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Abstract

In this article, we discuss the prime radical of skew polynomial rings
over Noetherian rings. We recall σ(∗) property on a ring R (i.e. aσ(a) ∈
P (R) implies a ∈ P (R) for a ∈ R, where P (R) is the prime radical of R),
where σ is an endomorphism of R. Also recall that a ring R is 2-primal
if and only if P (R) and the set of nilpotent elements of R are same, if
and only if the prime radical is a completely semiprime ideal. It can
be seen that a σ(∗) is a 2-primal ring. In this article we show that if
R is a Noetherian σ(∗)-ring, which is also an algebra over Q; σ is an
automorphism of R and δ a σ-derivation of R, then the Ore extension
R[x; σ, δ] is 2-primal Noetherian.

1 Introduction

A ring R always means an associative ring with identity. The field of rational
numbers and the set of natural numbers are denoted by Q and N respectively
unless otherwise stated. The set of prime ideals of R is denoted by Spec(R).
The sets of minimal prime ideals of R is denoted by Min.Spec(R). Prime
radical and the set of nilpotent elements of R are denoted by P (R) and N(R)
respectively. Let R be a ring and σ an automorphism of R. Let I be an ideal
of R such that σm(I) = I for some m ∈ N. We denote ∩m

i=1σ
i(I) by I0. For

any two ideals I, J of R; I ⊂ J means that I is strictly contained in J.
This article concerns the study of skew polynomial rings (Ore extensions)

in terms of 2-primal rings. Recall that a ring R is 2-primal if and only if

Key words: Minimal prime, prime radical, 2-primal, automorphism, derivation, σ(∗)-ring.
2000 AMS Mathematics Subject Classification: Primary 16-XX,; Secondary 16S36, 16N40,
16P40, 16S32, 16W20, 16W25.

73



74 σ(∗)-rings and their extensions as 2-primal rings

N(R) = P (R) if and only if the prime radical is a completely semiprime ideal.
An ideal I of a ring R is called completely semiprime if a2 ∈ I implies a ∈ I for
a ∈ R. We note that a commutative ring is 2-primal. Also the ring

R =
(

F F
0 F

)
where F is a field, is 2-primal.

For further details on 2-primal rings, we refer the reader to [1, 2, 3, 7, 10].
Recall that R[x; σ, δ] is the usual polynomial ring with coefficients in R, in

which multiplication is subject to the relation ax = xσ(a) + δ(a) for all a ∈ R.
We take any f(x) ∈ R[x; σ, δ] to be of the form f(x) =

∑n
i=0 xiai. We denote

R[x; σ, δ] by O(R). In case δ is the zero map, we denote R[x; σ] by S(R) and
in case σ is the identity map, we denote R[x; δ] by D(R). The study of Ore-
extension O(R) = R[x; σ, δ] and its special cases S(R) and D(R) have been of
interest to many authors. For example [4, 5, 6, 9, 10, 11].

2-primal rings have been studied in recent years and are being treated by
authors for different structures. In [10], Greg Marks discusses the 2-primal
property of R[x; σ, δ], where R is a local ring, σ an automorphism of R and δ a
σ-derivation of R. In Greg Marks [10], it has been investigated that when R is
a local ring with a nilpotent maximal ideal, the Ore extension R[x; σ, δ] will or
will not be 2-primal depending on the δ-stability of the maximal ideal of R. In
the case where R[x; σ, δ] is 2-primal, it will satisfy an even stronger condition;
in the case where R[x; σ, δ] is not 2-primal, it will fail to satisfy an even weaker
condition.

Minimal prime ideals of 2-primal rings have been discussed by Kim and
Kwak in [7]. 2-primal near rings have been discussed by Argac and Groenewald
in [1].

Recall that in Krempa [8], a ring R is called σ-rigid if there exists an en-
domorphism of R with the property that aσ(a) = 0 implies a = 0 for a ∈ R.
In [9], Kwak defines a σ(∗)-ring R to be a ring in which aσ(a) ∈ P (R) implies
a ∈ P (R) for a ∈ R and establishes a relation between a 2-primal ring and a
σ(∗)-ring. The property is also extended to the skew-polynomial ring R[x; σ].

It is known that if R is a 2-primal Noetherian Q-algebra, and δ is a derivation
of R, then R[x; δ] is 2-primal Noetherian. (Theorem (2.4) of Bhat [3]).

In this paper we generalize the above result for R[x; σ, δ]. But before that
we note that a σ(∗)-ring is a 2-primal ring [Proposition (2.3)]. We also note
that if σ is an automorphism of R, then it can be extended to an automorphism
of R[x; σ] such that σ(x) = x; i.e. σ(Σn

i=0x
iai) = Σn

i=0x
iσ(ai), and prove that

if R is a σ(∗)-ring, then R[x; σ] is also a σ(∗)-ring [Theorem (2.9)].
We also find a relation between the minimal prime ideals of R and those of

the Ore extension R[x; σ, δ], where R is a Noetherian σ(∗)-ring, which is also
an algebra over Q; σ is an automorphism of R and δ a σ-derivation of R. This
is proved in Theorem (2.15).

We ultimately prove the following result [Theorem (2.18]:
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Theorem: If R is a Noetherian σ(∗)-ring, which is also an algebra over
Q, where σ is an automorphism of R and δ a σ-derivation of R, then the Ore
extension R[x; σ, δ] is 2-primal Noetherian.

2 2-primal skew-Polynomial rings

We begin with the following definition:

Definition 2.1 (Kwak [9]) Let R be a ring and σ an endomorphism of R.
Then R is said to be a σ(∗)-ring if aσ(a) ∈ P (R) implies a ∈ P (R).

Example 2.2 Let R =
(

F F
0 F

)
, where F is a field. Then P(R) =

(
0 F
0 0

)

Let σ : R → R be defined by σ
( (

a b
0 c

) )
=

(
a 0
0 c

)
. Then it can be seen

that R is a σ(∗)-ring.

Recall that an ideal I of a ring R is called σ-invariant if σ(I) = I. Also I is
called completely prime if ab ∈ I implies a ∈ I or b ∈ I for a, b ∈ R. We also
recall that an ideal J of a ring is called a σ-prime ideal of R if J is σ-invariant
and for any σ-invariant ideals K and L with KL ⊆ J , we have K ⊆ J or L ⊆ J .

Proposition 2.3 Let R be a ring and σ an automorphism of R. Then R is a
σ(∗)-ring implies R is 2-primal.

Proof Let a ∈ R be such that a2 ∈ P (R). Then aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈
σ(P (R)) = P (R). Therefore aσ(a) ∈ P (R) and hence a ∈ P (R). �

The following example shows that there exists an endomorphism σ of a ring
R such that the converse of the above Proposition does not hold.

Example 2.4 Let R = F [x], F a field. Then R is a commutative domain, and
therefore is 2-primal with P (R) = 0. Let σ : R → R be defined by σ(f(x)) =
f(0). Let f(x) = xa, 0 �= a ∈ F . Then f(x)σ(f(x)) ∈ P (R), but f(x) /∈ P (R).
Therefore R is not a σ(∗)-ring.

Recall that an ideal P of a ring R is said to be completely prime if ab ∈ P
implies a ∈ P or b ∈ P for a, b ∈ R.

We now give a necessary and sufficient condition for a Noetherian ring to
be a σ(∗)-ring in the following Theorem:

Theorem 2.5 Let R be a Noetherian ring, and σ an automorphism of R. Then
R is a σ(∗)-ring if and only if for each minimal prime U of R, σ(U) = U and
U is completely prime ideal of R.
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Proof Let R be a Noetherian ring such that for each minimal prime U of
R, σ(U) = U and U is completely prime ideal of R. Let a ∈ R be such that
aσ(a) ∈ P (R) = ∩n

i=1Ui, where Ui are the minimal primes of R. Now for each
i, a ∈ Ui or σ(a) ∈ Ui as Ui are completely prime. Now σ(a) ∈ Ui = σ(Ui)
implies that a ∈ Ui. Therefore a ∈ P (R). Hence R is a σ(∗)-ring.

Conversely, suppose that R is a σ(∗)-ring and let U = U1 be a minimal
prime ideal of R. Now by Proposition (2.3), P(R) is completely semiprime. Let
U2, U3, ..., Un be the other minimal primes of R. Suppose that σ(U) �= U . Then
σ(U) is also a minimal prime ideal of R. Renumber so that σ(U) = Un. Let
a ∈ ∩n−1

i=1 Ui. Then σ(a) ∈ Un, and so aσ(a) ∈ ∩n
i=1Ui = P (R). Therefore

a ∈ P (R), and thus ∩n−1
i=1 Ui ⊆ Un, which implies that Ui ⊆ Un for some i �= n,

which is impossible. Hence σ(U) = U .
Now suppose that U = U1 is not completely prime. Then there exist a, b ∈

R \ U with ab ∈ U . Let c be any element of b(U2 ∩ U3 ∩ ... ∩ Un)a. Then
c2 ∈ ∩n

i=1Ui = P (R). So c ∈ P (R) and, thus b(U2 ∩ U3 ∩ ... ∩ Un)a ⊆ U .
Therefore bR(U2 ∩U3 ∩ ...∩Un)Ra ⊆ U and, as U is prime, a ∈ U , Ui ⊆ U for
some i �= 1 or b ∈ U . None of these can occur, so U is completely prime. �

We also note that if R is a Noetherian ring, then Min.Spec(R) is finite
(Theorem (2.4) of Goodearl and Warfield [6]) and for any automorphism σ of
R and for any U ∈ Min.Spec(R), we have σi(U) ∈ Min.Spec(R) for all i ∈ N,
therefore, it follows that there exists some m ∈ N such that σm(U) = U for all
U ∈ Min.Spec(R). As mentioned earlier we denote ∩m

i=0σ
i(U) by U0. With

this we have the following Theorem:

Theorem 2.6 Let R be a Noetherian ring and σ an automorphism of R. Let
S(R) = R[x; σ] be as usual. Then:

(1) If P ∈ Min.Spec(S(R)), then P = (P ∩ R)S(R) and there exists U ∈
Min.Spec(R) such that P ∩ R = U0.

(2) If U ∈ Min.Spec(R), then U0S(R) ∈ Min.Spec(S(R)).

Proof See Theorem (2.4) of Bhat [4]. �

Corollary 2.7 Let R be a Noetherian σ(∗)-ring, where σ is an automorphism
of R. Then P ∈ Min.Spec(S(R)) if and only if there exists Q ∈ Min.Spec(R)
such that S(Q) = P and (P ∩ R) = Q.

Proof R is a Noetherian σ(∗)-ring, therefore U0 = U for any U ∈ Min.Spec(R)
by Theorem (2.5). Now use Theorem (2.6). �

Corollary 2.8 Let R be a Noetherian σ(∗)-ring, where σ is an automorphism
of R. Then P (R)[x; σ] = P (R[x; σ]).

Theorem 2.9 Let R be a Noetherian σ(∗)-ring, where σ is an automorphism
of R. Then R[x; σ] is also a Noetherian σ(∗)-ring.
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Proof R[x; σ] is Noetherian by Hilbert Basis Theorem (Theorem (1.12) of
Goodearl and Warfield [6]). Now we have P (R)[x; σ] = P (R[x; σ]) by Corollary
(2.8). Let f(x) = Σn

i=0x
iai ∈ R[x; σ] be such that f(x)σ

(
f(x)

) ∈ P (R[x; σ]) =
P (R)[x; σ]; i.e.

(xnan + ... + a0)(xnσ(an) + ... + σ(a0)) ∈ P (R)[x; σ],

or

x2nσn(an)σ(an) + ... + a0σ(a0) ∈ P (R)[x; σ],

which implies that a0σ(a0) ∈ P (R), and therefore a0 ∈ P (R), as R is a σ(∗)-
ring.

Therefore g(x)σ
(
g(x)

) ∈ P (R)[x; σ], where g(x) = Σn
i=1x

iai. With the
same process as above, in a finite number of steps, we get that ai ∈ P (R) for
all i, 1 ≤ i ≤ n. Thus f(x) ∈ P (R)[x; σ] = P (R[x; σ]). Hence R[x; σ] is also a
Noetherian σ(∗)-ring. �

We now give a relation between the minimal prime ideals of R and those of
R[x; σ, δ], where R is a Noetherian Q-algebra, σ an automorphism of R and δ
a σ-derivation of R. This is proved in Theorem (2.15). Towards this we have
the following:

Proposition 2.10 Let R be a Noetherian Q-algebra, σ an automorphism and
δ a σ-derivation of R. Then etδ is an automorphism of T = R[[t, σ]], the skew
power series ring.

Proof The proof is on the same lines as in Seidenberg [11] and in the non-
commutative case on the same lines as provided by Blair and Small in [5].
�

Hence forth we denote R[[t, σ]] by T .

Lemma 2.11 Let R be a Noetherian Q-algebra, σ an automorphism and δ a
σ-derivation of R. Then an ideal I of R is δ-invariant if and only if TI is
etδ-invariant.

Proof Let TI be etδ-invariant. Let a ∈ I. Then a ∈ TI. So etδ(a) ∈ TI; i.e.
a + tδ(a) + (t2δ2/2!)(a) + ... ∈ TI. Therefore δ(a) ∈ I.

Conversely suppose that δ(I) ⊆ I and let f =
∑

tiai ∈ TI. Then etδ(f)
= f + tδ(f) + (t2δ2/2!)(f) + ... ∈ TI, as δ(ai) ∈ I. Therefore etδ(TI) ⊆ TI.
Replacing etδ by e−tδ, we get that etδ(TI) = TI. �

Let σ be an automorphism of a ring R, and I be an ideal of R such that
σ(I) = I. Then it is easy to see that TI ⊆ IT and IT ⊆ TI. Hence TI = IT
is an ideal of T.

Proposition 2.12 Let R be a Noetherian σ(∗)-ring and T as usual. Then:
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(1) U ∈ Min.Spec(R) implies that UT ∈ Min.Spec(T ).

(2) P ∈ Min.Spec(T ) implies that P ∩R ∈ Min.Spec(R) and P = (P ∩R)T .

Proof (1) Let U ∈ Min.Spec(R). Then σ(U) = U by Theorem (2.5). Now
UT ∈ Spec(T ). Suppose UT /∈ Min.Spec(T ) and J ⊂ UT is a minimal
Prime ideal of T . Then (J ∩ R) ⊂ UT ∩ R = U which is a contradiction, as
(J ∩ R) ∈ Spec(R). Therefore UT ∈ Min.Spec(T ).

(2) Let P ∈ Min.Spec(T ). Then P ∩ R ∈ Spec(R). Suppose (P ∩ R) /∈
Min.Spec(R) and M ⊂ P ∩ R is a minimal prime ideal of R. Then MT ⊂
(P ∩R)T ⊆ P , which is a contradiction, as MT ∈ Spec(R). Therefore (P ∩R) ∈
Min.Spec(R). Now it is easy to see that (P ∩ R)T = P .

�

Proposition 2.13 Let R be a Noetherian σ(∗)-ring which is also an algebra
over Q, where σ is an automorphism of R and δ a σ-derivation of R. Then
P ∈ Min.Spec(R) implies δ(P ) ⊆ P .

Proof Let T be as usual. Now by Proposition (2.10) etδ is an automorphism
of T . Let P ∈ Min.Spec(R)). Then by Proposition (2.12) PT ∈ Min.Spec(T ).
Therefore there exists an integer an integer n ≥ 1 such that (etδ)n(PT ) = PT ;
i.e. entδ(PT ) = PT . But R is a Q-algebra, therefore etδ(PT ) = PT and now
Lemma (2.11) implies δ(P ) ⊆ P . �

Proposition 2.14 Let R be a σ(∗)-ring, which is also an algebra over Q and σ
is an automorphism of R. Let U ∈ Min.Spec(R). Then U(O(R)) = U [x; σ, δ]
is a completely prime ideal of O(R) = R[x; σ, δ], where δ is a σ-derivation of
R.

Proof Let U ∈ Min.Spec(R). Then σ(U) = U by Theorem (2.5), and δ(U) ⊆
U by Proposition (2.13). Now R is 2-primal by Proposition (2.3) and further
more U is completely prime by Theorem (2.5). Now we note that σ can be
extended to an automorphism σ of R/U and δ can be extended to a σ-derivation
δ of R/U . Now it is well known that O(R)/U(O(R)) � (R/U)[x; σ, δ] and hence
U(O(R)) is a completely prime ideal of O(R). �

Theorem 2.15 Let R be a Noetherian σ(∗)-ring, which is also an algebra over
Q and σ is an automorphism of R. Let δ be a σ-derivation of R. Then P ∈
Min.Spec(O(R)) implies that P ∩ R ∈ Min.Spec(R), and conversely P1 ∈
Min.Spec(R) implies that O(P1) ∈ Min.Spec(O(R).

Proof Let P1 ∈ Min.Spec(R). Then σ(P1) = P1 by Theorem (2.5), and
δ(P1) ⊆ P1 by Proposition (2.13). Now it can be seen that that O(P1) ∈
Spec(O(R)). Suppose O(P1) /∈ Min.Spec(O(R)) and P2 ⊂ O(P1) be a minimal
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prime ideal of O(R). Then P2 = O(P2 ∩ R) ⊂ O(P1) ⊆ Min.Spec(O(R)).
Therefore (P2 ∩ R) ⊂ P1 which is a contradiction, as (P2 ∩ R) ∈ Spec(R).
Hence O(P1) ∈ Min.Spec(O(R)).

Conversely suppose that P ∈ Min.Spec(O(R)), then it can be seen that
(P ∩ R) ∈ Spec(R), and O(P ∩ R) ∈ Spec(O(R)). Therefore O(P ∩ R) = P .
We now show that (P ∩ R) ∈ Min.Spec(R). Suppose P1 ⊂ (P ∩ R) is a
minimal prime ideal of R. Then O(P1) ⊂ O(P ∩ R) and as in first paragraph
O(P1) ∈ Spec(O(R)) which is a contradiction. Hence (P ∩R) ∈ Min.Spec(R).
�

Corollary 2.16 Let R be a Noetherian σ(∗)-ring, which is also an algebra
over Q and σ is an automorphism of R. Let δ be a σ-derivation of R. Then
P (R[x; σ, δ]) = P (R)[x; σ, δ].

We now prove the following Theorem, which is crucial in proving Theorem
(2.18).

Theorem 2.17 Let R be a Noetherian σ(∗) ring, which is also an algebra over
Q, σ an automorphism of R and δ a σ-derivation of R. Then R[x; σ, δ] is 2-
primal if and only if P (R)[x; σ, δ] = P (R[x; σ, δ]).

Proof Let R[x; σ, δ] be 2-primal. Now by Proposition (2.14) P (R[x; σ, δ]) ⊆
P (R)[x; σ, δ]. Let f(x) =

∑n
j=0 xjaj ∈ P (R)[x; σ, δ]. Now R is a 2-primal sub-

ring of R[x; σ, δ] by Proposition (2.3), which implies that aj is nilpotent and
thus aj ∈ N(R[x; σ, δ]) = P (R[x; σ, δ]), and so we have xjaj ∈ P (R[x; σ, δ])
for each j, 0 ≤ j ≤ n, which implies that f(x) ∈ P (R[x; σ, δ]). Hence
P (R)[x; σ, δ] = P (R[x; σ, δ]).

Conversely suppose that P (R)[x; σ, δ] = P (R[x; σ, δ]). We will show that
R[x; σ, δ] is 2-primal. Let g(x) =

∑n
i=0 xibi ∈ R[x; σ, δ], bn �= 0, be such that

(g(x))2 ∈ P (R[x; σ, δ]) = P (R)[x; σ, δ]. We will show that g(x) ∈ P (R[x; σ, δ]).
Now leading coefficient σ2n−1(bn)bn ∈ P (R) ⊆ P , for all P ∈ Min.Spec(R).
Now σ(P ) = P and P is completely prime by Theorem (2.5). Therefore we
have bn ∈ P , for all P ∈ Min.Spec(R); i.e. bn ∈ P (R). Now δ(P ) ⊆ P for all
P ∈ Min.Spec(R) by Proposition (2.13), we get (

∑n−1
i=0 xibi)2 ∈ P (R[x; σ, δ]) =

P (R)[x; σ, δ] and as above we get bn−1 ∈ P (R). With the same process in
a finite number of steps we get bi ∈ P (R) for all i, 0 ≤ i ≤ n. Thus we
have g(x) ∈ P (R)[x; σ, δ]; i.e. g(x) ∈ P (R[x; σ, δ]). Therefore P (R[x; σ, δ]) is
completely semiprime. Hence R[x; σ, δ] is 2-primal. �

Theorem 2.18 Let R be a Noetherian σ(∗)-ring, which is also an algebra over
Q, σ an automorphism of R and δ a σ-derivation of R. Then R[x; σ, δ] is 2-
primal Noetherian.

Proof R[x; σ, δ] is Noetherian by Hilbert Basis Theorem (Theorem (1.12) of
Goodearl and Warfield [6]). We now use Theorem (2.15) to get that P (R)[x; σ, δ] =
P (R[x; σ, δ]), and the result now follows from Theorem (2.17). �
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The following example shows that if R is a Noetherian ring, then R[x; σ, δ]
need not be 2-primal.

Example 2.19 Let R = Q
⊕

Q with σ(a, b) = (b, a). Then the only σ-
invariant ideals of R are 0 and R and, so R is σ-prime. Let δ : R → R be
defined by δ(r) = ra − aσ(r), where a = (0, α) ∈ R. Then δ is a σ-derivation
of R and R[x; σ, δ] is prime and P (R[x; σ, δ]) = 0. But (x(1, 0))2 = 0 as
δ(1, 0) = −(0, α). Therefore R[x; σ, δ] is not 2-primal. If δ is taken to be the
zero map, then even R[x; σ] is not 2-primal.

The following example shows that if R is a Noetherian ring , then even R[x]
need not be 2-primal.

Example 2.20 Let R = M2(Q), the set of 2 × 2 matrices over Q. Then R[x]
is a prime ring with non-zero nilpotent elements and, so can not be 2-primal.

From these examples we conclude that if R is a Noetherian ring, then even
R[x] need not be two primal. But it is known that if R is 2-primal Noetherian
Q-algebra and δ is a derivation of R, then R[x; δ] is 2-primal Noetherian, and
therefore there we have the following question:

Question 2.21 If R is a 2-primal Noetherian ring, is R[x; σ, δ] also a 2-primal
Noetherian ring (even if R is commutative)?
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