A with A is n × n matrix
whose entries are randomly generalized in the interval (−1, 3). It is given by
A. Bnouhachem (see [9]). Under these assumptions, it can be prove that F is
continuous and monotone, that F is Lipschitz with constant L ≤ 1 + ||M ||.

Note that in this case, the subproblem

yk = argmin{〈F (xk), y − xk〉 +
1
ck

d(y, xk) : y ∈ C}

where d is defined by ( 2.4). It is written as

yk =argmin{〈F (xk), y−xk〉+ 1
2ck

||y−xk||2+ μ

ck

n∑
i=1

(xk
i )2

(yi

xk
i

log
yi

xk
i

− yi

xk
i

+1
)

: y ∈ C+},

where

C+ := {x ∈ Rn : xi > 0 ∀i = 1, ..., n}.

It is not difficult to see that if we denote yk = (yk
1 , ..., yk

n) and F (x)=
(
F1(x), ..., Fn(x)

)
for all x ∈ C , then for every i = 1, ..., n, we have yk

i is the unique solution to
the strongly convex problem

min{1
2
t2 + ηki t + ξki tlogt : t ∈ (0, +∞)},

where

ηki := ckFi(xk) − xk
i − μxk

i logxk
i − μxk

i , ξki := μxk
i ∀i = 1, ..., n.

In test we take the logarithmic parameter μ = 0.01, ck = 0.01 ∀k ≥ 1 and
the tolerance 10−7. We obtained the following computational results.
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Iter(k) xk
1 xk

2 xk
3 xk

4 xk
5 xk

6 xk
7

0 1 1 1 1 1 1 1
1 1.0470 0.8957 1.0302 1.0030 0.9289 0.9641 0.9084
2 1.0886 0.8120 1.0654 1.0099 0.8549 0.9311 0.8199
3 1.1243 0.7436 1.1005 1.0155 0.7793 0.8975 0.7347
4 1.1528 0.6847 1.1296 1.0134 0.7022 0.8584 0.6540
5 1.1735 0.6296 1.1475 0.9976 0.6232 0.8095 0.5793
6 1.1864 0.5710 1.1496 0.9632 0.5422 0.7473 0.5112
7 1.1915 0.5067 1.1344 0.9088 0.4597 0.6706 0.4497
8 1.1887 0.4364 1.1014 0.8340 0.3763 0.5794 0.3946
9 1.1779 0.3601 1.0502 0.7383 0.2926 0.4733 0.3455
10 1.1590 0.2774 0.9801 0.6214 0.2095 0.3522 0.3020
11 1.1317 0.1882 0.8906 0.4829 0.1277 0.2159 0.2640

Table 1. Numerical results: Algorithm 2.4 with n = 7.
The approximate solution obtained after eleven iterations is

x10 = (1.1317, 0.1882, 0.8906, 0.4829, 0.1277, 0.2159, 0.2640)T .
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