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Abstract

A module M is called semi co–Hopfian (resp. semi Hopfian) if any

injective (resp. surjective) endomorphism of M has a direct summand

image (resp. kernel). In this article, some properties of semi co–Hopfian

and semi Hopfian modules are investigated with examples.

1 Introduction

Hopfian and co–Hopfian groups, rings and modules have been studied by many
authors since 1960s. Recall that a module M is called co–Hopfian (resp. Hop-
fian) if any injective (resp. surjective) endomorphism of M is an isomorphism.
Note that any Artinian module is co–Hopfian, and any Noetherian module is
Hopfian. In this article, we concerned with semi co–Hopfian and semi Hopfian
modules. A module M is called semi co–Hopfian (resp. semi Hopfian) if any
injective (resp. surjective) endomorphism of M has a direct summand image
(resp. kernel).

Semi co–Hopfian and semi Hopfian modules are used as a tool by many
authors, for example, see [3, 17, 18]. In this paper, we deal with some properties
of semi co-Hopfian and semi Hopfian modules and rings, among others direct
sums and direct products of them are considered with many examples.

Recall from [13] that a module M has (C2) if for any submodule N of M

which is isomorphic to a direct summand of M , is a direct summand of M ; and
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(D2) if any submodule N such that M/N is isomorphic to a direct summand
of M is a direct summand of M . If M has (C2), then M is semi co–Hopfian. If
M has (D2), then M is semi Hopfian. Hence any self–injective module is semi
co–Hopfian, and any self–projective module is semi Hopfian by [13]. But their
converses are not true in general, examples are given in the article.

In the last section, we consider the ring of continuous functions. We prove
that for a compact Hausdorff space X, if X is a semi co–Hopfian (resp. semi
Hopfian) topological space, then C(X) is a semi Hopfian (resp. semi co–
Hopfian) R–algebra.

A module M is called Dedekind finite if M ∼= M ⊕ N for some module N ,
N = 0. For a ring R, RR is Dedekind finite if and only if ab = 1 implies that
ba = 1 for any a, b ∈ R. It is well known that any co–Hopfian or Hopfian
module is Dedekind finite.

Throughout this paper, R denotes an associative ring with identity and
modules M are unitary left R–modules. For a module M , Rad(M), Soc(M)
and Z(M) are the Jacobson radical, the socle and the singular submodule of
M , respectively. In the ring case we use the abbreviations Zr = Z(RR) and
Zl = Z(RR). For any m ∈ M , lR(m) will denote the left annihilator of m over
R. N ≤⊕ M means that N is a direct summand of M .

2 Semi co–Hopfian Modules

A module M is called semi co–Hopfian if any injective endomorphism of M has
a direct summand image, i.e. any injective endomorphism of M splits. A ring
R is called left semi co–Hopfian if RR is a semi co–Hopfian module. In [17] and
[18] semi co–Hopfian modules are named GC2. They generalized some results
about injectivity via modules with GC2.

Clearly, any co–Hopfian module is semi co–Hopfian. The converse is not true
in general, for example, let ZM = Q(N). Since M is quasi–injective, it is semi
co–Hopfian (by Lemma 2.1 and [13, Proposition 2.1]). But since M ∼= M ⊕ Q,
M is not Dedekind finite, hence not co–Hopfian. Also it is clear that if p is a
prime and n is a positive integer , then any direct sum of copies of Z/Zpn is not
a co–Hopfian Z–module, but it is semi co–Hopfian because it is quasi–injective.

Lemma 2.1 The following are equivalent for a module M .
1) M is semi co–Hopfian.
2) Any submodule N of M which is isomorphic to M , is a direct summand

of M .

Proof (2 ⇒ 1) It is obvious. (1 ⇒ 2) Let N ≤ M be such that N ∼= M . Then
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we have an injective endomorphism α of M where Imα = N . By (1), N is a
direct summand of M . �

By Lemma 2.1, if M has C2, then M is semi co–Hopfian. In particular
any quasi–injective module is semi co–Hopfian by [13, Proposition 2.1]. There-
fore, the concept of semi co–Hopfian modules is a generalization of co–Hopfian
modules and modules with C2.

Example 2.2 There exists a semi co–Hopfian module which has not C2.

Proof Let R be the ring of 2 × 2 lower triangular matrices over a field F .
Then R is Artinian and so co–Hopfian, but RR has not C2 (see [13, Example
2.9]). �

Any semi co–Hopfian quasi continuous module has C2 (see [13, Lemma
3.14]).

For a ring R we have the following characterization.

Proposition 2.3 The following are equivalent for a ring R.
1) R is left semi co–Hopfian.
2) If lR(a) = 0, a ∈ R, then aR is a direct summand of R.
3) If lR(a) = 0, a ∈ R, then aR = R.
4) Every R–isomorphism Ra → R, a ∈ R, extends to R.

Proof (1) ⇒ (4) If Ra ∼= R, a ∈ R, then Ra is a direct summand of R by
Lemma 2.1. So (4) holds.
(4) ⇒ (3) Let lR(a) = 0, a ∈ R. Then the isomorphism f : Ra → R defined by
f(ra) = r, r ∈ R, extends to R by g. Then 1 = f(a) = g(a) = ag(1) ∈ aR.
(3) ⇒ (2) It is obvious.
(2) ⇒ (1) Let f : R → R be a left R–monomorphism. Since lR(f(1)) = 0,
f(1)R is a direct summand of R. Hence Imf = Rf(1) is a direct summand of
R. �

It is well–known that if R is an integral domain, then RR has C2 if and
only if R is a division ring. The following result is obvious by definitions.

Proposition 2.4 If R is a ring with only idempotents 0 and 1, then the fol-
lowing are equivalent.

1) RR has C2.
2) RR is co–Hopfian.
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3) RR is semi co–Hopfian.
In particular, if R is an integral domain, (1) − (3) are equivalent to

4) R is a division ring.

Another example of a semi co–Hopfian module is related with the summand
sum property. A module M has the summand sum property (SSP) if the sum
of any two direct summands of M is a direct summand. Note that M has SSP
if and only if for every decomposition M = A⊕B and every R–homomorphism
f from A to B, the image of f is a direct summand [1].

Hence if M ⊕ M has SSP, then M is semi co–Hopfian. But the converse
is not true: Let the Z–module M = Zp ⊕ Zp2 . Since M is Artinian, it is
co–Hopfian. Denote the Z–homomorphism f : M → M by f(a, b) = (0, pb).
Then Imf = 0⊕pZp2 is not a direct summand of M . Hence M⊕M has not SSP.

If M is co–Hopfian, then it is Dedekind finite. The converse is true if M is
self–injective by [7, Proposition 1.4]. Also in [15, Proposition 3.7], it is proved
that if M has finite uniform dimension and C2, then M is co–Hopfian. Since
any self–injective module has C2 (see [13, Proposition 2.1]) and a module with
a finite uniform dimension is Dedekind finite (see [11, Exercises 6(1)]), as a
generalization of [7, Proposition 1.4] and [15, Proposition 3.7] we have the
following proposition.

A module M is called weakly co–Hopfian (in [7]) if any injective endomor-
phism of M has an essential image.

Proposition 2.5 The following are equivalent for a module M .
1) M is co–Hopfian.
2) M is Dedekind finite and semi co–Hopfian.
3) M is weakly co–Hopfian and semi co–Hopfian.

Proof (3)⇔ (1) ⇒ (2) are obvious.
(2) ⇒ (1) Let f be an injective endomorphism of M . Then M = f(M) ⊕ K

for some K ≤ M . Define a homomorphism ϕ : M ⊕ K −→ M by ϕ(m, k) =
f(m) + k. Then ϕ is an isomorphism. Since M is Dedekind finite, K = 0.
Hence f(M) = M and so f is an isomorphism. �

Recall that a ring is I–finite if it contains no infinite set of orthogonal idem-
potents. R is I–finite if and only if R has ACC on right direct summands if
and only if R has DCC on left direct summands (see [11, 6.59]). If a ring R is
I–finite and has left C2, then RR is co–Hopfian by [14, Example 7.5]. By the
same proof it can be seen that any I–finite and left semi co–Hopfian ring is left
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co–Hopfian.

From now on we investigate some properties of semi co–Hopfian modules.

Lemma 2.6 Any direct summand of a semi co–Hopfian module is semi co–
Hopfian.

Proof Let N be a direct summand of M and f : N −→ N a monomorphism.
Write M = N ⊕ N ′. Then g : M → M , g(n + n′) = f(n) + n′ where n ∈ N ,
n′ ∈ N ′, is a monomorphism. Since Img = Imf ⊕ N ′ is a direct summand of
M , we get that Imf is a direct summand of N . �

We say that a submodule N of M is a non–summand of M if N is not a
direct summand of M .

Lemma 2.7 If for any non–summand submodule N of M , N is semi co–
Hopfian, then M is semi co–Hopfian.

Proof If M is not semi co–Hopfian, then there exists a non–summand sub-
module N of M such that N ∼= M . By hypothesis, we have a contradiction.
�

Any finite direct sum of semi co–Hopfian modules need not be semi co–
Hopfian.

Example 2.8 There exists a simple module U and an injective module V such
that U ⊕ V is not semi co–Hopfian.

Proof Let R be a right Noetherian ring which is not a right V –ring (see
[4]). Let U be a simple right R–module which is not injective and E denote
the injective envelope of U . For each positive integer n, let En = E and let
V = ⊕n≥1En. Then V is injective.

Let M = U ⊕ V . Define f : M → M by f((u, e1, e2, . . .)) = (0, u, e1, e2, . . .)
where u ∈ U , ei ∈ Ei. Then f is clearly a monomorphism. If f(M) was a
direct summand of M , then U would have to be a direct summand of E, a
contradiction. �

Proposition 2.9 Let M = ⊕i∈IMi, where Mi is invariant under any injection
of M for all i ∈ I. Then M is semi co–Hopfian if and only if Mi is semi co–
Hopfian for all i ∈ I.
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Proof The necessity is by Lemma 2.6. For the sufficiency, let f : M → M

be a monomorphism. Then restriction of f to Mi (i ∈ I), is an injective
endomorphism of Mi. By hypothesis, f(Mi) ≤⊕ Mi (i ∈ I). This implies that
M = (⊕i∈If(Mi)) ⊕ X = f(M) ⊕ X for some X ≤ M . Hence M is semi
co–Hopfian. �

Note that U is not invariant under the monomorphism f in Example 2.8.

Proposition 2.10 A direct product R =
∏

i∈I Ri of rings Ri is semi co–
Hopfian left R–module if and only if each Ri is semi co–Hopfian left Ri–module.

Proof Clear by Proposition 2.3(3). �

But any direct product of semi co–Hopfian modules need not be semi co–
Hopfian.

Example 2.11 Let p be prime and the Z–module M =
∏∞

n=1 Zpn . M is not
semi co–Hopfian. For define f : M → M by f(a1 +pZ, a2+p2Z, a3+p3Z, . . .) =
(0, pa1 + p2Z, pa2 + p3Z, . . .). Then f is a Z–monomorphism and Imf = pM .
If pM is a direct summand of M , then M = pM ⊕ L for some submodule L.
Since pL = 0, L ⊆ Zp×pZp2 ×p2Zp3 ×· · · . But (0, 1+p2Z, 0, 0, . . .) 
∈ pM ⊕L.
This gives that pM is not a direct summand of M .

Proposition 2.12 Let a Z–module M = M ′ ⊕ M ′′ be a direct sum of a
semisimple module M ′ and an injective module M ′′ such that M ′′ has finite
uniform dimension. Then M is semi co–Hopfian.

Proof Let f : M → M be any monomorphism. f(M ′′) is injective and hence
f(M ′′) is contained in M ′′ (since M is a Z–module). Then M ′′ = f(M ′′) ⊕ N

for some submodule N . But M ′′ and f(M ′′) have the same uniform dimension.
Therefore N = 0. Thus f(M ′′) = M ′′ and f(M) = M ′′ ⊕ (f(M) ∩ M ′) which
is a direct summand of M because M ′ is semisimple. �

A module M is called torsion free if rm = 0 then r = 0 or m = 0 for any
r ∈ R and m ∈ M . Torsion free modules need not be semi co–Hopfian, for
example ZZ.

Proposition 2.13 Let R be a commutative domain and let M be a torsion
free semi co–Hopfian R–module. Then M is injective.

Proof Let c be any non–zero element of R. Define f : M → M by f(m) = cm,
m ∈ M . Then f is a monomorphism. By assumption there exists a submodule
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N ≤ M such that M = f(M) ⊕ N = cM ⊕ N . Then cN = 0 so that N = 0.
Thus M = cM for all non–zero c ∈ R. Since M is torsion–free it follows that
M is injective. �

Now we will consider the descending chain condition (DCC) on non–summands.

Proposition 2.14 If M has DCC on non–summand submodules, then M is
semi co–Hopfian.

Proof If M is not semi co–Hopfian, then there exists a non–summand sub-
module M1 of M such that M1

∼= M . Since M1 is not semi co–Hopfian there
exists a non–summand submodule M2 of M1 such that M2

∼= M1. Repeating
this argument we have a strictly descending chain of non–summand submodules
of M . �

Moreover,

Proposition 2.15 Let P be a property of modules preserved under isomor-
phism. If a module M has the property P and satisfies DCC on non–summand
submodules with property P, then M is semi co–Hopfian.

Proof By a proof similar to Proposition 2.14. �

Corollary 2.16 If M has DCC on its non–semi co–Hopfian submodules, then
M is semi co–Hopfian.

As for the endomorphism ring of a semi co–Hopfian module, note that by
[18, Lemma 1.1] if M has a finite uniform dimension and is semi co–Hopfian,
then the endomorphism ring EndR(M) is semilocal.

Proposition 2.17 Let M be a module. If the ring SS = EndR(M) is semi
co–Hopfian, then RM is semi co–Hopfian. The converse is true if Ker(α) is
generated by M whenever α ∈ S is such that lS(α) = 0.

Proof (Since M is a right S–module, we will consider Imf as (M)f .) Let
f : M → M be a monomorphism. Then S ∼= Sf . Since SS is semi co–Hopfian
there exists an idempotent e ∈ S such that Sf = Se by Lemma 2.1. Then
Imf = Ime is a direct summand of M .

For the converse; let α ∈ S be such that lS(α) = 0. If we prove that
αS = S, then S will be semi co–Hopfian by Proposition 2.3. By hypothesis,
Ker(α) =

∑{Imh | h ∈ S, Imh ⊆ Ker(α)}. If Imh ⊆ Ker(α), we have that
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h = 0. Then Ker(α) = 0 and hence ϕ : Imα → M , defined by ((m)α)ϕ = m,
is an isomorphism. Since M is semi co–Hopfian, Imα is a direct summand of
M . Let π : M → Imα be the projection. Then α(πϕ) = 1 ∈ αS. So S is semi
co–Hopfian. �

The converse of Proposition 2.17 is not true in general. For example, let
ZM = Zp∞ for a prime p. Then the endomorphism ring S of M is isomorphic
to the ring of p–adic integers. ZM is co–Hopfian but SS is not (see [12]). Since
only idempotents in S are 0 and 1, SS is not semi co–Hopfian by Proposition 2.4.

Since a free module generates all its submodules, we have;

Corollary 2.18 If M is free, then M is semi co–Hopfian if and only if EndR(M)
is semi co–Hopfian. In particular, Rn is semi co–Hopfian left R–module if and
only if Mn(R) is semi co–Hopfian left Mn(R)–module.

Let M be a module. The elements of M [X] are formal sums of the form
a0 + a1X + · · ·+ akXk =

∑k
i=1 aiX

i with k an integer greater than or equal
to 0 and ai ∈ M . Addition is defined by adding the corresponding coefficients.
The R[X]–module structure is given by

(
∑k

i=0 λiX
i) · (∑z

j=0 ajX
j) =

∑k+z
µ=0 cµXµ

where cµ =
∑

i+j=µ λiaj , for any λi ∈ R, aj ∈ M .

Theorem 2.19 Let M be an R– module. If M [X] is semi co–Hopfian R[X]–
module, then M is semi co–Hopfian R–module.

Proof Let f : M → M be an injective endomorphism of M . Then f [X] :
M [X] → M [X] with f [X](

∑
miX

i) =
∑

f(mi)Xi is an injective endomor-
phism of M [X]. Since M [X] is semi co–Hopfian, Im(f [X]) = (Imf)[X] ≤⊕

M [X]. Now we claim that Imf ≤⊕ M . Let M [X] = (Imf)[X] ⊕ K for some
submodule K of M [X] and K′ denote the submodule of M which is generated
by the constant polynomials of K. Note that K′ 
= 0 if M 
= Imf . We will show
that M = Imf ⊕ K′. Let m ∈ M . Then m ∈ M [X] and so m = g(X) + k(X)
where g(X) ∈ (Imf)[X], k(X) ∈ K. Since m is a constant polynomial in
M [X], we have m = g(0) + k(0) where g(0) ∈ Imf and k(0) ∈ K′. Next, take
k′ ∈ Imf ∩ K′. But k′ ∈ (Imf)[X] ∩ K = 0. �

There exists a left semi co–Hopfian ring that is not right semi co–Hopfian.

Example 2.20 (Faith-Menal) The left C2 ring R which is not right C2 is
the example: Let D be any countable, existentially closed division ring over
a field F , and let R = D

⊗
F F (x). Then the trivial extension of D by R,
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T (R, D) is a non–Artinian left P –injective, right finite dimensional ring (see
[14, Example 7.11 and 8.16] ). Since R is left P –injective, it is left C2 and so
left semi co–Hopfian. If R is right semi co–Hopfian, then R is right co–Hopfian
by Proposition 2.5. By Camps–Dicks Theorem (see [14, Theorem C.2]), R is
semilocal. Since J(R) is nilpotent, R is right Artinian by Hopkins–Levitzki
Theorem. But this is a contradiction.

It is well–known that if RR has C2, then Zl ⊆ J(R). By a proof similar to
Lemma 2.3 in [15] we have the following generalization. But we give the proof
for completeness.

Proposition 2.21 If RR is semi co–Hopfian, then Zl ⊆ J(R).

Proof Let a ∈ Zl. Then lR(1−a) = 0 and so R(1−a) ∼= R. This isomorphism
gives an injective endomorphism of R such that Imf = R(1−a). By hypothesis,
R(1 − a) is a direct summand of R. Then (1 − a)R is a direct summand. Let
e2 = e ∈ R be such that (1 − a)R = eR. Since (1 − e)(1 − a) = 0, we have
1 − e = 0. Hence 1 − a is right invertible. Since this holds for all a ∈ Zl,
Zl ⊆ J(R). �

The converse is not true in general. The localization Z(p) of the ring of
integers at the prime p is commutative domain with Zl = 0 but not a division
ring. By Proposition 2.4, RR is not semi co–Hopfian.

3 Semi Hopfian Modules

In this section we consider the dual version of semi co–Hopfian modules. A
module M is called semi Hopfian if any surjective endomorphism of M has a
direct summand kernel, i.e. any surjective endomorphism of M splits. Then
any Hopfian module is semi Hopfian.

Example 3.1 If R is semisimple Artinian, then a module RM is Hopfian if
and only if RM has finite length (see [9]). Also a vector space over a field is
Hopfian if and only if it is finite dimensional. Hence an infinite dimensional
vector space over a field is semi Hopfian (it is semisimple) but not Hopfian.

Example 3.2 Let p be prime and M be any direct sum of copies of Zp2 .
Then we claim that M is a semi Hopfian Z–module. Let f : M → M be an
epimorphism. Since p2M = 0, f is an Zp2–epimorphism. Since M is a free
Zp2–module, f splits. This implies that M is a semi Hopfian Z–module. But
it is well known that M is not a Hopfian Z–module.
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Note that for any ring R, RR is Hopfian if and only if RR is Hopfian if and
only if it is Dedekind finite [16, Proposition 1.2]. Hence any ring which is not
Dedekind finite is an example of a module which is semi Hopfian but not Hop-
fian. For example, the ring of linear endomorphisms of an infinite dimensional
left vector space over a division ring is not Dedekind finite.

The following characterization can be seen easily.

Lemma 3.3 The following are equivalent for a module M .
1) M is semi Hopfian.
2) Any submodule N of M which satisfies M/N ∼= M is a direct summand

of M .

Hence any module with D2 is semi Hopfian. In particular, any quasi–
projective module is semi Hopfian by [13, Proposition 4.38]. Therefore, the
concept of semi Hopfian modules is a generalization of Hopfian modules and
modules with D2.

Example 3.4 There exists a semi Hopfian module which has not D2.

Proof Let ZM = Zp ⊕ Zp2 , p is a prime number. Then M is not relatively
projective but has D1 by [10, Example 4]. Hence M has not D2 by [13, Lemma
4.23]. Since ZM is Noetherian, it is Hopfian and hence semi Hopfian. �

Note that any semi Hopfian quasi–discrete module has D2 (see [13, Lemma
5.1]).

Dual of the summand sum property is the summand intersection property.
A module M has the summand intersection property (SIP) if the intersection
of any two direct summands of M is a direct summand. Note that M has SIP
if and only if for every decomposition M = A⊕B and every R–homomorphism
f from A to B, the kernel of f is a direct summand [8].

Hence if M ⊕ M has SIP, then M is semi Hopfian. But the converse is
not true: Let the Z–module M = Z ⊕ Z2. Since M is Noetherian, it is semi
Hopfian. Denote an R-homomorphism f : M → M by f(a, b) = (0, a) where
a, b ∈ Z. Then Kerf = 2Z ⊕ Z2 is not a direct summand. Hence M ⊕ M has
not SIP.

Now consider torsion free modules. Torsion free modules need not be semi
Hopfian.

Example 3.5 There exists a torsion free module which is not semi Hopfian.
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Proof Let F be the direct sum of copies of Z and the Z–module M =
Q ⊕ F ⊕ F ⊕ · · · . Then there exists an epimorphism α : F → Q. Define
θ : M → M be such that θ(q, f1, f2, . . .) = (α(f1), f2, . . .) where q ∈ Q, fi ∈ F

for all i. Then θ is a Z–epimorphism and Kerθ = Q⊕Kerα⊕0⊕0 · · · . If Kerθ

was a direct summand of M , then Kerα would have to be a direct summand
of F , this is a contradiction. So M is not semi Hopfian. �

Unlike Proposition 2.13, there exists a commutative domain R and a torsion
free semi Hopfian R–module M which is not injective or not projective. For
example, MZ = Z is not injective and MZ = Q is not projective.

Recall that M has hollow dimension n ∈ N if there exists an epimorphism
from M to a direct sum of n nonzero modules but no epimorphism from M

to a direct sum of more than n nonzero modules (see [3, 5.2]). In [3, 5.4(3)],
it is proved that a semi Hopfian module with finite hollow dimension (i.e.
dual Goldie dimension) is Hopfian. Any module with finite hollow dimension
is Dedekind finite, for let M be a module with finite hollow dimension and
M ⊕K ∼= M . Consider the isomorphism ϕ : M −→ M ⊕K and the projection
π : M ⊕ K −→ M . Clearly, πϕ is a surjection. Since M has finite hollow
dimension, Ker(πϕ) � M by [3, 5.4(3)]. Then Ker(πϕ) = ϕ−1(Kerπ) =
ϕ−1(K) � M implies that ϕϕ−1(K) = K � M ⊕ K. But K ≤⊕ M ⊕ K.
Hence K = 0, i.e. M is Dedekind finite.

So the following result which is known in the literature generalizes [3, 5.4(3)].
A module M is called generalized Hopfian (in [5]) if any surjective endomor-
phism of M has a small kernel.

Proposition 3.6 The following are equivalent for a module M .
1) M is Hopfian.
2) M is Dedekind finite and semi Hopfian.
3) M is generalized Hopfian and semi Hopfian.

Proof (3) ⇔ (1) ⇒ (2) are obvious.
(2) ⇒ (1) (see also [11, Exc. 1.8]) Let f : M −→ M be a surjection. Since M is
semi Hopfian f splits. Then there exists an endomorphism g : M −→ M such
that fg = 1. But Dedekind finiteness of EndR(M) implies gf = 1. Hence, f

is an injection. �

It is also known that a semi Hopfian module with finite hollow dimension
has a semilocal endomorphism ring [3, 19.2].

Now we investigate some properties of semi Hopfian modules.
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Proposition 3.7 Any direct summand of a semi Hopfian module is semi Hop-
fian.

Proof Let K be a direct summand of a semi Hopfian module M and f : K →
K be a surjection. Then M = K ⊕ K′ for some K′, and f ⊕ 1K′ : M → M is
also a surjection. Thus Ker(f ⊕ 1K′) = Kerf ≤⊕ M and hence Kerf ≤⊕ K.
�

Proposition 3.8 If M/N is semi Hopfian for every non–summand submodule
N of a module M , then M is semi Hopfian.

Proof Suppose that M is not semi Hopfian. Then there exists a surjective
endomorphism f : M → M such that Kerf is not a direct summand of M .
But by assumption M/Kerf ∼= M is semi Hopfian, a contradiction. �

Any direct sum of semi Hopfian modules need not be semi Hopfian.

Example 3.9 Let p be prime and M1 = Zp and M2 an infinite direct sum of
copies of Zp2 . Then M1 is simple and M2 is semi Hopfian by Example 3.2.
But M = M1 ⊕ M2 is not semi Hopfian Z–module. For, define f : M → M

by f(a1 + pZ, a2 + p2Z, a3 + p2Z, . . .) = (a2 + pZ, a3 + p2Z, . . .). Then f is a
Z–epimorphism and Kerf = Zp ⊕ pZp2 ⊕ 0⊕ 0 · · · is not a direct summand of
M since pZp2 is not a direct summand of Zp2 .

Any direct product of semi Hopfian modules need not be semi Hopfian: If
we let the Z–module M = Zp × Zp2 × Zp2 · · · , then M is not semi Hopfian by
a proof similar to Example 3.9.

Proposition 3.10 Let M = ⊕i∈IMi, where Mi is invariant under any sur-
jection of M for all i ∈ I. Then M is semi Hopfian if and only if Mi is semi
Hopfian for all i ∈ I.

Proof The necessity is clear from Proposition 3.7. For the sufficiency, let
f : M → M be a surjection. Then f |Mi : Mi → Mi is a surjection for all i ∈ I.
Since Ker(f |Mi ) ≤⊕ Mi for all i we have that Kerf = ⊕i∈IKer(f |Mi ) ≤⊕ M .
�

Note that M2 is not invariant under the surjection f of M in Example 3.9.

As a dual of DCC on non–summands we consider the ascending chain con-
dition (ACC) on non–summands.
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Theorem 3.11 If M has ACC on non–summand submodules, then M is semi
Hopfian.

Proof Assume that f : M → M is a surjection and Kerf is a non–summand
of M . Then Kerf ⊆ Kerf2 ⊆ Kerf3 ⊆ · · · is an ascending chain of non–
summand submodules of M . By hypothesis there exists an integer n such
that Ker(fn) = Ker(fn+1). Now we claim that Kerf = 0. Let x ∈ M

be such that f(x) = 0. Since f is surjective, f(a1) = x for some a1 ∈ M .
Again, f(a2) = a1 for some a2 ∈ M . By repeating this argument, we have
f(an) = an−1 for some an ∈ M . Then f(a1) = f2(a2) = · · · = fn(an) = x.
Hence f(x) = fn+1(an) = 0 implies that an ∈ Ker(fn+1) = Ker(fn). As a
result, x = 0. So we have a contradiction. �

Proposition 3.12 Let P be a property of modules preserved under isomor-
phism. If a module M has the property P and satisfies ACC on non–summand
submodules N such that M/N has the property P, then M is semi Hopfian.

Proof Suppose that M is not semi Hopfian. Then there exists a non–summand
submodule N1 of M such that M/N1

∼= M . Since M/N1 has the property P but
is not semi Hopfian, there exists a non–summand submodule N2/N1 of M/N1

such that M/N2
∼= M/N1. N2 is also a non–summand of M . Continuing in

this way we get an ascending chain 0 ⊂ N1 ⊂ N2 ⊂ · · · of non–summand
submodules of M . But this is a contradiction. �

Corollary 3.13 If M is semi co–Hopfian and satisfies ACC on non–summand
submodules N such that M/N is semi co–Hopfian, then M is semi Hopfian.

Proof Take the property P as being semi co–Hopfian and apply Proposi-
tion 3.12. �

Corollary 3.14 If M is semi Hopfian and satisfies DCC on non–summand
semi Hopfian submodules, then M is semi co–Hopfian.

Proof Clear by Proposition 2.15. �

Corollary 3.15 If M satisfies ACC on non–summand submodules N such that
M/N is not semi Hopfian, then M is semi Hopfian.
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Proof It follows from Proposition 3.12 by letting P be the property of not
being semi Hopfian. �

The following result can be seen by a proof similar to Theorem 2.19.

Theorem 3.16 Let M be an R–module. If M [X] is semi Hopfian R[X]–
module, then M is semi Hopfian R–module.

4 Algebra of Continuous functions

Definition 4.1 A topological space X is said to be semi Hopfian (resp. semi
co–Hopfian) in the category of topological spaces Top if every surjective (resp.
injective) continuous map α : X → X, there exists a continuous map β : X →
X such that α ◦ β = idX (resp. β ◦ α = idX).

Definition 4.2 Let K be a commutative ring and K–alg denote the category
of K–algebras. A K–algebra A is said to be semi Hopfian (resp. semi co–
Hopfian) as an K–algebra if for any surjective (resp. injective) K–algebra
homomorphism α : A → A there exists a K–algebra homomorphism β : A → A

such that α ◦ β = 1A (resp. β ◦ α = 1A)

For any compact Hausdorff space X, C(X) denote the R–algebra of con-
tinuous functions from X to R. Varadarajan [16, Theorem 5.3] prove that if
X is a compact Hausdorff space, then C(X) is Hopfian (resp. co–Hopfian) as
an R–algebra if and only if X is co–Hopfian (resp. Hopfian) as a topological
space. Here we prove that if X is semi co–Hopfian (resp. semi Hopfian), then
C(X) is semi Hopfian (resp. semi co–Hopfian) in the category of R–algebras.
The converse of this result is open.

If ϕ : X → Y is a continuous map of compact Hausdorff spaces, there
is an induced homomorphism ϕ∗ : C(Y ) → C(X) in the R–algebra given by
ϕ∗(g) = g ◦ ϕ for every g ∈ C(Y ). Also given any R–algebra homomorphism
α : C(Y ) → C(X), there is a unique continuous map ϕ : X → Y such that
α = ϕ∗ (see [16]).

Proposition 4.3 [16, Proposition 5.2] Let ϕ : X → Y be a continuous map
of a compact Hausdorff spaces. Then ϕ∗ : C(Y ) → C(X) is injective (resp.
surjective) if and only if ϕ : X → Y is surjective (resp. injective).

Theorem 4.4 Let X be a compact Hausdorff space. If X is a semi co–Hopfian
(resp. semi Hopfian) topological space, then C(X) is a semi Hopfian (resp.
semi co–Hopfian) R–algebra.
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Proof Assume that X is a semi co–Hopfian topological space. Let α : C(X) →
C(X) be a surjective R–algebra homomorphism. Then there exists a unique
continuous map ϕ : X → X such that α = ϕ∗. By Proposition 4.3, ϕ is
injective. By assumption, there exists a continuous map γ : X → X such that
γ ◦ ϕ = idX . Then γ is surjective and again γ∗ : C(X) → C(X) is an injective
R–algebra homomorphism. Let f ∈ C(X). Then (α ◦ γ∗)(f) = α(γ∗(f)) =
α(f ◦γ) = ϕ∗(f ◦γ) = f ◦γ ◦ϕ = f ◦ idX = f . So we have that α ◦γ∗ = 1C(X).
Hence α splits.

The result in parenthesis can be seen similarly. �
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