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Abstract

In this article, we discuss the prime radical of skew polynomial rings
over Noetherian rings. We recall o(*) property on a ring R (i.e. ac(a) €
P(R) implies a € P(R) for a € R, where P(R) is the prime radical of R),
where o is an endomorphism of R. Also recall that a ring R is 2-primal
if and only if P(R) and the set of nilpotent elements of R are same, if
and only if the prime radical is a completely semiprime ideal. It can
be seen that a o(x) is a 2-primal ring. In this article we show that if
R is a Noetherian o(*)-ring, which is also an algebra over Q; o is an
automorphism of R and § a o-derivation of R, then the Ore extension
Rlz; 0, 6] is 2-primal Noetherian.

1 Introduction

A ring R always means an associative ring with identity. The field of rational
numbers and the set of natural numbers are denoted by Q and N respectively
unless otherwise stated. The set of prime ideals of R is denoted by Spec(R).
The sets of minimal prime ideals of R is denoted by Min.Spec(R). Prime
radical and the set of nilpotent elements of R are denoted by P(R) and N(R)
respectively. Let R be a ring and ¢ an automorphism of R. Let I be an ideal
of R such that ™ (I) = I for some m € N. We denote N ,c*(I) by I°. For
any two ideals I, J of R; I C J means that I is strictly contained in J.

This article concerns the study of skew polynomial rings (Ore extensions)
in terms of 2-primal rings. Recall that a ring R is 2-primal if and only if
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N(R) = P(R) if and only if the prime radical is a completely semiprime ideal.
An ideal I of a ring R is called completely semiprime if a? € I implies a € I for
a € R. We note that a commutative ring is 2-primal. Also the ring

R = ( Zg ZZ:: > where F is a field, is 2-primal.

For further details on 2-primal rings, we refer the reader to [1, 2, 3, 7, 10].

Recall that R[z; 0, d] is the usual polynomial ring with coefficients in R, in
which multiplication is subject to the relation ax = xo(a) 4 d(a) for all a € R.
We take any f(z) € R[z;0,0] to be of the form f(z) = > I ; z'a;. We denote
R[z;0,d] by O(R). In case ¢ is the zero map, we denote R[z;o] by S(R) and
in case o is the identity map, we denote R[z;d] by D(R). The study of Ore-
extension O(R) = R[z;0,d] and its special cases S(R) and D(R) have been of
interest to many authors. For example [4, 5, 6, 9, 10, 11].

2-primal rings have been studied in recent years and are being treated by
authors for different structures. In [10], Greg Marks discusses the 2-primal
property of R[x; o, d], where R is a local ring, ¢ an automorphism of R and § a
o-derivation of R. In Greg Marks [10], it has been investigated that when R is
a local ring with a nilpotent maximal ideal, the Ore extension R|[x; o, d] will or
will not be 2-primal depending on the J-stability of the maximal ideal of R. In
the case where R[z;0,d] is 2-primal, it will satisfy an even stronger condition;
in the case where R[x; 0, 4] is not 2-primal, it will fail to satisfy an even weaker
condition.

Minimal prime ideals of 2-primal rings have been discussed by Kim and
Kwak in [7]. 2-primal near rings have been discussed by Argac and Groenewald
in [1].

Recall that in Krempa [§8], a ring R is called o-rigid if there exists an en-
domorphism of R with the property that ac(a) = 0 implies a = 0 for a € R.
In [9], Kwak defines a o(*)-ring R to be a ring in which ac(a) € P(R) implies
a € P(R) for a € R and establishes a relation between a 2-primal ring and a
o(x)-ring. The property is also extended to the skew-polynomial ring R[z;o].

It is known that if R is a 2-primal Noetherian Q-algebra, and ¢ is a derivation
of R, then R[x;¢] is 2-primal Noetherian. (Theorem (2.4) of Bhat [3]).

In this paper we generalize the above result for R[z; o, d]. But before that
we note that a o(x)-ring is a 2-primal ring [Proposition (2.3)]. We also note
that if o is an automorphism of R, then it can be extended to an automorphism
of R[z;o] such that o(z) = z; i.e. o(X7 gz'a;) = X1 gz'c(a;), and prove that
if R is a o(x)-ring, then R[x; o] is also a o(*)-ring [Theorem (2.9)].

We also find a relation between the minimal prime ideals of R and those of
the Ore extension R[r;o,d], where R is a Noetherian o(x)-ring, which is also
an algebra over ; o is an automorphism of R and § a o-derivation of R. This
is proved in Theorem (2.15).

We ultimately prove the following result [Theorem (2.18]:
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Theorem: If R is a Noetherian o(*)-ring, which is also an algebra over
Q, where ¢ is an automorphism of R and § a o-derivation of R, then the Ore
extension R[z;o,d] is 2-primal Noetherian.

2  2-primal skew-Polynomial rings
We begin with the following definition:

Definition 2.1 (Kwak [9]) Let R be a ring and o an endomorphism of R.
Then R is said to be a o(x)-ring if ac(a) € P(R) implies a € P(R).

Example 2.2 LetR:( Zg ? >, where F is a field. Then P(R):( 8 Zg >
Let 0 : R — R be defined bya(( 8 i)) - ( 8 2 > Then it can be seen

that R is a o(x)-ring.

Recall that an ideal I of a ring R is called o-invariant if o(I) = I. Also I is
called completely prime if ab € I impliesa € I or b € I for a,b € R. We also
recall that an ideal J of a ring is called a o-prime ideal of R if J is o-invariant
and for any o-invariant ideals K and L with KL C J, we have K C Jor L C J.

Proposition 2.3 Let R be a ring and o an automorphism of R. Then R is a
o(x)-ring implies R is 2-primal.

Proof Let a € Rbe such that a? € P(R). Then ac(a)o(ac(a)) = ac(a)o(a)o?(a) €

o(P(R)) = P(R). Therefore ao(a) € P(R) and hence a € P(R). O
The following example shows that there exists an endomorphism o of a ring

R such that the converse of the above Proposition does not hold.

Example 2.4 Let R = F[z], F a field. Then R is a commutative domain, and
therefore is 2-primal with P(R) = 0. Let 0 : R — R be defined by o(f(z)) =
f(0). Let f(x) =xa,0#£a € F. Then f(x)o(f(x)) € P(R), but f(x) ¢ P(R).

Therefore R is not a o(x)-ring.

Recall that an ideal P of a ring R is said to be completely prime if ab € P
impliesa € Por b€ P fora, b€ R.

We now give a necessary and sufficient condition for a Noetherian ring to
be a o(x)-ring in the following Theorem:

Theorem 2.5 Let R be a Noetherian ring, and o an automorphism of R. Then
R is a o(x)-ring if and only if for each minimal prime U of R, o(U) = U and
U is completely prime ideal of R.



76 o(x)-rings and their extensions as 2-primal rings

Proof Let R be a Noetherian ring such that for each minimal prime U of
R, o(U) = U and U is completely prime ideal of R. Let a € R be such that
ac(a) € P(R) = NI_,U;, where U; are the minimal primes of R. Now for each
i, a € U; or o(a) € U; as U; are completely prime. Now o(a) € U; = o(U;)
implies that a € U;. Therefore a € P(R). Hence R is a o(x)-ring.

Conversely, suppose that R is a o(x)-ring and let U = U; be a minimal
prime ideal of R. Now by Proposition (2.3), P(R) is completely semiprime. Let
Us, Us, ..., U, be the other minimal primes of R. Suppose that o(U) # U. Then
o(U) is also a minimal prime ideal of R. Renumber so that o(U) = U,,. Let
a € N'5'U;. Then o(a) € Uy, and so ao(a) € N, U; = P(R). Therefore
a € P(R), and thus N?'U; C U, which implies that U; C U, for some i # n,
which is impossible. Hence o(U) = U.

Now suppose that U = Uj is not completely prime. Then there exist a,b €
R\ U with ab € U. Let ¢ be any element of b(Uy N Us N ... N U,)a. Then
2 € N"_,U; = P(R). So c € P(R) and, thus b(Us NUs N ...NU,)a C U.
Therefore bR(Us NUsN...N U, )Ra C U and, as U is prime, a € U, U; C U for
some i # 1 or b € U. None of these can occur, so U is completely prime. O

We also note that if R is a Noetherian ring, then Min.Spec(R) is finite
(Theorem (2.4) of Goodearl and Warfield [6]) and for any automorphism o of
R and for any U € Min.Spec(R), we have o*(U) € Min.Spec(R) for all i € N,
therefore, it follows that there exists some m € N such that o™ (U) = U for all
U € Min.Spec(R). As mentioned earlier we denote N o (U) by U°. With
this we have the following Theorem:

Theorem 2.6 Let R be a Noetherian ring and o an automorphism of R. Let
S(R) = R[x; 0] be as usual. Then:

(1) If P € Min.Spec(S(R)), then P = (PN R)S(R) and there exists U €
Min.Spec(R) such that PN R = U".

(2) If U € Min.Spec(R), then U°S(R) € Min.Spec(S(R)).

Proof See Theorem (2.4) of Bhat [4]. O

Corollary 2.7 Let R be a Noetherian o(x)-ring, where o is an autormorphism
of R. Then P € Min.Spec(S(R)) if and only if there exists Q € Min.Spec(R)
such that S(Q) = P and (PN R) = Q.

Proof R isa Noetherian o(*)-ring, therefore U = U for any U € Min.Spec(R)
by Theorem (2.5). Now use Theorem (2.6). O

Corollary 2.8 Let R be a Noetherian o(x)-ring, where o is an autormorphism
of R. Then P(R)[x;0] = P(R]x;0]).

Theorem 2.9 Let R be a Noetherian o(x)-ring, where o is an automorphism
of R. Then Rlx; 0] is also a Noetherian o(x)-ring.
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Proof R[z;o] is Noetherian by Hilbert Basis Theorem (Theorem (1.12) of
Goodearl and Warfield [6]). Now we have P(R)[z; 0] = P(R[x;0]) by Corollary
(2.8). Let f(z) = ¥ oa'a; € R[x;0] be such that f(z)o(f(z)) € P(R[z;0]) =
P(R)[z;0]; i.e.

(@"apn + ... + ag)(x"0(an) + ... + o(ag)) € P(R)[z; 0],
or
220" (an)o(an) + ... + ago(ag) € P(R)[x; 0],

which implies that ago(ag) € P(R), and therefore ag € P(R), as R is a o(x)-
ring.

Therefore g(z)o(g(z)) € P(R)[z;0], where g(z) = X1 z'a;. With the
same process as above, in a finite number of steps, we get that a; € P(R) for
alli, 1 <4 < n. Thus f(z) € P(R)[z;0] = P(R[z;0]). Hence R[z;0] is also a
Noetherian o (*)-ring. O

We now give a relation between the minimal prime ideals of R and those of
R[z; 0, 4], where R is a Noetherian Q-algebra, o an automorphism of R and §
a o-derivation of R. This is proved in Theorem (2.15). Towards this we have
the following:

Proposition 2.10 Let R be a Noetherian Q-algebra, o an automorphism and
§ a o-derivation of R. Then e'® is an automorphism of T = R[[t, ]|, the skew
power series Ting.

Proof The proof is on the same lines as in Seidenberg [11] and in the non-
commutative case on the same lines as provided by Blair and Small in [5].
a

Hence forth we denote R[[t, o]] by T.

Lemma 2.11 Let R be a Noetherian Q-algebra, o an automorphism and § a
o-deriwation of R. Then an ideal I of R is §-invariant if and only if T1 is
e!®-invariant.

Proof Let TI be e!-invariant. Let a € I. Then a € TI. So e'®(a) € TT; i.e.
a+t§(a) + (t26%/2!)(a) + ... € TI. Therefore §(a) € 1.

Conversely suppose that §(I) C I and let f = > t'a; € TI. Then e(f)
= fHt0(f) + (t262/2))(f) + ... € TI, as 6(a;) € I. Therefore e*(TI) C T1I.
Replacing e*® by e=*, we get that e (TI) = T1I. O

Let o be an automorphism of a ring R, and I be an ideal of R such that
o(I) = I. Then it is easy to see that T1 C IT and IT C TI. Hence TI = IT
is an ideal of T.

Proposition 2.12 Let R be a Noetherian o(x)-ring and T as usual. Then:
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(1) U € Min.Spec(R) implies that UT € Min.Spec(T).
(2) P € Min.Spec(T) implies that PN R € Min.Spec(R) and P = (PNR)T.

Proof (1) Let U € Min.Spec(R). Then o(U) = U by Theorem (2.5). Now
UT € Spec(T). Suppose UT ¢ Min.Spec(T) and J C UT is a minimal
Prime ideal of T. Then (JN R) C UT N R = U which is a contradiction, as
(J N R) € Spec(R). Therefore UT € Min.Spec(T).

(2) Let P € Min.Spec(T). Then PN R € Spec(R). Suppose (PN R) ¢
Min.Spec(R) and M C PN R is a minimal prime ideal of R. Then MT C
(PNR)T C P, which is a contradiction, as MT € Spec(R). Therefore (PNR) €
Min.Spec(R). Now it is easy to see that (PN R)T = P.

a

Proposition 2.13 Let R be a Noetherian o(x)-ring which is also an algebra
over Q, where o is an automorphism of R and § a o-derivation of R. Then
P € Min.Spec(R) implies 5(P) C P.

Proof Let T be as usual. Now by Proposition (2.10) e is an automorphism
of T. Let P € Min.Spec(R)). Then by Proposition (2.12) PT € Min.Spec(T).
Therefore there exists an integer an integer n > 1 such that (e!®)*(PT) = PT;
i.e. ¢ (PT) = PT. But R is a Q-algebra, therefore €' (PT) = PT and now
Lemma (2.11) implies 6(P) C P. O

Proposition 2.14 Let R be a o(x)-ring, which is also an algebra over Q and o
is an automorphism of R. Let U € Min.Spec(R). Then U(O(R)) = Ulx; 0, d]
is a completely prime ideal of O(R) = R[x;0,0], where § is a o-derivation of
R.

Proof Let U € Min.Spec(R). Then o(U) = U by Theorem (2.5), and §(U) C
U by Proposition (2.13). Now R is 2-primal by Proposition (2.3) and further
more U is completely prime by Theorem (2.5). Now we note that o can be
extended to an automorphism @ of R/U and § can be extended to a g-derivation
0 of R/U. Now it is well known that O(R)/U(O(R)) ~ (R/U)[x;7, 6] and hence
U(O(R)) is a completely prime ideal of O(R). O

Theorem 2.15 Let R be a Noetherian o(x)-ring, which is also an algebra over
Q and o is an automorphism of R. Let § be a o-derivation of R. Then P €
Min.Spec(O(R)) implies that P N R € Min.Spec(R), and conversely P; €
Min.Spec(R) implies that O(Py) € Min.Spec(O(R).

Proof Let P, € Min.Spec(R). Then o(P;) = P; by Theorem (2.5), and
d(P1) C Py by Proposition (2.13). Now it can be seen that that O(P;) €
Spec(O(R)). Suppose O(Py) ¢ Min.Spec(O(R)) and P, C O(P;) be a minimal
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prime ideal of O(R). Then P, = O(P, N R) C O(P;) € Min.Spec(O(R)).
Therefore (P, N R) C P; which is a contradiction, as (P, N R) € Spec(R).
Hence O(Py) € Min.Spec(O(R)).

Conversely suppose that P € Min.Spec(O(R)), then it can be seen that
(PN R) € Spec(R), and O(P N R) € Spec(O(R)). Therefore O(P N R) = P.
We now show that (P N R) € Min.Spec(R). Suppose P, C (PN R) is a
minimal prime ideal of R. Then O(P;) C O(P N R) and as in first paragraph
O(Py) € Spec(O(R)) which is a contradiction. Hence (PN R) € Min.Spec(R).
O

Corollary 2.16 Let R be a Noetherian o(x)-ring, which is also an algebra
over Q and o is an automorphism of R. Let § be a o-derivation of R. Then
P(R[z;0,06]) = P(R)[x;0,4].

We now prove the following Theorem, which is crucial in proving Theorem
(2.18).

Theorem 2.17 Let R be a Noetherian o(x) ring, which is also an algebra over
Q, o an automorphism of R and § a o-derivation of R. Then R[z;o,0] is 2-
primal if and only if P(R)[z;0,d] = P(R[z;0,0]).

Proof Let R[z;0,0] be 2-primal. Now by Proposition (2.14) P(R[z;0,0]) C
P(R)[x;0,0]. Let f(x) = Z?:o 2’a; € P(R)[z;0,0]. Now R is a 2-primal sub-
ring of R[xz;0,d] by Proposition (2.3), which implies that a; is nilpotent and
thus a; € N(R[z;0,0]) = P(R[z;0,0]), and so we have z/a; € P(R[x;0,0])
for each j, 0 < j < n, which implies that f(z) € P(R[z;0,d]). Hence
P(R)[x;0,6] = P(Rx;0,d]).

Conversely suppose that P(R)[z;0,0] = P(R[x;0,06]). We will show that
R[z;0,6] is 2-primal. Let g(z) = Y., 2'b; € R[x;0,6], b, # 0, be such that
(g(x))? € P(R[x;0,8]) = P(R)[x;0,5]. We will show that g(x) € P(R[z;0,d]).
Now leading coefficient o2"~1(b,)b, € P(R) C P, for all P € Min.Spec(R).
Now o(P) = P and P is completely prime by Theorem (2.5). Therefore we
have b,, € P, for all P € Min.Spec(R); i.e. b, € P(R). Now §(P) C P for all
P € Min.Spec(R) by Proposition (2.13), we get (2?2_01 2'b;)? € P(R[x;0,0)) =
P(R)[x;0,6] and as above we get b,_; € P(R). With the same process in
a finite number of steps we get b; € P(R) for all i, 0 < ¢ < m. Thus we
have g(z) € P(R)[z;0,0]; i.e. g(x) € P(R[z;0,0]). Therefore P(R[z;0,0]) is
completely semiprime. Hence R[x;0,d] is 2-primal. O

NS

Theorem 2.18 Let R be a Noetherian o(x)-ring, which is also an algebra over
Q, o an automorphism of R and § a o-derivation of R. Then R[z;o,0] is 2-
primal Noetherian.

Proof R|z;0,d] is Noetherian by Hilbert Basis Theorem (Theorem (1.12) of
Goodearl and Warfield [6]). We now use Theorem (2.15) to get that P(R)[x; 0, d]
P(R[z;0,4]), and the result now follows from Theorem (2.17). O
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The following example shows that if R is a Noetherian ring, then R[z; 0, d]
need not be 2-primal.

Example 2.19 Let R = Q@ Q with o(a,b) = (b,a). Then the only o-
invariant ideals of R are 0 and R and, so R is o-prime. Let § : R — R be
defined by §(r) = ra — ao(r), where a = (0,«) € R. Then d is a o-derivation
of R and R[z;0,0] is prime and P(R[x;0,6]) = 0. But (x(1,0))? = 0 as
§(1,0) = —(0, ). Therefore R[x;0,0] is not 2-primal. If § is taken to be the
zero map, then even R[x; o] is not 2-primal.

The following example shows that if R is a Noetherian ring , then even R[x]
need not be 2-primal.

Example 2.20 Let R = M»(Q), the set of 2 x 2 matrices over Q. Then R[z]
is a prime ring with non-zero nilpotent elements and, so can not be 2-primal.

From these examples we conclude that if R is a Noetherian ring, then even
R[z] need not be two primal. But it is known that if R is 2-primal Noetherian
Q-algebra and § is a derivation of R, then R[z;d] is 2-primal Noetherian, and
therefore there we have the following question:

Question 2.21 If R is a 2-primal Noetherian ring, is R[x; 0, 6] also a 2-primal
Noetherian ring (even if R is commutative)?
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