An Interior Proximal Method for Solving Monotone Generalized Variational Inequalities

Pham Ngoc Anh
Department of Scientific Fundamentals
Posts and Telecommunications Institute of Technology, Hanoi, Vietnam
anhpn@ptit.edu.vn

Abstract

We present a new method for solving generalized variational inequalities on polyhedra. The method is based on an interior-quadratic term which replaces the usual quadratic term. This leads to an interior proximal type algorithm. We first solve a monotone generalized variational inequalities satisfying a certain Lipschitz condition. Next, we combine this technique with line search technique to obtain a convergent algorithm for monotone generalized variational inequalities without Lipschitz condition. Finally some preliminary computational results are given.

1 Introduction

Let C be a polyhedral set on the real Euclidean space \mathbb{R}^{n} defined by

$$
C:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}
$$

where A is an $p \times n$ matrix, $b \in \mathbb{R}^{p}, p \geq n$. We suppose that the matrix A is of maximal rank, i. e., $\operatorname{rank} A=n$ and $\operatorname{int} C=\{x: A x<b\}$ is nonempty. Let F be a continuous mapping from D into \mathbb{R}^{n}, and φ be a lower semicontinuous convex function from C into \mathbb{R}. We say that a point x^{*} is a solution of the following generalized variational inequality if it satisfies

$$
\begin{equation*}
\left\langle F\left(x^{*}\right), x-x^{*}\right\rangle+\varphi(x)-\varphi\left(x^{*}\right) \geq 0 \quad \forall x \in C \tag{VIP}
\end{equation*}
$$

[^0]where $\langle.,$.$\rangle denotes the standard dot product in \mathbb{R}^{n}$. Throughout the paper, we assume that the mapping F is monotone over C.

This generalized variational inequality problem have many important applications in economics, nonlinear analysis and have been studied by many researchers (see $[9,13,15,17,19,22,24]$).

It is well-known that the interior-quadratic technique is a powerfull tool for analyzing and solving optimization problems (see [6, 23]). Recently this technique has been used to develop proximal iterative algorithm for variational inequalities (see $[5,6,8]$).

In our recent paper [1] we have used the logrithmic quadratic function for pseudomonotone equilibrium on $\mathbb{R}^{n}:=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i} \geq 0 \quad \forall i=\right.$ $1, \ldots, n\}$ and developed algorithms for solving them.

In this paper we extend our results in $[1,2,3]$ to the generalized variational inequality problem (VIP). Namely, we first develop a convergent algorithm for (VIP) with F being monotone function satisfying a certain Lipschitz type condition on C by using the interior-quadratic function. Next, in order to avoid the Lipschitz condition we will combine the line search method and this function to obtain a convergent algorithm for solving the generalized variational inequality problem (VIP) with the monotone function F.

The remaining part of the paper is structured as follows. In Section 2, we present a convergent algorithm for monotone and Lipschitz generalized variational inequality problems. In Section 3, we modify the algorithm by combining a line search with the interior-quadratic function, which allows avoiding the Lipschitz condition. Section 4 deals with some preliminary results of the proposed method.

2 Preliminaries on the interior-quadratic function

First, let us recall the well known concepts of monotonicity that will be used in the sequel.

Definition 2.1 Let C be a convex set in \mathbb{R}^{n}, and $F: C \rightarrow \mathbb{R}^{n}$. The function F is said to be
(i) monotone on C if for each $x, y \in C$, we have

$$
\langle F(x)-F(y), x-y\rangle \geq 0
$$

(ii) strongly monotone on C with constant $\beta>0$ if for each $x, y \in C$, we have

$$
\langle F(x)-F(y), x-y\rangle \geq \beta\|x-y\|^{2}
$$

(iii) Lipschitz with constant $L>0$ on C (shortly L-Lipschitz), if we have

$$
\|F(x)-F(y)\| \leq L\|x-y\| \quad \forall x, y \in C
$$

Remark 2.2 Let A be $p \times n$ matrix, $r a n k A=n, C:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$, and $F: C \rightarrow \mathbb{R}^{n}$ be L-Lipschitz on C. Then we have

$$
\|F(x)-F(y)\| \leq \bar{L}\|A(x-y)\| \quad \forall x, y \in C
$$

where $\bar{A}:=\left(a_{i j}\right)_{n \times n}$ is a submatrix of A such that rank $\bar{A}=n$ and

$$
\left\|\bar{A}^{-1}\right\|=\sup _{\|x\|=1}\left\|\bar{A}^{-1} x\right\|
$$

and $\bar{L}=L\left\|\bar{A}^{-1}\right\|$.
Indeed, from

$$
\|F(x)-F(y)\| \leq L\|x-y\| \quad \forall x, y \in C
$$

and

$$
\|x-y\|=\left\|\bar{A}^{-1}(\bar{A}(x-y))\right\| \leq\left\|\bar{A}^{-1}\right\|\|\bar{A}(x-y)\| \quad \forall x, y \in \mathbb{R}^{n}
$$

it follows that

$$
\|F(x)-F(y)\| \leq L\left\|\bar{A}^{-1}\right\|\|A(x-y)\| \quad \forall x, y \in C
$$

Note that when φ is differentiable on some open set containing C, then, since φ is lower semicontinuous proper convex, the variational inequality (VIP) is equivalent to the following one (see [11, 12]):

Find $x^{*} \in C$ such that

$$
\left\langle F\left(x^{*}\right)+\nabla \varphi\left(x^{*}\right), x-x^{*}\right\rangle \geq 0 \quad \forall x \in C .
$$

In special case $\varphi=0$, problem (VIP) can be written by the following:
Find $x^{*} \in C$ such that

$$
\begin{equation*}
\left\langle F\left(x^{*}\right), x-x^{*}\right\rangle \geq 0 \quad \forall x \in C \tag{VI}
\end{equation*}
$$

It is well known that the problem (VI) can be formulated as finding the zero point of the operator $T(x)=\varphi(x)+N_{C}(x)$ where

$$
N_{C}(x)= \begin{cases}\{y \in C:\langle y, z-x\rangle \leq 0, \forall z \in C\} & \text { if } x \in C \tag{2.1}\\ \emptyset & \text { otherwise }\end{cases}
$$

A classical method to solve this problem is the proximal point algorithm (see $[2,21])$, which starting with any point $x^{0} \in C$ and $\lambda_{k} \geq \lambda>0$, iteratively updates x^{k+1} conforming the following problem:

$$
\begin{equation*}
0 \in \lambda_{k} T(x)+\nabla_{x} h\left(x, x^{k}\right) \tag{2.2}
\end{equation*}
$$

where

$$
h\left(x, x^{k}\right)=\frac{1}{2}\left\|x-x^{k}\right\|^{2}
$$

Recently, Auslender et al. [7] have proposed a new type of proximal interior method for solving problem (VI) on $C=\mathbb{R}_{+}^{n}$ through replacing function $h\left(x, x^{k}\right)$ by $d_{\phi}\left(x, x^{k}\right)$ which is defined as

$$
d_{\phi}(x, y)=\sum_{i=1}^{n} y_{i}^{2} \phi\left(y_{i}^{-1} x_{i}\right)
$$

where

$$
\phi(t)= \begin{cases}\frac{\nu}{2}(t-1)^{2}+\mu(t-\log t-1) & \text { if } t>0 \tag{2.3}\\ +\infty & \text { otherwise }\end{cases}
$$

with $\nu>\mu>0$. The fundamental difference here is that the term d_{ϕ} is used to force the iteratives $\left\{x^{k+1}\right\}$ to stay in the interior of \mathbb{R}_{+}^{n}.

Applying this idea to problem (VIP), in this paper we use the following function

$$
d(x, y)= \begin{cases}\frac{1}{2}\|x-y\|^{2}+\mu \sum_{i=1}^{n} y_{i}^{2}\left(\frac{x_{i}}{y_{i}} \log \frac{x_{i}}{y_{i}}-\frac{x_{i}}{y_{i}}+1\right) & \text { if } x>0 \tag{2.4}\\ +\infty & \text { otherwise }\end{cases}
$$

with $\mu \in(0,1)$ and $y \in C$. Let a_{i} denotes the rows of the matrix A, and define the following quantities:

$$
\begin{aligned}
& l_{i}(x)=b_{i}-\left\langle a_{i}, x\right\rangle \\
& l(x)=\left(l_{1}(x), l_{2}(x), \ldots, l_{p}(x)\right) \\
& D(x, y)=d(l(x), l(y))
\end{aligned}
$$

We denote by $\nabla_{1} D(x, y)$ the gradient of $f(., y)$ at x for every $y \in C$. It is easy to see that

$$
\begin{equation*}
\nabla_{1} D(x, y)=-A^{T}\left(l(x)-l(y)+\mu X_{y} \log \frac{l(x)}{l(y)}\right) \tag{2.5}
\end{equation*}
$$

where $X_{y}=\operatorname{diag}\left(l_{1}(y), \ldots, l_{p}(y)\right)$ and $\log \frac{l(x)}{l(y)}=\left(\log \frac{l_{1}(x)}{l_{1}(y)}, \ldots, \log ^{\frac{l_{p}(x)}{l_{p}(y)}}\right)$.
Now we consider the following gap function:

$$
\begin{equation*}
g(x)=\min \{\langle F(x), y-x\rangle+\varphi(y)-\varphi(x)+D(y, x): y \in C\} \tag{2.6}
\end{equation*}
$$

Since C is closed convex and the objective function are strongly convex, the mathematical programming problem (2.6) is always solvable for any $x \in C$. Let $h(x)$ denote the unique solution to problem(2.6). h is a marginal mapping onto C. Observe that when φ is a constant function and $D(x, y)=\frac{1}{2}\|x-y\|^{2}$, h concides and becomes the marginal mapping for the projection gap function introduced in Fukushima (1992) (see [16]). The following lemma characterizes the solutions to problem (VIP) by means of the mapping h.

Lemma 2.3 Suppose that the generalized variational inequality problem (VIP) has a solution. Then a point x^{*} is a solution to problem (VIP) if and only if $x^{*}=h\left(x^{*}\right)$.

Proof. Let x^{*} be a solution to problem (VIP) and $h\left(x^{*}\right)$ be the unique solution to problem (2.6). Then

$$
\begin{equation*}
\left\langle F\left(x^{*}\right), h\left(x^{*}\right)-x^{*}\right\rangle+\varphi\left(h\left(x^{*}\right)\right)-\varphi\left(x^{*}\right) \geq 0 \tag{2.7}
\end{equation*}
$$

Since $h\left(x^{*}\right)$ is the solution to problem (2.6), there exists a $z^{*} \in \partial_{\varphi}\left(h\left(x^{*}\right)\right)$ such that

$$
\begin{equation*}
\left\langle F\left(x^{*}\right)+\nabla_{1} D\left(h\left(x^{*}\right), x^{*}\right)+z^{*}, y-h\left(x^{*}\right)\right\rangle \geq 0 \quad \forall y \in C . \tag{2.8}
\end{equation*}
$$

Replacing $y=x^{*}$ in (2.8) we get

$$
\begin{equation*}
\left\langle F\left(x^{*}\right)+\nabla_{1} D\left(h\left(x^{*}\right), x^{*}\right)+z^{*}, x^{*}-h\left(x^{*}\right)\right\rangle \geq 0 \quad \forall y \in C . \tag{2.9}
\end{equation*}
$$

Adding two inequalities (2.7) and (2.9) we obtain

$$
\begin{equation*}
\left\langle\nabla_{1} D\left(h\left(x^{*}\right), x^{*}\right), x^{*}-h\left(x^{*}\right)\right\rangle \geq\left\langle z^{*}, h\left(x^{*}\right)-x^{*}\right\rangle+\varphi\left(x^{*}\right)-\varphi\left(h\left(x^{*}\right)\right) \tag{2.10}
\end{equation*}
$$

Since $z^{*} \in \partial_{\varphi}\left(h\left(x^{*}\right)\right)$, we have

$$
\left\langle z^{*}, x^{*}-h\left(x^{*}\right)\right\rangle \leq \varphi\left(x^{*}\right)-\varphi\left(h\left(x^{*}\right)\right)
$$

Thus

$$
\begin{equation*}
\left\langle z^{*}, x^{*}-h\left(x^{*}\right)\right\rangle-\varphi\left(x^{*}\right)+\varphi\left(h\left(x^{*}\right)\right) \leq 0 . \tag{2.11}
\end{equation*}
$$

From inequalities (2.10) and (2.11), it follows that

$$
\left\langle\nabla_{1} D\left(h\left(x^{*}\right), x^{*}\right), x^{*}-h\left(x^{*}\right)\right\rangle \geq 0 .
$$

By strongly monotonicity of $\nabla_{1} D\left(., x^{*}\right)$ and $\nabla_{1} D\left(x^{*}, x^{*}\right)=0$, we have $x^{*}=$ $h\left(x^{*}\right)$.

Conversely, suppose now $h\left(x^{*}\right)=x^{*}$. Then, by (2.8) we have

$$
\left\langle F\left(x^{*}\right)+z^{*}, y-h\left(x^{*}\right)\right\rangle \geq 0 \quad \forall y \in C .
$$

Since $z^{*} \in \partial_{\varphi}\left(h\left(x^{*}\right)\right)$,

$$
\left\langle z^{*}, y-x^{*}\right\rangle \leq \varphi(y)-\varphi\left(x^{*}\right) \quad \forall y \in C
$$

Adding the last two inqualities we have

$$
\left\langle F\left(x^{*}\right), y-x^{*}\right\rangle+\varphi(y)-\varphi\left(x^{*}\right) \geq 0 \quad \forall y \in C
$$

which means that x^{*} is solution to problem (VIP).

Lemma 2.3 shows that the solution of the generalized variational inequality (VIP) can be approximated by an itertive procedure $x^{k+1}=h\left(x^{k}\right), k=0,1, \ldots$ where $c>0, x^{0}$ is any starting point in C and $h\left(x^{k}\right)$ is the unique solution of the strongly convex program

$$
\min \left\{\left\langle F\left(x^{k}\right), y\right\rangle+\varphi(y)+D\left(y, x^{k}\right): y \in C\right\}
$$

Howerer, generally, the sequence $\left\{x^{k}\right\}_{k \geq 0}$ does not converge to a solution of problem (VIP) (see [13, 18]). Our goal now is to construct iteratively a sequence such that it converges to a solution to problem (VIP).

Algorithm 2.4 Step 0. Choose $x^{0} \in C, k:=0$, a positive sequence $\left\{c_{k}\right\}$ such that $c_{k} \rightarrow c>0$ as $k \rightarrow+\infty$.
Step 1. Solve the strongly convex program:

$$
\begin{equation*}
\min \left\{\left\langle F\left(x^{k}\right), y-x^{k}\right\rangle+\varphi(y)+\frac{1}{c_{k}} D\left(y, x^{k}\right): y \in C\right\} \tag{2.12}
\end{equation*}
$$

to obtain the unique solution y^{k}.
If $y^{k}=x^{k}$, then terminate: x^{k} is a solution to problem (VIP).
Otherwise go to Step 2.
Step 2. Find x^{k+1} which is the unique solution to the strongly convex program:

$$
\min \left\{\left\langle F\left(y^{k}\right), y-y^{k}\right\rangle+\varphi(y)+\frac{1}{c_{k}} D\left(y, x^{k}\right): y \in C\right\}
$$

Step 3. Set $k:=k+1$, and return to Step 1.
In the next proposition, we justify the stopping criterion.
Proposition 2.5 If $y^{k}=x^{k}$, then x^{k} is a solution to problem (VIP).
Proof. If the algorithm terminates at Step1, then $y^{k}=x^{k}$. It means that x^{k} is the solution to problem (2.6). By Lemma 2.3 it is a solution to problem (VIP).

In order to prove the convergence of Algorithm 2.4, we give the following key property of the sequence $\left\{x^{k}\right\}_{k \geq 0}$ generated by the algorithm.

Lemma 2.6 Suppose that the function $F: C \rightarrow \mathbb{R}^{n} \cup\{+\infty\}$ is monotone, L-Lipschitz on C, and φ is convex function on C. Then, if the algorithm does not terminate, then we have

$$
\begin{aligned}
\left\|A\left(x^{k+1}-x^{*}\right)\right\|^{2} \leq & \left\|A\left(x^{k}-x^{*}\right)\right\|^{2}-\frac{1-3 \mu-c_{k}\left\|\bar{A}^{-1}\right\|^{2}}{1+\mu}\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2} \\
& -\frac{1-5 \mu-c_{k} \bar{L}^{2}}{1+\mu}\left\|A\left(x^{k}-y^{k}\right)\right\|^{2}
\end{aligned}
$$

where x^{*} is any solution to problem (VIP).

Proof. Since y^{k} is the solution to problem (2.12), from an optimization results in convex programming [20], we have

$$
0=F\left(x^{k}\right)+w_{1}+\frac{1}{c_{k}} \nabla_{1} D\left(y^{k}, x^{k}\right)
$$

where $w_{1} \in \partial \varphi\left(y^{k}\right)$. It follows that

$$
\begin{equation*}
\frac{1}{c_{k}}\left\langle\nabla_{1} D\left(y^{k}, x^{k}\right), y-y^{k}\right\rangle=-\left\langle F\left(x^{k}\right)+w_{1}, y-y^{k}\right\rangle \quad \forall y \in C \tag{2.13}
\end{equation*}
$$

Since $w_{1} \in \partial \varphi\left(y^{k}\right)$, we have

$$
\varphi(y)-\varphi\left(y^{k}\right) \geq\left\langle w_{1}, y-y^{k}\right\rangle \quad \forall y \in C
$$

From (2.13) and this inequality it follows that

$$
\begin{equation*}
\frac{1}{c_{k}}\left\langle\nabla_{1} D\left(y^{k}, x^{k}\right), y-y^{k}\right\rangle \geq\left\langle F\left(x^{k}\right), y^{k}-y\right\rangle+\varphi\left(y^{k}\right)-\varphi(y) \quad \forall y \in C . \tag{2.14}
\end{equation*}
$$

Replacing y by x^{*}, we obtain

$$
\begin{equation*}
\frac{1}{c_{k}}\left\langle\nabla_{1} D\left(y^{k}, x^{k}\right), x^{*}-y^{k}\right\rangle \geq\left\langle F\left(x^{k}\right), y^{k}-x^{*}\right\rangle+\varphi\left(y^{k}\right)-\varphi\left(x^{*}\right) . \tag{2.15}
\end{equation*}
$$

Note that x^{*} is a solution to probem (VIP),

$$
\left\langle F\left(x^{*}\right), x-x^{*}\right\rangle+\varphi(x)-\varphi\left(x^{*}\right) \geq 0 \quad \forall x \in C .
$$

By mononicity of F, it follows that

$$
\begin{equation*}
\left\langle F\left(x^{k}\right), x^{k}-x^{*}\right\rangle+\varphi\left(x^{k}\right)-\varphi\left(x^{*}\right) \geq 0 . \tag{2.16}
\end{equation*}
$$

Combinating (2.15) and (2.16) we obtain that

$$
\begin{equation*}
\frac{1}{c_{k}}\left\langle\nabla_{1} D\left(y^{k}, x^{k}\right), x^{*}-y^{k}\right\rangle \geq\left\langle F\left(y^{k}\right), y^{k}-x^{k}\right\rangle+\varphi\left(y^{k}\right)-\varphi\left(x^{k}\right) . \tag{2.17}
\end{equation*}
$$

On the other hand, since x^{k+1} is the solution to the strongly convex program

$$
\min \left\{\left\langle F\left(y^{k}\right), y\right\rangle+\varphi(y)+\frac{1}{c_{k}} D\left(y, x^{k}\right): y \in C\right\}
$$

in the same way, we also have

$$
\begin{equation*}
\frac{1}{c_{k}}\left\langle\nabla_{1} D\left(x^{k+1}, x^{k}\right), x^{*}-x^{k+1}\right\rangle \geq\left\langle F\left(y^{k}\right), x^{k+1}-y^{k}\right\rangle+\varphi\left(x^{k+1}\right)-\varphi\left(y^{k}\right) \tag{2.18}
\end{equation*}
$$

Now, applying the Lipschitz condition of F and Remark 2.2 with $x=x^{k}, y=$ y^{k}, we obtain

$$
\begin{aligned}
\left\langle F\left(x^{k}\right)-F\left(y^{k}\right), x^{k+1}-y^{k}\right\rangle & \leq\left\|F\left(x^{k}\right)-F\left(y^{k}\right)\right\|\left\|x^{k+1}-y^{k}\right\| \\
& \leq \frac{1}{2}\left\|F\left(y^{k}\right)-F\left(x^{k}\right)\right\|^{2}+\frac{1}{2}\left\|x^{k+1}-y^{k}\right\|^{2} \\
& \leq \frac{\bar{L}^{2}}{2}\left\|A\left(y^{k}-x^{k}\right)\right\|^{2}+\frac{\left\|\bar{A}^{-1}\right\|^{2}}{2}\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2}
\end{aligned}
$$

Hence,

$$
\begin{align*}
\left\langle F\left(y^{k}\right), x^{k+1}-y^{k}\right\rangle \geq & \left\langle F\left(x^{k}\right), x^{k+1}-y^{k}\right\rangle-\frac{\bar{L}^{2}}{2}\left\|A\left(y^{k}-x^{k}\right)\right\|^{2} \\
& -\frac{\left\|\bar{A}^{-1}\right\|^{2}}{2}\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2} \tag{2.19}
\end{align*}
$$

From (2.5), (2.18) and (2.19), we have

$$
\begin{align*}
& \left\langle A\left(x^{k+1}-x^{k}\right), A\left(x^{*}-x^{k+1}\right)\right\rangle \geq \\
& \begin{aligned}
\mu\left\langle X_{x^{k}} \log \frac{l\left(x^{k+1}\right)}{l\left(x^{k}\right)}, A\left(x^{*}-x^{k+1}\right)\right\rangle+c_{k}\left\langle F\left(x^{k}\right), x^{k+1}-y^{k}\right\rangle \\
+c_{k} \varphi\left(x^{k+1}\right)-c_{k} \varphi\left(y^{k}\right)-\frac{c_{k} \bar{L}^{2}}{2}
\end{aligned}\left\|A\left(y^{k}-x^{k}\right)\right\|^{2} \\
& \quad-\frac{c_{k}\left\|\bar{A}^{-1}\right\|^{2}}{2}\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2}
\end{align*}
$$

If $y=x^{k+1}$, inequality (2.14) becomes

$$
\begin{align*}
\left\langle F\left(x^{k}\right), x^{k+1}-y^{k}\right\rangle & +\varphi\left(x^{k+1}\right)-\varphi\left(y^{k}\right) \geq \frac{1}{c_{k}}\left\langle\nabla_{1} D\left(y^{k}, x^{k}\right), y^{k}-x^{k+1}\right\rangle \\
= & \frac{1}{c_{k}}\left\langle A^{T}\left(l\left(x^{k}\right)-l\left(y^{k}\right)-\mu X_{x^{k}} \log \frac{l\left(y^{k}\right)}{l\left(x^{k}\right)}\right), y^{k}-x^{k+1}\right\rangle \\
= & \frac{1}{c_{k}}\left\langle A\left(y^{k}-x^{k}\right), A\left(y^{k}-x^{k+1}\right\rangle\right. \\
& \quad-\frac{1}{c_{k}} \mu\left\langle X_{x^{k}} \log \frac{l\left(y^{k}\right)}{l\left(x^{k}\right)}, A\left(y^{k}-x^{k+1}\right)\right\rangle \tag{2.21}
\end{align*}
$$

From (2.20) and (2.21), it follows that

$$
\begin{align*}
& \left\langle A\left(x^{k+1}-x^{k}\right), A\left(x^{*}-x^{k+1}\right)\right\rangle \geq \\
& \\
& \quad \mu\left\langle X_{x^{k}} \log \frac{l\left(x^{k+1}\right)}{l\left(x^{k}\right)}, A\left(x^{*}-x^{k+1}\right)\right\rangle-\frac{c_{k} \bar{L}^{2}}{2}\left\|A\left(y^{k}-x^{k}\right)\right\|^{2} \\
& \tag{2.22}\\
& \quad+\left\langle A\left(y^{k}-x^{k}\right), A\left(y^{k}-x^{k+1}\right)\right\rangle-\frac{c_{k}\left\|\bar{A}^{-1}\right\|^{2}}{2}\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2} . \\
& \\
& \quad-\mu\left\langle X_{x^{k}} \log \frac{l\left(y^{k}\right)}{l\left(x^{k}\right)}, A\left(y^{k}-x^{k+1}\right)\right\rangle .
\end{align*}
$$

Substituting
$\left\|A\left(x^{k}-x^{*}\right)\right\|^{2}=\left\|A\left(x^{k}-x^{k+1}\right)\right\|^{2}+\left\|A\left(x^{k+1}-x^{*}\right)\right\|^{2}+2\left\langle A\left(x^{k+1}-x^{k}\right), A\left(x^{*}-x^{k+1}\right)\right\rangle$ into (2.22), we obtain the estimation

$$
\begin{gathered}
\left\|A\left(x^{k}-x^{*}\right)\right\|^{2} \geq\left\|A\left(x^{k}-x^{k+1}\right)\right\|^{2}+\left\|A\left(x^{k+1}-x^{*}\right)\right\|^{2}-c_{k} \bar{L}^{2}\left\|A\left(y^{k}-x^{k}\right)\right\|^{2} \\
+2\left\langle A\left(y^{k}-x^{k}\right), A\left(y^{k}-x^{k+1}\right)\right\rangle+2 \mu\left\langle X_{x^{k}} \log \frac{l\left(x^{k+1}\right)}{l\left(x^{k}\right)}, A\left(x^{*}-x^{k+1}\right)\right\rangle \\
-2 \mu\left\langle X_{x^{k}} \log \frac{l\left(y^{k}\right)}{l\left(x^{k}\right)}, A\left(y^{k}-x^{k+1}\right)\right\rangle-c_{k}\left\|\bar{A}^{-1}\right\|^{2}\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2}
\end{gathered}
$$

Combining this inequality with the following equality
$\left\|A\left(x^{k+1}-x^{k}\right)\right\|^{2}=\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2}+\left\|A\left(x^{k}-y^{k}\right)\right\|^{2}+2\left\langle A\left(x^{k+1}-y^{k}\right), A\left(y^{k}-x^{k}\right)\right\rangle$,
we have

$$
\begin{align*}
\| A\left(x^{k+1}\right. & \left.-x^{*}\right)\left\|^{2} \leq\right\| A\left(x^{k}-x^{*}\right)\left\|^{2}-\right\| A\left(x^{k+1}-y^{k}\right)\left\|^{2}-\right\| A\left(x^{k}-y^{k}\right) \|^{2} \\
& +c_{k}\left\|\bar{A}^{-1}\right\|^{2}\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2}-2 \mu\left\langle X_{x^{k}} \log \frac{l\left(x^{k+1}\right)}{l\left(x^{k}\right)}, A\left(x^{*}-x^{k+1}\right)\right\rangle \\
& +2 \mu\left\langle X_{x^{k}} \log \frac{l\left(y^{k}\right)}{l\left(x^{k}\right)}, A\left(y^{k}-x^{k+1}\right)\right\rangle+c_{k} \bar{L}^{2}\left\|A\left(y^{k}-x^{k}\right)\right\|^{2} \tag{2.23}
\end{align*}
$$

For each $t>0$ we have $1-\frac{1}{t} \leq \log t \leq t-1$, then we obtain after multiplication by $l_{i}\left(x^{*}\right) \geq 0$ for each $i=1, \ldots, p$,

$$
\begin{equation*}
l_{i}\left(x^{k}\right) l_{i}\left(x^{*}\right) \log \frac{l_{i}\left(x^{k+1}\right)}{l_{i}\left(x^{k}\right)} \leq l_{i}\left(x^{*}\right)\left(l_{i}\left(x^{k+1}\right)-l_{i}\left(x^{k}\right)\right) \tag{2.24}
\end{equation*}
$$

and after multiplication by $-l_{i}\left(x^{k+1}\right) \leq 0$ for each $i=1, \ldots, p$,

$$
\begin{align*}
-l_{i}\left(x^{k}\right) l_{i}\left(x^{k+1}\right) \log \frac{l_{i}\left(x^{k+1}\right)}{l_{i}\left(x^{k}\right)} & \leq-l_{i}\left(x^{k}\right) l_{i}\left(x^{k+1}\right)\left(1-\frac{l_{i}\left(x^{k}\right)}{l_{i}\left(x^{k+1}\right)}\right) \\
& =l_{i}\left(x^{k}\right)\left(l_{i}\left(x^{k}\right)-l_{i}\left(x^{k+1}\right)\right) \tag{2.25}
\end{align*}
$$

Adding two inequalities (2.24) and (2.25), we obtain

$$
\begin{aligned}
= & \left|l_{i}\left(x^{k}\right)-l_{i}\left(x^{*}\right)\right|^{2}+\left|l_{i}\left(x^{k}\right)-l_{i}\left(x^{k+1}\right)\right|^{2} \\
& -\left|l_{i}\left(x^{k+1}\right)-l_{i}\left(x^{*}\right)\right|^{2} \quad \forall i=1, \ldots, p
\end{aligned}
$$

These inequalities deduce that

$$
\begin{align*}
& 2\left\langle X_{x^{k}} \log \frac{l\left(x^{k+1}\right)}{l\left(x^{k}\right)}, A\left(x^{k+1}-x^{*}\right)\right\rangle \leq \\
& \quad\left\|A\left(x^{k}-x^{*}\right)\right\|^{2}+\left\|A\left(x^{k}-x^{k+1}\right)\right\|^{2}-\left\|A\left(x^{k+1}-x^{*}\right)\right\|^{2} \tag{2.26}
\end{align*}
$$

In the same way, we also have
$2\left\langle X_{x^{k}} \log \frac{l\left(y^{k}\right)}{l\left(x^{k}\right)}, A\left(y^{k}-x^{k+1}\right)\right\rangle \leq\left\|A\left(x^{k}-y^{k}\right)\right\|^{2}+\left\|A\left(x^{k}-x^{k+1}\right)\right\|^{2}-\left\|A\left(y^{k}-x^{k+1}\right)\right\|^{2}$.
Adding the inequalities $(2.23),(2.26)$ and (2.27), we get

$$
\begin{aligned}
\| A\left(x^{k+1}\right. & \left.-x^{*}\right)\left\|^{2} \leq\right\| A\left(x^{k}-x^{*}\right)\left\|^{2}-\right\| A\left(x^{k+1}-y^{k}\right)\left\|^{2}-\right\| A\left(x^{k}-y^{k}\right) \|^{2} \\
& +c_{k} \bar{L}^{2}\left\|A\left(y^{k}-x^{k}\right)\right\|^{2}+c_{k}\left\|\bar{A}^{-1}\right\|^{2}\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2}+\mu\left(\left\|A\left(x^{k}-x^{*}\right)\right\|^{2}\right. \\
& \left.+\left\|A\left(x^{k}-x^{k+1}\right)\right\|^{2}-\left\|A\left(x^{k+1}-x^{*}\right)\right\|^{2}\right)+\mu\left(\left\|A\left(y^{k}-x^{k}\right)\right\|^{2}\right. \\
& \left.+\left\|A\left(x^{k+1}-x^{k}\right)\right\|^{2}-\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2}\right),
\end{aligned}
$$

and consequently

$$
\begin{align*}
& (1+\mu)\left\|A\left(x^{k+1}-x^{*}\right)\right\|^{2} \leq \\
& \quad(1+\mu)\left\|A\left(x^{k}-x^{*}\right)\right\|^{2}-\left(1+\mu-c_{k}\left\|\bar{A}^{-1}\right\|^{2}\right)\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2} \\
& \quad-\left(1-\mu-c_{k} \bar{L}^{2}\right)\left\|A\left(x^{k}-y^{k}\right)\right\|^{2}+2 \mu\left\|A\left(x^{k+1}-x^{k}\right)\right\|^{2} \tag{2.28}
\end{align*}
$$

Applying the following inequality

$$
\left\|A\left(x^{k+1}-x^{k}\right)\right\|^{2} \leq 2\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2}+2\left\|A\left(x^{k}-y^{k}\right)\right\|^{2}
$$

to the last term in the right hand side of (2.28), we obtain

$$
\begin{aligned}
&(1+\mu)\left\|A\left(x^{k+1}-x^{*}\right)\right\|^{2} \leq \\
&(1+\mu)\left\|A\left(x^{k}-x^{*}\right)\right\|^{2}-\left(1-3 \mu-c_{k}\left\|\bar{A}^{-1}\right\|^{2}\right)\left\|A\left(x^{k+1}-y^{k}\right)\right\|^{2} \\
& \quad\left(1-5 \mu-c_{k} \bar{L}^{2}\right)\left\|A\left(x^{k}-y^{k}\right)\right\|^{2}
\end{aligned}
$$

which proves this lemma.
The following theorem establishes the convergence of the algorithm.
Theorem 2.7 Suppose that the function F is monotone and L-Lipschitz on C, that φ is convex and lower semicontinuous on C. Then, if the algorithm does not terminate and

$$
0<\epsilon, 0<\mu<\min \left\{\frac{1-\epsilon-c_{k}\left\|\bar{A}^{-1}\right\|^{2}}{3}, \frac{1-\epsilon-c_{k} \bar{L}^{2}}{5}\right\}
$$

then the sequence $\left\{x^{k}\right\}_{k \geq 0}$ converges to a solution to problem (VIP).
Proof. From

$$
0<\mu<\min \left\{\frac{1-\epsilon-c_{k}\left\|\bar{A}^{-1}\right\|^{2}}{3}, \frac{1-\epsilon-c_{k} \bar{L}^{2}}{5}\right\}
$$

and $\epsilon>0$, we have

$$
1-3 \mu-c_{k}\left\|\bar{A}^{-1}\right\|^{2}>0 \text { and } 1-5 \mu-c_{k} \bar{L}^{2}>0 \quad \forall k=0,1, \ldots
$$

Then, using Lemma 2.6 we obtain that

$$
\begin{equation*}
\left\|A\left(x^{k+1}-x^{*}\right)\right\|^{2} \leq\left\|A\left(x^{k}-x^{*}\right)\right\|^{2} \quad \forall k=0,1, \ldots \tag{2.29}
\end{equation*}
$$

It means that the sequence $\left\{\left\|A\left(x^{k}-x^{*}\right)\right\|\right\}_{k \geq 0}$ is nonincreasing. Since it is bounded below by 0 , it must be convergent. Since A is of maximal rank the function $u \rightarrow\|u\|_{A}:=\|A u\|$ is norm on \mathbb{R}^{n} and it follows that the sequence $\left\{\left\|x^{k}-x^{*}\right\|\right\}_{k \geq 0}$ converges. Then the sequence $\left\{x^{k}\right\}_{k \geq 0}$ is bounded and it has a subsequence $\left\{x^{k_{i}}\right\}_{i \geq 0}$ such that $x^{k_{i}} \rightarrow \bar{x}$ as $i \rightarrow+\infty$. From Lemma 2.6, we get

$$
\frac{1-5 \mu-c_{k} \bar{L}^{2}}{1+\mu}\left\|A\left(x^{k}-y^{k}\right)\right\|^{2} \leq\left\|A\left(x^{k}-x^{*}\right)\right\|^{2}-\left\|A\left(x^{k+1}-x^{*}\right)\right\|^{2} \forall k=0,1, \ldots
$$

Applying these inequalities iteratively, we obtain

$$
\sum_{k=0}^{n} \frac{1-5 \mu-c_{k} \bar{L}^{2}}{1+\mu}\left\|A\left(x^{k}-y^{k}\right)\right\|^{2} \leq\left\|A\left(x^{0}-x^{*}\right)\right\|^{2}-\left\|A\left(x^{n+1}-x^{*}\right)\right\|^{2} \forall k \geq 0
$$

As the sequence $\left\{\left\|A\left(x^{n+1}-x^{*}\right)\right\|\right\}_{k \geq 0}$ is convergent, passing $n \rightarrow+\infty$ we have

$$
\lim _{k \rightarrow+\infty} \frac{1-3 \mu-c_{k}\left\|\bar{A}^{-1}\right\|^{2}}{1+\mu}\left\|A\left(x^{k}-y^{k}\right)\right\|^{2}=0
$$

Using this with the assumption $1-5 \mu-c_{k} \bar{L}^{2}>\epsilon>0$, we get

$$
\lim _{k \rightarrow+\infty} \epsilon\left\|A\left(x^{k}-y^{k}\right)\right\|=0
$$

which implies

$$
\lim _{i \rightarrow+\infty}\left\|A\left(\bar{x}-y^{k_{i}}\right)\right\|=0
$$

It holds that

$$
\lim _{i \rightarrow \infty} y^{k_{i}}=\bar{x}
$$

Recall that $y^{k_{i}}$ is the solution of the problem

$$
\min \left\{\left\langle F\left(x^{k_{i}}\right), y\right\rangle+\varphi(y)+\frac{1}{c_{k_{i}}} D\left(y, x^{k_{i}}\right): y \in C\right\} .
$$

Then
$\left\langle F\left(x^{k_{i}}\right), y^{k_{i}}\right\rangle+\varphi\left(y^{k_{i}}\right)+\frac{1}{c_{k_{i}}} D\left(y^{k_{i}}, x^{k_{i}}\right) \leq\left\langle F\left(x^{k_{i}}\right), y\right\rangle+\varphi(y)+\frac{1}{c_{k_{i}}} D\left(y, x^{k_{i}}\right) \forall y \in C$.

Using the continuity of F, upper semicontinuity of $D(y,$.$) , passing to the limit$ as $i \rightarrow+\infty$ we obtain

$$
\langle F(\bar{x}), y-\bar{x}\rangle+\varphi(y)-\varphi(\bar{x})+\frac{1}{c} D(y, \bar{x}) \geq 0 \quad \forall y \in C .
$$

Then, there exists a $\bar{w} \in \partial \varphi(\bar{x})$ such that

$$
\left\langle F(\bar{x})+\bar{w}+\frac{1}{c} \nabla_{1} D(\bar{x}, \bar{x}), y-\bar{x}\right\rangle \geq 0 \quad \forall y \in C .
$$

As $\nabla_{1} D(\bar{x}, \bar{x})=0$, this reduces to

$$
\langle F(\bar{x})+\bar{w}, y-\bar{x}\rangle \geq 0 \quad \forall y \in C
$$

Combining this inequality with the convexity of φ,

$$
\varphi(y)-\varphi(\bar{x}) \geq\langle\bar{w}, y-\bar{x}\rangle \quad \forall y \in C
$$

we obtain that

$$
\langle F(\bar{x}), y-\bar{x}\rangle+\varphi(y)-\varphi(\bar{x}) \geq 0 \quad \forall y \in C .
$$

So \bar{x} is a solution to problem (VIP).
Replacing x^{*} by \bar{x} in (2.29) fields

$$
\left\|A\left(x^{k+1}-\bar{x}\right)\right\| \leq\left\|A\left(x^{k}-\bar{x}\right)\right\| \quad \forall k=0,1, \ldots
$$

which implies that the sequence $\left\{\left\|A\left(x^{k}-\bar{x}\right)\right\|\right\}_{k \geq 0}$ is convergent. We then have that the sequence $\left\{\left\|x^{k}-\bar{x}\right\|\right\}_{k \geq 0}$ is convergent. By the above proof, the sequence $\left\{x^{k}\right\}_{k \geq 0}$ has a subsequense converging to \bar{x}, we deduce that the whole sequence $\left\{x^{k}\right\}_{k \geq 0}$ converges to the solution \bar{x} of problem (VIP).

3 The interior-quadratic proximal linesearch method

Convergence of Algorithm 2.4 requires that the function F satisfies the Lipschitz condition on C. This condition depends on positive constant L and in cases, it is unknown or difficult to approximate. So in this section, in order to avoid this assumption, we combine the interior-quadratic function with line search technique. This technique has been used widely in descent method for solving variational inequalitie problem (VI) on $C:=\mathbb{R}_{+}^{n}$ (see [13, 23]).

The algorithm then can be described as follows.

Algorithm 3.1 Step 0. Take $x^{0} \in C, k:=0$ and a sequence $\gamma_{k} \in(0 ; 2) \forall k \geq$ 0 .
Step 1. Find y^{k} which is the solution to the strongly convex program:

$$
\begin{equation*}
\min \left\{\left\langle F\left(x^{k}\right), y\right\rangle+\varphi(y)+\frac{1}{c_{k}} D\left(y, x^{k}\right): \quad y \in C\right\} \tag{3.1}
\end{equation*}
$$

If $y^{k}=x^{k}$, then stop.
Otherwise go to Step 2.
Step 2. Find $\lambda_{k} \in(0,1)$ as the smallest number such that
$\left\langle F\left(\left(1-\lambda_{k}\right) x^{k}+\lambda_{k} y^{k}\right), y^{k}-x^{k}\right\rangle+\varphi\left(y^{k}\right)-\varphi\left(\left(1-\lambda_{k}\right) x^{k}+\lambda_{k} y^{k}\right)+\frac{1}{2 c_{k}} D\left(y^{k}, x^{k}\right) \leq 0$.
Set $z^{k}:=\left(1-\lambda_{k}\right) x^{k}+\lambda_{k} y^{k}$, choose $g^{k} \in F\left(z^{k}\right)+\partial \varphi\left(z^{k}\right)$.
If $g^{k}=0$, then stop.
Otherwide go to Step 3.
Step 3. Set $\delta_{k}:=\gamma_{k} \frac{\lambda_{k}\left(\left\langle F\left(z^{k}\right), z^{k}-y^{k}\right\rangle+\varphi\left(z^{k}\right)-\varphi\left(y^{k}\right)\right)}{\left(1-\lambda_{k}\right)\left\|g^{k} \mid\right\|^{2}}$ and

$$
x^{k+1}=P_{C}\left(x^{k}-\delta_{k} g^{k}\right)
$$

$k:=k+1$ and return to Step 1.
Recall that $P_{C}(x)$ denotes the projection of x on C.
First we have to show that there always exists $\lambda_{k} \in(0,1)$ as the smallest number satisfies (3.2). We suppose on the contrary that for every $\lambda \in(0,1)$, we have
$\left\langle F\left(\left(1-\lambda_{k}\right) x^{k}+\lambda_{k} y^{k}\right), y^{k}\right\rangle+\varphi\left(y^{k}\right)-\varphi\left(\left(1-\lambda_{k}\right) x^{k}+\lambda_{k} y^{k}\right)+\frac{1}{2 c_{k}} D\left(y^{k}, x^{k}\right)>0$.
Passing to the limit in the above inequality (as $\lambda \rightarrow 0^{+}$), by the continuity of $F(y)$, we obtain

$$
\begin{equation*}
\left\langle F\left(x^{k}\right), y^{k}-x^{k}\right\rangle+\varphi\left(y^{k}\right)-\varphi\left(x^{k}\right)+\frac{1}{2 c_{k}} D\left(y^{k}, x^{k}\right) \geq 0 \tag{3.3}
\end{equation*}
$$

Since y^{k} is a solution to (3.1), it follows that

$$
\left\langle F\left(x^{k}\right), y\right\rangle+\varphi(y)+\frac{1}{c_{k}} D\left(y, x^{k}\right) \geq\left\langle F\left(x^{k}\right), y^{k}\right\rangle+\varphi\left(y^{k}\right)+\frac{1}{c_{k}} D\left(y^{k}, x^{k}\right)
$$

Replacing y by x^{k} in the above inequality, we have

$$
\begin{equation*}
0 \geq\left\langle F\left(x^{k}\right), y^{k}-x^{k}\right\rangle+\varphi\left(y^{k}\right)-\varphi\left(x^{k}\right)+\frac{1}{c_{k}} D\left(y^{k}, x^{k}\right) \tag{3.4}
\end{equation*}
$$

Then from (3.3) and (3.4) it follows that $D\left(x^{k}, y^{k}\right)=0$, i.e., $d\left(l\left(x^{k}\right), l\left(y^{k}\right)\right)=$ 0 . Since $l(x)=b-A x$ and A is maximal rank, we obtain $x^{k}=y^{k}$. This contracdicts to $x^{k} \neq y^{k}$ in Step 1.

Remark 3.2 The smallest number $\lambda_{k} \in(0,1)$ in Step 2 of Aglgorithm 3.1 can be replaced by the following: With $\beta \in(0,1)$, we find n as the smallest natural number such that
$\left\langle F\left(\beta^{n} x^{k}+\left(1-\beta^{n}\right) y^{k}\right), y^{k}-x^{k}\right\rangle+\varphi\left(y^{k}\right)-\varphi\left(\beta^{n} x^{k}+\left(1-\beta^{n}\right) y^{k}\right)+\frac{1}{2 c_{k}} D\left(y^{k}, x^{k}\right) \leq 0$.
then set $\lambda_{k}:=1-\beta^{n}$.

In the next proposition, we justify the stopping criterion.
Proposition 3.3 If $y^{k}=x^{k}$ or $g^{k}=0$, then x^{k} is a solution to problem (VIP).

Proof. If the algorithm terminates at Step 1, then $y^{k}=x^{k}$. It means that x^{k} is the solution to problem (3.1). Then

$$
\left\langle F\left(x^{k}\right), y\right\rangle+\varphi(y)+D\left(y, x^{k}\right) \geq\left\langle F\left(x^{k}\right), x^{k}\right\rangle+\varphi\left(x^{k}\right)+D\left(x^{k}, x^{k}\right) \quad \forall y \in C .
$$

From $D\left(x^{k}, x^{k}\right)=0$, this inequality follows that x^{k} is a solution to problem (VIP).

If the algorithm terminates at Step 2 , then $g^{k}=0$, that means $0 \in F\left(z^{k}\right)+$ $\partial \varphi\left(z^{k}\right)$. Thus $0=F\left(z^{k}\right)+w^{k}$, where $w^{k} \in \partial \varphi\left(z^{k}\right)$. Hence

$$
\begin{aligned}
\varphi(x)-\varphi\left(z^{k}\right) & \geq\left\langle w^{k}, x-z^{k}\right\rangle \\
& =-\left\langle F\left(z^{k}\right), x-z^{k}\right\rangle \quad \forall x \in C
\end{aligned}
$$

So z^{k} is a solution to problem (VIP).
In order to prove the convergence of Algorithm 3.1, we give the following key property of the sequence $\left\{x^{k}\right\}_{k \geq 0}$ generated by the algorithm.

Lemma 3.4 Suppose that the function F is monotone on C and φ is convex on C. Then, if the algorithm does not terminate, then we have

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(2-\gamma_{k}\right) \delta_{k}^{2}}{\gamma_{k}}\left\|g^{k}\right\|^{2}
$$

where x^{*} is any solution to problem (VIP).
Proof. We have

$$
\begin{align*}
\left\|x^{k+1}-x^{*}\right\|^{2} & =\left\|P_{k}\left(x^{k}-\delta_{k} g^{k}\right)-x^{*}\right\|^{2} \\
& \leq\left\|x^{k}-x^{*}-\delta_{k} g^{k}\right\|^{2} \\
& =\left\|x^{k}-x^{*}\right\|^{2}-2 \delta_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle+\left(\delta_{k}\left\|g^{k}\right\|\right)^{2} . \tag{3.5}
\end{align*}
$$

Note that, since x^{*} is a solution to problem (VIP),

$$
\left\langle F\left(x^{*}\right), y-x^{*}\right\rangle+\varphi(y)-\varphi\left(x^{*}\right) \geq 0 \quad \forall y \in C .
$$

Then by monotonicity, it follows that

$$
\left\langle F\left(z^{k}\right), z^{k}-x^{*}\right\rangle+\varphi\left(z^{k}\right)-\varphi\left(x^{*}\right) \geq 0
$$

Combining this with

$$
\begin{aligned}
\left\langle g^{k}, x^{k}-x^{*}\right\rangle & =\left\langle g^{k}, x^{k}-z^{k}\right\rangle+\left\langle g^{k}, z^{k}-x^{*}\right\rangle \\
& \geq\left\langle g^{k}, x^{k}-z^{k}\right\rangle+\varphi\left(z^{k}\right)-\varphi\left(x^{*}\right)-\left\langle F\left(z^{k}\right), x^{*}-z^{k}\right\rangle
\end{aligned}
$$

we obtain

$$
\begin{align*}
\left\langle g^{k}, x^{k}-x^{*}\right\rangle & \geq\left\langle g^{k}, x^{k}-z^{k}\right\rangle \\
& =\frac{\lambda_{k}}{1-\lambda_{k}}\left\langle g^{k}, z^{k}-y^{k}\right\rangle \\
& \geq \frac{\lambda_{k}}{1-\lambda_{k}}\left(\left\langle F\left(z^{k}\right), z^{k}-y^{k}\right\rangle+\varphi\left(z^{k}\right)-\varphi\left(y^{k}\right)\right) \\
& =\frac{\delta_{k}}{\gamma_{k}}\left\|g_{k}\right\|^{2} \tag{3.6}
\end{align*}
$$

From (3.2) it follows that $\left\langle F\left(z^{k}\right), y^{k}-z^{k}\right\rangle+\varphi\left(y^{k}\right)-\varphi\left(z^{k}\right)<0$. Hence

$$
\begin{equation*}
\delta_{k}:=\gamma_{k} \frac{\lambda_{k}\left(\left\langle F\left(z^{k}\right), z^{k}-y^{k}\right\rangle+\varphi\left(z^{k}\right)-\varphi\left(y^{k}\right)\right)}{\left(1-\lambda_{k}\right)\left\|g^{k}\right\|^{2}}>0 \tag{3.7}
\end{equation*}
$$

Then from (3.5), (3.6) and (3.7), we have

$$
\begin{aligned}
\left\|x^{k+1}-x^{*}\right\|^{2} & \leq\left\|x^{k}-x^{*}\right\|^{2}-2 \frac{\delta_{k}^{2}}{\gamma_{k}}\left\|g^{k}\right\|^{2}+\left(\delta_{k}\left\|g^{k}\right\|\right)^{2} \\
& =\left\|x^{k}-x^{*}\right\|^{2}-\frac{2-\gamma_{k}}{\gamma_{k}}\left(\delta_{k}\left\|g^{k}\right\|\right)^{2}
\end{aligned}
$$

which proves the above lemma.

Now we are in a position to consider a convergence of Algorithm 3.1 in a case which does not terminate.

Theorem 3.5 Suppose that the sequences $\gamma_{k} \in(0,2), c_{k} \rightarrow \bar{c}$ as $k \rightarrow \infty$, and functions F, φ satisfies the following conditions:
(a) $\liminf \gamma_{k}\left(2-\gamma_{k}\right)>0$.
(b) f is monotone on C.
(c) φ is lower semicontinuous on C.

Then, if Algorithm 3.1 doesn't terminate at Step 1 or Step 2, then the sequence $\left\{x^{k}\right\}_{k \geq 0}$ converges to x^{*} which is a solution to problem (VIP).

Proof. From Lemma 3.4, we have

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{2-\gamma_{k}}{\gamma_{k}}\left(\delta_{k}\left\|g^{k}\right\|\right)^{2} & \leq \sum_{k=0}^{n}\left(\left\|x^{k}-x^{*}\right\|^{2}-\left\|x^{k+1}-x^{*}\right\|^{2}\right) \\
& =\left\|x^{0}-x^{*}\right\|^{2}-\left\|x^{n+1}-x^{*}\right\|^{2} \quad \forall n \geq 0
\end{aligned}
$$

On the other hand, also since Lemma 3.4 deduces that $\left\{\left\|x^{k}-x^{*}\right\|\right\}$ is a decreasing sequence and is lower bounded by $\left\|x^{0}-x^{*}\right\|$, then it must converge. It means that

$$
\sum_{k=0}^{\infty} \frac{2-\gamma_{k}}{\gamma_{k}}\left(\delta_{k}\left\|g^{k}\right\|\right)^{2}<+\infty
$$

Hence

$$
\lim _{k \rightarrow \infty} \frac{2-\gamma_{k}}{\gamma_{k}}\left(\delta_{k}\left\|g^{k}\right\|\right)^{2}=0
$$

which together with $\lim _{k \rightarrow \infty} \inf \left(2-\gamma_{k}\right) \gamma_{k}>0$ implies

$$
\lim _{k \rightarrow \infty} \frac{\lambda_{k}\left(\left\langle F\left(z^{k}\right), z^{k}-y^{k}\right\rangle+\varphi\left(z^{k}\right)-\varphi\left(y^{k}\right)\right)}{\left(1-\lambda_{k}\right)\left\|g^{k}\right\|}=0
$$

From the convergence of $\left\{\left\|x^{k}-x^{*}\right\|\right\}_{k \geq 0}$, we have that the sequence $\left\{x^{k}\right\}_{k \geq 0}$ is bounded. Then by the maximum theorem [4], we can deduce that the sequence $\left\{g^{k}\right\}_{k \geq 0}$ is bounded too. Thus

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\lambda_{k}\left(\left\langle F\left(z^{k}\right), z^{k}-y^{k}\right\rangle+\varphi\left(z^{k}\right)-\varphi\left(y^{k}\right)\right)}{1-\lambda_{k}}=0 \tag{3.8}
\end{equation*}
$$

According to the rule (3.2), it is easy to see that

$$
\begin{equation*}
\frac{1}{2 c_{k}} D\left(y^{k}, x^{k}\right) \leq-\left\langle F\left(z^{k}\right), y^{k}-x^{k}\right\rangle-\varphi\left(y^{k}\right)+\varphi\left(z^{k}\right) \tag{3.9}
\end{equation*}
$$

We consider two cases:
Case 1: If $\lim _{k \rightarrow \infty} \sup \lambda_{k}>0$, then there exists $\bar{\lambda} \in(0,1]$ such that $\lambda_{k} \geq \bar{\lambda} \forall k \geq 0$.
From (3.8) and inequality (3.9), we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} D\left(y^{k}, x^{k}\right)=0 \tag{3.10}
\end{equation*}
$$

Since the sequence $\left\{x^{k}\right\}_{k \geq 0}$ is bounded, hence it has a subsequence $\left\{x^{k}: k \in\right.$ $M\}$ converging to a point \bar{x}. Using the limit (3.10) we see that the subsequence $\left\{y^{k}: k \in M\right\}$ also converges to \bar{x}. Note that y^{k} is a solution to problem (3.1), hence
$\left\langle F\left(x^{k}\right), y\right\rangle+\varphi(y)+\frac{1}{c_{k}} D\left(y, x^{k}\right) \geq\left\langle F\left(x^{k}\right), y^{k}\right\rangle+\varphi\left(y^{k}\right)+\frac{1}{c_{k}} D\left(y^{k}, x^{k}\right) \quad \forall y \in C$.

Passing to the limit as $k \rightarrow \infty$ and using the continuity of F, the lower semicontinuity of φ, we have

$$
\langle F(\bar{x}), y\rangle+\varphi(y)+\frac{1}{c_{k}} D(y, \bar{x}) \geq\langle F(\bar{x}), \bar{x}\rangle+\varphi(\bar{x})+\frac{1}{c_{k}} D(\bar{x}, \bar{x}) \quad \forall y \in C .
$$

By Lemma 2.3, \bar{x} is a solution to problem (VIP), thus the proof of the theorem in this case is complete.
Case 2: If $\lim _{k \rightarrow \infty} \sup \lambda_{k}=0$, then since $\left\{x^{k}\right\}$ is bounded, we have some subsequence $\left\{x^{k}: k \in M\right\}$ converging to some point \bar{x} as $k \rightarrow \infty$. From Step 1 of Algorithm 3.1, by lower semicontinuity of $\left\langle F\left(x^{k}\right),.\right\rangle+\varphi()+.\frac{1}{c_{k}} D\left(., x^{k}\right)$, the sequence $\left\{y^{k}\right\}_{k \geq 0}$ is bounded too (see [4]). Thus, by taking a subsequence, if necessary, we may assume that the subsequence $\left\{y^{k}: k \in M\right\}$ also converges to some point \bar{y}. From
$\left\langle F\left(x^{k}\right), y\right\rangle+\varphi(y)+\frac{1}{c_{k}} D\left(y^{k}, x^{k}\right) \geq\left\langle F\left(x^{k}\right), y^{k}\right\rangle+\varphi\left(y^{k}\right)+\frac{1}{c_{k}} D\left(y^{k}, x^{k}\right) \quad \forall y \in C$, by the lower semicontinuity of F, D and φ, taking the limit as $k \rightarrow \infty$, we can write

$$
\begin{equation*}
\langle F(\bar{x}), y\rangle+\varphi(y)+\frac{1}{\bar{c}} D(y, \bar{x}) \geq\langle F(\bar{x}), \bar{y}\rangle+\varphi(\bar{y})+\frac{1}{\bar{c}} D(\bar{y}, \bar{x}) \quad \forall y \in C \tag{3.11}
\end{equation*}
$$

Substituting $y=\bar{x}$ we then have

$$
\begin{equation*}
0 \geq\langle F(\bar{x}), \bar{y}\rangle+\varphi(\bar{y})-\varphi(\bar{x})+\frac{1}{\bar{c}} D(\bar{y}, \bar{x}) \tag{3.12}
\end{equation*}
$$

On the other hand, by Step 2 in Algorithm 3.1, since $\lambda_{k} \in(0,1)$ is the smallest number satisfying
$\left\langle F\left(\left(1-\lambda_{k}\right) x^{k}+\lambda_{k} y^{k}\right), y^{k}-x^{k}\right\rangle+\varphi\left(y^{k}\right)-\varphi\left(\left(1-\lambda_{k}\right) x^{k}+\lambda_{k} y^{k}\right)+\frac{1}{2 c_{k}} D\left(y^{k}, x^{k}\right) \leq 0$.
We deduce that
$\left\langle F\left(\left(1-\frac{1}{2} \lambda_{k}\right) x^{k}+\frac{1}{2} \lambda_{k} y^{k}\right), y^{k}-x^{k}\right\rangle+\varphi\left(y^{k}\right)-\varphi\left(\left(1-\frac{1}{2} \lambda_{k}\right) x^{k}+\frac{1}{2} \lambda_{k} y^{k}\right)+\frac{1}{2 c_{k}} D\left(y^{k}, x^{k}\right)>0$.
Passing $k \rightarrow \infty, k \in M$ the above inequality and using $\lim _{k \rightarrow \infty} \sup \lambda_{k}=0$, we obtain

$$
\langle F(\bar{x}), \bar{y}-\bar{x}\rangle+\varphi(\bar{y})-\varphi(\bar{x})+\frac{1}{2 \bar{c}} D(\bar{y}, \bar{x}) \geq 0
$$

This together with (3.12) implies $D(\bar{x}, \bar{y})=0$, hence $\bar{x}=\bar{y}$. Then replacing \bar{y} in (3.11) by \bar{x}, we deduce that

$$
\langle F(\bar{x}), y-\bar{x}\rangle+\varphi(y)-\varphi(\bar{x})+\frac{1}{\bar{c}} D(y, \bar{x}) \geq 0 \quad \forall y \in C
$$

The proof is complete.

4 Numerical Results

The airm of this section is to illustrate the proposed algorithms on a class of generalized variational inequality (VIP) where

$$
C:=\mathbb{R}_{+}^{n}, \varphi=0, \text { and } F(x)=D(x)+M x+q
$$

with the components of the $D(x)$ are $D_{j}(x)=d_{j} * \arctan \left(x_{j}\right) \forall j \geq 1, d_{j}$ is chosen randomly in (0,1). The matrix $M=A^{T} A$ with A is $n \times n$ matrix whose entries are randomly generalized in the interval $(-1,3)$. It is given by A. Bnouhachem (see [9]). Under these assumptions, it can be prove that F is continuous and monotone, that F is Lipschitz with constant $L \leq 1+\|M\|$.

Note that in this case, the subproblem

$$
y^{k}=\operatorname{argmin}\left\{\left\langle F\left(x^{k}\right), y-x^{k}\right\rangle+\frac{1}{c_{k}} d\left(y, x^{k}\right): y \in C\right\}
$$

where d is defined by (2.4). It is written as

$$
y^{k}=\operatorname{argmin}\left\{\left\langle F\left(x^{k}\right), y-x^{k}\right\rangle+\frac{1}{2 c_{k}}\left\|y-x^{k}\right\|^{2}+\frac{\mu}{c_{k}} \sum_{i=1}^{n}\left(x_{i}^{k}\right)^{2}\left(\frac{y_{i}}{x_{i}^{k}} \log \frac{y_{i}}{x_{i}^{k}}-\frac{y_{i}}{x_{i}^{k}}+1\right): y \in C_{+}\right\},
$$

where

$$
C_{+}:=\left\{x \in R^{n}: x_{i}>0 \quad \forall i=1, \ldots, n\right\}
$$

It is not difficult to see that if we denote $y^{k}=\left(y_{1}^{k}, \ldots, y_{n}^{k}\right)$ and $F(x)=\left(F_{1}(x), \ldots, F_{n}(x)\right)$ for all $x \in C$, then for every $i=1, \ldots, n$, we have y_{i}^{k} is the unique solution to the strongly convex problem

$$
\min \left\{\frac{1}{2} t^{2}+\eta_{k i} t+\xi_{k i} t \log t: t \in(0,+\infty)\right\}
$$

where

$$
\eta_{k i}:=c_{k} F_{i}\left(x^{k}\right)-x_{i}^{k}-\mu x_{i}^{k} \log x_{i}^{k}-\mu x_{i}^{k}, \xi_{k i}:=\mu x_{i}^{k} \quad \forall i=1, \ldots, n
$$

In test we take the logarithmic parameter $\mu=0.01, c_{k}=0.01 \forall k \geq 1$ and the tolerance 10^{-7}. We obtained the following computational results.

Iter(k)	x_{1}^{k}	x_{2}^{k}	x_{3}^{k}	x_{4}^{k}	x_{5}^{k}	x_{6}^{k}	x_{7}^{k}
0	1	1	1	1	1	1	1
1	1.0470	0.8957	1.0302	1.0030	0.9289	0.9641	0.9084
2	1.0886	0.8120	1.0654	1.0099	0.8549	0.9311	0.8199
3	1.1243	0.7436	1.1005	1.0155	0.7793	0.8975	0.7347
4	1.1528	0.6847	1.1296	1.0134	0.7022	0.8584	0.6540
5	1.1735	0.6296	1.1475	0.9976	0.6232	0.8095	0.5793
6	1.1864	0.5710	1.1496	0.9632	0.5422	0.7473	0.5112
7	1.1915	0.5067	1.1344	0.9088	0.4597	0.6706	0.4497
8	1.1887	0.4364	1.1014	0.8340	0.3763	0.5794	0.3946
9	1.1779	0.3601	1.0502	0.7383	0.2926	0.4733	0.3455
10	1.1590	0.2774	0.9801	0.6214	0.2095	0.3522	0.3020
11	1.1317	0.1882	0.8906	0.4829	0.1277	0.2159	0.2640

Table 1. Numerical results: Algorithm 2.4 with $n=7$.
The approximate solution obtained after eleven iterations is

$$
x^{10}=(1.1317,0.1882,0.8906,0.4829,0.1277,0.2159,0.2640)^{T} .
$$

References

[1] Anh P. N., A logarithmic quadratic regularization method for solving pseudomonotone equilibrium problems, Accepted by Acta Mathematica Vietnamica, 2008.
[2] Anh P. N., and Muu L. D., Coupling the Banach contraction mapping principle and the proximal point algorithm for solving monotone variational inequalities, Acta Mathematica Vietnamica, 29 (2004) 119-133.
[3] Anh P. N., Muu L.D., Nguyen V. H., and Strodiot J. J., On the Contraction and Nonexpensiveness Properties of the Marginal Mappings in Generalized Variational Inequalities Involving Co-coercive Operators, In Generalized Convexity and Monotonicity, Edited by A. Eberhard, N. Hadjisavvas and D.T. Luc Springer, Chap. 5, (2005) 89-111.
[4] Aubin J.P., and Ekeland I., Applied Nonlinear Analysis, Wiley, New York (1984).
[5] Auslender A., and Teboulle M., Interior projection-like methods for monotone variational inequalities, Mathematical Programming, 104 (2005) 3968.
[6] Auslender A., Teboulle M., and Bentiba S., A logarithmic-quadratic proximal method for variational inequalities, J. of Computational Optimization and Applications, 12 (1999) 31-40.
[7] Auslender A., Teboulle M., and Bentiba S., Iterior proximal and multiplier methods based on second order homogeneous kernels, Mathematical Operation Research, 24 (1999) 646-668.
[8] Bnouhachem A. An LQP method for psedomonotone variational inequalities, J. of Global Optimization, 36 (2006) 351-363.
[9] Blum E., and Oettli W., From optimization and variational inequality to equilibrium problems, The Mathematics Student, 63 (1994) 127-149.
[10] Cohen G., Auxiliary problem principle and decomposition of optimization problems, J. of Optimization Theory and Applications, 32 (1980) 277-305.
[11] Cohen G., Auxiliary principle extended to variational inequalities, J. of Optimization Theory and Applications, 59 (1988) 325-333.
[12] Daniele P., Giannessi F., and Maugeri A., Equilibrium Problems and Variational Models, Kluwer (2003).
[13] Facchinei F., and Pang J.S., Finite-Dimensional Variational Inequalities and Complementary Problems, Springer-Verlag, NewYork (2003).
[14] Fang S.C., Petersen P.L., Genralized Variational Inequalities, J. of Optimization Theory and Applications, 38 (1982) 363-383.
[15] Farouq N. El., Pseudomonotone variational inequalities: convergence of auxiliary problem method, J. of Optimization Theory and Applications, 111 (2001) 305-325.
[16] Fukushima M., Equivalent Differentiable Optimization Problems and Descent Methods for Asymmetric Variational Inequality Problems, Mathematical Programming, 53 (1992) 99-110.
[17] Konnov I. V., Combined Relaxation Methods for Variational Inequalities, Springer-Verlag, Berlin (2000).
[18] Mangasarian O. L., and Solodov M.V., A linearly convergent derivativefree descent method for strongly monotone complementarity problem, Computational Optimization and Applications, 14 (1999) 5-16.
[19] Noor M. A., Iterative schemes for quasimonotone mixed variational inequalities, SIAM J. Optimization, 50 (2001) 29-44.
[20] Rockafellar R. T., Convex Analysis, Princeton University Press (1970).
[21] Rockafellar R. T., Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14 (1976) 877-898.
[22] Tan N. X., On the existence of solutions of quasi-variational inclusion problems, J. of Optimization Theory and Applications, 123 (2007) 619638.
[23] Waltz R. A, Morales J. L., Nocedal J., and Orban D., An interior algorithm for nonlinear optimization that combines line search and trust region steps, Mathematical Programming, 107 (2006) 391-408.
[24] Zhu D. L., and Marcotte. P., Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optimization, 6 (1996) 714-726.

[^0]: Key words: Variational inequalities, interior-quadratic method, monotonicity, line search algorithm, interior point method.
 2000 AMS Mathematics Subject Classification: 65K10, 90C25

