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Abstract

In [3] the authors, introduced the notion of weak semiopenness and
investigated its fundamental properties. In this paper we investigate
some other properties of this type of openness, in this connection, we
obtain also a new decomposition of semiopenness

1 Introduction and Preliminaries.

N.Levine [10] and N.Biswas [1], introduced and investigated the notions of semi-
open sets and semi-closed sets in topological spaces respectively. Since then,
a lot of work has been done using these notions and many interesting results
have been obtained (cf, [1], [5], [6], [7], [13], [14]). D.A.Rose [16] and D.A.Rose
with D.S.Janckovic [17] have defined the notions of weakly open and weakly
closed functions and investigated some of the fundamental properties of these
types of functions.

Reciently M.Caldas and G.Navalagi [3] introduced the notion of weak semi-
openness as a new generalization of semiopenness. They remarked that weakly
semiopen functions are not always semiopen. The present note have as purpose
obtain a sufficient condition for a weakly semiopen function to be semi-open,
establish relationships between this function and other generalized forms of
openness, we obtain a new decomposition of semiopenness and also show that
the inverse image surjective of every semicompact set from the codomain are
quasi H-closed.

Throughout this paper, (X, τ ) and (Y, σ) (or simply, X and Y ) denote
topological spaces on which no separation axioms are assumed unless explicitly
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stated. If S is any subset of a space X, then Cl(S) and Int(S) denote the
closure and the interior of S respectively. Recall that a set S is called regular
open (resp. regular closed) if S = Int(Cl(S)) (resp. S = Cl(Int(S)). A point
x ∈ X is called a θ-cluster [18] point of S if S ∩Cl(U) �= φ for each open set U
containing x. The set of all θ-cluster points of S is called the θ-closure of S and
is denoted by Clθ(S). Hence , a subset S is called θ-closed [18] if Clθ(S) = S.
The complement of a θ-closed set is called a θ-open set. The θ-interior of a
subset S of X is the union of all open subsets of X whose closures are contained
in S, and is denoted by Intθ(S). A subset S ⊂ X is called semi-open [10] (resp.
α-open [11]), if S ⊂ Cl(Int(S)) (resp. S ⊂ Int(Cl(Int(S)). The complement
of a semi-open set is called a semi-closed [1] set. The family of all semi-open
(resp. semi-closed) sets of a space X is denoted by SO(X, τ ) ( resp. SC(X, τ )).
The intersection of all semi-closed sets containing S is called the semiclosure of
S [1, 6] and is denoted by sCl(S). The semiinterior [6] of S is defined by the
union of all semi-open sets contained in S and is denoted by sInt(S). A sub-
set S of X is said to be semiregular if it is both semi-open and semi-closed in X.

A space X is called extremally disconnected (E.D) [19] if the closure of each
open set in X is open. The space X is called semiconnected [14] if X cannot
be expressed as the union of two nonempty disjoint semi-open sets.

A function f : (X, τ ) → (Y, σ) is called:
(i) weakly semicontinuous [9] if for each x ∈ X and each open subset V of Y
containing f(x), there exists a semi-open subset U of X such that x ∈ U and
f(U) ⊂ Cl(V ).
(ii) semiopen [2] (resp. semiclosed [12]) if f(U) ∈ SO(Y, σ) (resp. f(U) ∈
SC(Y, σ)) for each open (resp. closed) subset U of X.
(iii) weakly open [16] if f(U) ⊂ Int(f(Cl(U))) for each open subset U of X.
(iv) weakly closed [17] if Cl(f(Int(F ))) ⊂ f(F ) for each closed subset F of X.

2 Weakly semiopen functions

The following characterization was given by M.Caldas and G.Navalagi in [3] as
a natural dual to the weak semicontinuity due to A.Kar and P.Bhattacharya [9]

A function f : (X, τ ) → (Y, σ) is said to be weakly semiopen if for each x ∈
X and each open set U of X containing x, there exists V ∈ SO(X, τ ) containing
f(x) such that V ⊂ f(Cl(U)). We denote a weakly semiopen function by w.s.o.
Clearly, every open function is semiopen and every semiopen (resp. weakly
open) function is w.s.o. but the converse is not true.

Example 2.1 Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}}, σ = {∅, X, {c}}
and f : (X, τ ) → (X, σ) be the identity function. Then f is w.s.o. but it is not
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weakly open since f({a}) �⊂ Int(f(Cl({a}))).

Example 2.2 Let X = {a, b}, τ = {∅, X, {b}}, Y = {x, y} and σ = {∅, Y, {x}}.
Let f : (X, τ ) → (Y, σ) be given by f(a) = x and f(b) = y. Then f is clearly
w.s.o., but it is not a semiopen function since f(b) is not a semi-open set in Y.

Example 2.3 (i) Let X = {a, b, c}, τ = {∅, X, {a}, {c}, {a, c}} and
σ = {∅, X, {b}, {a, b}, {b, c}}. Let f : (X, τ ) → (X, σ) be the identity function.
Then f is weakly open since Int(f(Cl({a}))) = {a, b},
Int(f(Cl({c}))) = {b, c}, and Int(f(Cl({a, c}))) = X. To see that f is not
semiopen, observe that U = {a} and f(U) is not semi-open in (X, σ) since
Cl(Int(f({a}))) = ∅.
(ii) Let X = Y = {a, b, c}, τ = {∅, X, {a, b}}, σ = {∅, Y, {a}} and f : (X, τ ) →
(Y, σ) be the identity function. Clearly f is semiopen. But it is not open.
(iii) Let X = Y = {a, b, c}, τ = {∅, X, {a}, {b, c}}, σ = {∅, Y, {a}, {b}, {a, b}}
and f : (X, τ ) → (Y, σ) be the identity function. Clearly f is semiopen. But it
is not weakly open.

It is clear, that the following diagram of implications is true

semiopen function
↗ �↙ �↖↘

open function �↑ �↓ w.s.o function
↘�↖ �↙↗

weakly open function

Theorem 2.4 For a function f : (X, τ ) → (Y, σ), the following are equivalent
[3].
1) f is w.s.o.
2) f(U) ⊂ sInt(f(Cl(U))) for every U ∈ τ.
3) f(Intθ (A)) ⊂ sInt(f(A)) for every A ⊂ X.
4) Intθ(f−1(B)) ⊂ f−1(sInt(B)) for every B ⊂ Y.
5) f−1(sCl(B)) ⊂ Clθ(f−1(B)) for every B ⊂ Y
6) f(Int(F )) ⊂ sInt(f(F )) for every F c ∈ τ.
7) f(Int(Cl(U))) ⊂ sInt(f(Cl(U))) for every U ∈ τ.
8) f(U) ⊂ sInt(f(Cl(U))) for every U ∈ τα.

Proof (1) ⇒ (2) : Let U be an open set in X and let y ∈ f(U). It following
from (1) V ⊂ f(Cl(U)) for some V semi-open in Y containing y. Hence we
have, y ∈ V ⊂ sInt(f(Cl(U))). This shows that f(U) ⊂ sInt(f(Cl(U))).
(2) ⇒ (1) : Let x ∈ X and U be an open set in X with x ∈ U . By (2) f(x) ∈
f(U) ⊂ sInt(f(Cl(U))). Let V = sInt(f(Cl(U))). Hence V ⊂ f(Cl(U)), with
V containing f(x), i.e., f is a weakly semiopen function.
(2) ⇒ (3) : Let A be any subset of X and x ∈ Intθ(A). Then , there ex-
ists an open set U such that x ∈ U ⊂ Cl(U) ⊂ A. Then, f(x) ∈ f(U) ⊂
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f(Cl(U)) ⊂ f(A). By (2), f(U) ⊂ sInt(f(Cl(U))) ⊂ sInt(f(A)). It im-
plies that f(x) ∈ sInt(f(A)). This shows that x ∈ f−1(sInt(f(A))). Thus
Intθ(A) ⊂ f−1(sInt(f(A))), and so, f(Intθ(A)) ⊂ sInt(f(A)).
(3) ⇒ (2) : Let U be an open set in X. As U ⊂ Intθ(Cl(U)) implies ,

f(U) ⊂ f(Intθ(Cl(U))) ⊂ sInt(f(Cl(U))). Hence f(U) ⊂ sInt(f(Cl(U))).
(3) ⇒ (4) : Let B be any subset of Y. Then by (3), f(Intθ(f−1(B)) ⊂ sInt(B).
Therefore Intθ(f−1(B)) ⊂ f−1(sInt(B)).
(4) ⇒ (3) : This is obvious.
(4) ⇒ (5) : Let B be any subset of Y. Using (4), we have X − Clθ(f−1(B)) =
Intθ(X − f−1(B)) = Intθ(f−1(Y − B)) ⊂ f−1(sInt(Y − B)) = f−1(Y −
sCl(B)) = X−(f−1(sCl(B)). Therefore, we obtain f−1(sCl(B)) ⊂ Clθ(f−1(B)).
(5) ⇒ (4) : Similary we obtain, X − f−1(sInt(B)) ⊂ X − Intθ(f−1(B)), for
every subset B of Y, i.e., Intθ(f−1(B)) ⊂ f−1(sInt(B)).
(2) ⇒ (6) ⇒ (7) ⇒ (8) ⇒ (2) : Obvious.

Lemma 2.5 Jankovic and Reilly [8]
Let A be a subset of (X, τ ). Then the following hold.
1) sCl(A) = A ∪ Int(Cl(A)).
2) sInt(A) = A ∩ Cl(Int(A)).

Theorem 2.6 For a function f : (X, τ ) → (Y, σ), the following are equivalent.
1) f is w.s.o.
2) f(U) ⊂ Cl(Int(f(Cl(U)))) for every U ∈ τ.
3) f(Intθ (A)) ⊂ Cl(Int(f(A))) for every A ⊂ X.
4) Intθ(f−1(B)) ⊂ f−1Cl(Int(B)) for every B ⊂ Y.
5) f−1Int(Cl(B)) ⊂ Clθ(f−1(B)) for every B ⊂ Y
6) f(Int(F )) ⊂ Cl(Int(f(F ))) for every F c ∈ τ.
7) f(Int(Cl(U))) ⊂ Cl(Int(f(Cl(U)))) for every U ∈ τ.
8) f(U) ⊂ Cl(Int(f(Cl(U)))) for every U ∈ τα.

Proof This follows from Theorem 2.4 and Lemma 2.5.

In 1984 D.A. Rose [16] asked the following question: When a surjection
f : (X, τ ) → (Y, σ) , is weak openness related to the condition Cl(f(U)) ⊆
f(Cl(U)) for each U ∈ τ ?. In [4] an alternative answer was given to this
question by proving the following:
If f : (X, τ ) → (Y, σ) is a bijective function, then f is weakly open if and only
if Cl(f(U)) ⊆ f(Cl(U)) for each U ∈ τ .

The following theorem is a version of this result for weakly semiopen func-
tions.

Theorem 2.7 Let f : (X, τ ) → (Y, σ) be a bijective function. Then the fol-
lowing statements are equivalent.
1) f is w.s.o.
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2) sCl(f(U)) ⊂ f(Cl(U)) for each U ∈ τ.
3) sCl(f(Int(F )) ⊂ f(F ) for each F closed of X.

Proof (1) ⇒ (3) : Let F be a closed set in X. Then we have Y − f(F ) =
f(X − F ) ⊂ sInt(f(Cl(X − F ))) and so Y − f(F ) ⊂ Y − sCl(f(Int(F ))).
Hence f(F ) ⊃ sCl(f(Int(F ))).
(3) ⇒ (2) : Let U ∈ τ . Since Cl(U) is a closed set and U ⊂ Int(Cl(U)) by (3)
we have sCl(f(U)) ⊂ sCl(f(Int(Cl(U)))) ⊂ f(Cl(U)).
(2) ⇒ (3) : Clear.
(3) ⇒ (1) : Similar to (1) ⇒ (3).

Theorem 2.8 Let g : (Y, σ) → (Z, γ) be an open continuous injective. Then
a function f : (X, τ ) → (Y, σ) is w.s.o. if and only if g◦ f : (X, τ ) → (Z, γ) is
w.s.o.

Proof Necessity. Suppose that f is w.s.o. Let U be any open set (X, τ ).
By Theorem 2.6 f(U) ⊂ Cl(Int(f(Cl(U)))). Since g is open and continuous,
we have g(Cl(Int(A)) ⊂ Cl(Int(g(A))) for every subset A of Y . Therefore, we
obtain (g ◦ f)(U) ⊂ Cl(Int(g ◦ f)(Cl(U))). It follows from Theorem 2.6 that
g ◦ f is w.s.o.
Sufficiency. Suppose that g ◦ f is w.s.o. Let U be any open set of (X, τ ).
By Theorem 2.6, (g ◦ f)(U) ⊂ Cl(Int(g ◦ f)(Cl(U))). Since g is open and
continuous, we have g−1(Cl(Int(A))) ⊂ Cl(Int(g−1(A))) for every subset A
of Z. Moreover, singe g is injective we obtain f(U) ⊂ Cl(Int(f(Cl(U)))). It
follows from Theorem 2.6, that f is w.s.o.

Theorem 2.9 Let f : (X, τ ) → (Y, σ) be a function. Then the following hold.
1) If f has the property that for each regular closed set A, f(A) ∈ SO(Y, σ),
then f is w.s.o.
2) If f is w.s.o. , then f(B) ∈ SO(Y, σ) for each clopen set B.

Proof (1) Since, for any U ∈ τ , Cl(U) is a regular closed set. Then
f(U) ⊂ f(Cl(U)) = sInt(f(Cl(U))).
(2) If B is a clopen set, f(B) ⊂ sInt(f(B)), i.e., f(B) is semi-open.

Since if X is an extremally disconnected space, then regular closed sets are
precisely the clopen sets, we have the following remark.

Remark 2.10 If X is an extremally disconnected space, then both converses
of Theorem 2.9 are hold since the regular closed sets are precisely the clopen
sets.

Recall that, a space X is said to be hyperconnected [13] if every nonempty
open subset of X is dense in X.

Theorem 2.11 [3] If X is a hyperconnected space, then a function f : (X, τ ) →
(Y, σ) is weakly semiopen if and only if f(X) is semi-open in Y.
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Proof The sufficiency is clear. For the necessity observe that for any open
subset U of X, f(U) ⊂ f(X) = sInt(f(X)) = sInt(f(Cl(U))).

Lemma 2.12 If f : (X, τ ) → (Y, σ) is w.s.o., then for each U ∈ τ , we have
f(U) ⊂ f(Cl(U)) ∩ V , where V is a semi-open subset of Y .

Proof Take V = sInt(f(Cl(U))).

The Lemma 2.12, suggests the following generalization of semiopenness.

Definition 1 A function f : (X, τ ) → (Y, σ) is said to be relatively weakly
semiopen provided that f(U) is semi-open in the subspace f(Cl(U)) for every
open subset U of X.

If a function f : (X, τ ) → (Y, σ) is semiopen , then for each U ∈ τ , f(U) ∈
SO(Y ) and since f(U) ⊂ f(Cl(U)), then we can see that f(U) is also a semi-
open subset of f(Cl(U)). Therefore the following theorem has been established.

Theorem 2.13 If f : (X, τ ) → (Y, σ) is semiopen, then f is relatively weakly
semiopen.

The significance of relative weakly semiopen is that it yields a decomposition
of semiopenness with weakly semiopenness as the other factor.

Theorem 2.14 A function f : (X, τ ) → (Y, σ) is semiopen if and only if f is
w.s.o. and relatively weakly semiopen.

Proof The necessity is given of Theorem 2.13 and of the fact that every
semiopen function is w.s.o. We prove the sufficiency. Assume f is w.s.o.
and relatively weakly semiopen. Let U be an open set in X. Since f is
relatively weakly semiopen, we have f(U) = f(Cl(U)) ∩ V, where V is a
semiopen set of Y . Let y ∈ f(U). By the fact that f is w.s.o., it follows
that f(U) = f(U) ∩ V ⊂ sInt(f(Cl(U)) ∩ V = sInt(f(Cl(U))) ∩ sInt(V ) =
sInt(f(Cl(U) ∩ V ) = sInt(f(U)). Therefore f(U) is semi-open.

Now, we define an additional near semiopen condition which combined with
weak semiopenness imply semiopenness.

Definition 2 A function f : (X, τ ) → (Y, σ) is said to satisfy the weakly
semiopen interiority condition if sInt(f(Cl(U))) ⊂ f(U) for every open subset
U of X.

Example 2.15 semiopenness does not imply weakly semiopenness interiority
condition.
Let X = Y = {a, b, c} , τ = {∅, {a}, X} and σ = {∅, {a}, [a, b}, Y }. Let f :
(X, τ ) → (Y, σ) be the identity function and let U = {a}. Since sInt(f(Cl(U))) =
sInt(f(X)) = Y �⊂ f(U) = {a}, f does not satisfy the weakly semiopen interi-
ority condition. However, f is clearly semiopen
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Theorem 2.16 If f : (X, τ ) → (Y, σ) is w.s.o. and satisfies the weakly semiopen
interiority condition, then f is semiopen.

Proof Let f : (X, τ ) → (Y, σ) be a w.s.o. function satisfying the weakly
semiopen interiority condition. Let U be a given open subset of X. By
weakly semiopenness we have that f(U) ⊂ sInt(f(Cl(U))) (Theorem 2.4).
By weakly semiopenness interiority condition, we have that sInt(f(Cl(U))) ⊂
f(U). Hence sInt(f(Cl(U))) = f(U) and therefore f(U) is semi -open in Y.

The Example 2.15, shows that neither of these interiority conditions yields
a decomposition of semiopenness.

Lemma 2.17 Let f : (X, τ ) → (Y, σ) be a bijective w.s.o. function. If U is a
clopen subset of (X, τ ), then f(U) is semiregular in (Y, σ).

Proof It follows from Theorem 2.4(2) and Theorem 2.7(2).

Theorem 2.18 If f : (X, τ ) → (Y, σ) is an injective w.s.o. function of a space
(X, τ ) onto a semiconnected space (Y, σ), then (X, τ ) is connected.

Proof Let us assume that X is not connected. Then there exist nonempty
open sets U1 and U2 such that U1 ∩ U2 = ∅ and U1 ∪ U2 = X. Therefore U1

and U2 are clopen in (X, τ ) and by Lemma 2.17 f(Ui) ∈ SO(Y, σ) for i = 1, 2.
Moreover, we have f(U1) ∩ f(U2) = ∅ and f(U1) ∪ f(U2) = Y . Since f is
bijective , f(Ui) is nonempty for i = 1, 2. This indicates that (Y, σ) is not semi-
connected. This is a contradiction.

Recall that a subset of a topological space is called closure compact (or
quasi H-closed [18]) (resp. semicompact [15]) if each open cover of the set
(resp. semi-open cover of the set) contain a finite subcollection whose closures
cover the set (resp.contain a finite subcollection that cover the set).

Theorem 2.19 Let f : (X, τ ) → (Y, σ) be surjective w.s.o. and let K be a
semicompact set of Y , then f−1(K) is a closure compact subset of X.

Proof Let Λ = {Vβ : β ∈ I} , I being the index set be a open cover of
f−1(K) and set T = {U ∈ Λ : U∩ f−1(K) �= ∅}. Then T is an open cover
of f−1(K). For each y ∈ K , f−1(y) ∈ Uy for some Uy ∈ T . By weakly
semiopenness of f , there exists a Wy ∈ SO(Y, σ) containing y such that Wy ⊂
f(Cl(Uy )). The collection {Wy : y ∈ K} is a semi-open cover of K and so there
is a finite subcover {Wy : y ∈ K0} where K0 is a finite subset of K. Clearly
{Cl(Uy) : y ∈ K0} covers f−1(K), or f−1(K) is a closure compact subset in
X.
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