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Abstract

Let F be a field of odd characteristic, E be a finite extension of F
equipped an involution with subfield of fixed points E0 containing F and
V be a finite dimensional E-vector space with a non-degenerate hermi-
tian form h. We show a link between the spinor norm in the unitary
group U(V, h) and the calculus of determinants and discriminants. Then
we show a formula which links the spinor norm in U(V, h) and the spinor
norm in the orthogonal group O(V, bh) defined by a non-degenerate sym-
metric bilinear form bh associated to h.

1 Introduction

Let F be a field of characteristic not equal to 2 and let E be a finite extension
of F , equipped with a non trial involution¯which fixes all the elements of F .
Denote by E0 the subfield of fixed points of E by the involution. We fix a
non-zero F -linear form μ0 from E0 to F and put μ = μ0 ◦ trE/E0 , where trE/E0

is the trace form from E to E0.
Let V be a finite dimensional vector space over E and let h : V ×V → E be

a non-degenerate hermitian form on V . Considering V as an F -vector space,
we have an associated non-degenerate symmetric bilinear form bh defined by

bh(x, y) = μ(h(x, y)), for all (x, y) ∈ V × V.
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38 On the Spinor norm on unitary groups

Denote by U(V, h) the unitary group defined by the hermitian form h and by
O(V, bh) the orthogonal group defined by the symmetric form bh. Then every
element σ ∈ U(V, h) is clearly also an element of O(V, bh).

Let sn be the spinor norm on the group O(V, bh). It is a homomorphism
from O(V, bh) to F×/(F×)2. The spinor norm has important applications [3].
Zassenhaus [6] found a direct definition of sn which links this norm with the
calculus of determinants and discriminants: for each σ ∈ O(V, bh), we have

sn(σ) =

⎧⎪⎨
⎪⎩

disc(bh) if σ = −1,

disc
(

bh| ⋃
i≥1

ker(1+σ)i

)
detF

(
1+σ

2 | ⋂
i≥1

im(1+σ)i

)
otherwise,

(1.1)

where disc(bh) and disc
(

bh| ⋃
i≥1

ker(1+σ)i

)
are respectively the discriminant of

bh and the discriminant of the restriction of bh to the subspace
⋃

i≥1

ker(1 + σ)i.

It is well known that there is an anti-hermitian form h′ on V such that the
unitary groups U(V, h′) and U(V, h) coincide [1]. We summarize here Wall’s
construction [5] of a spinor norm on the unitary group U(V, h′). Let σ be a
non-trivial element of U(V, h). Denote by Vσ the image of the transformation
1 − σ. If Vσ is an E-vector subspace of dimension r then we say that σ is an
element of dimension r. By definition, each element of dimension 1, denoted
s(v,ϕ), is defined by

s(v,ϕ)(x) = x − ϕh′(v, x)v, for all x ∈ V,

where v is a non-zero element of the space Vs(v,ϕ) and ϕ is an element of E×

such that ϕ−1 − ϕ̄−1 = h′(v, v). For each element σ ∈ U(V, h′) of dimension
r > 0, let fσ be the sesquilinear form (with respect to the involution¯) on Vσ

defined by

fσ : Vσ × Vσ → E,

(x − σ(x), y − σ(y)) �→ h′(x − σ(x), y).

Then σ can be written as a product of one-dimensional elements [5, Lemma 3],

σ = s(v1,ϕ1)s(v2,ϕ2) . . . s(vr ,ϕr),

where the vectors v1, v2, ..., vr form a orthogonal basis of Vσ with respect to
the form fσ and v1 can be chosen as any non-isotropic vector of Vσ. Such a
decomposition of σ is called Cayley decomposition of σ.

Let a be a fixed vector of V and suppose σ ∈ U(V, h′) is an element of
dimension r > 0 with a Cayley decomposition

σ = s(v1,ϕ1)s(v2,ϕ2) . . . s(vr ,ϕr),
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where the vector vi, i = 1, 2, ..., r, is chosen such that h′(a, vi) is either 0 or 1.
Then the class ϕ1ϕ2...ϕrE

×
0 in E×/E×

0 depends only on σ [5, Lemma 5]. This
class is called spinor norm of σ, denoted by snE(σ):

snE(σ) = ϕ1 . . .ϕrE
×
0 . (1.2)

The spinor norm of the identity of U(V, h′) is defined to be E×
0 . Then we

have a homomorphism snE of U(V, h′) in E×/E×
0 [5, Lemma 6, Lemma 7],

called spinor norm on U(V, h′).
The goal of this work is to compare the spinor norm in the orthogonal group

Ø(V, bh) and the spinor norm in the unitary group U(V, h). A natural way to
do so is to get a formula similar to Zassenhaus’ formula (1.1).

Proposition. Let s = s(v,ϕ) be an one-dimensional element of U(V, h′). Then
we have

disc
(

h′| ⋃
n≥1

ker(1+s)n

)
detE

(
1 + s

2
| ⋂
n≥1

im(1+s)n

)
= ϕ mod (E×

0 ). (1.3)

Theorem. For all σ ∈ U(V, h′), we have

sn(σ) = NormE/F (snE(σ)), (1.4)

where NormE/F is the homomorphism of E×/E×
0 in F×/(F×)2 induced by the

norm of E over F .

Note that, for the case where E is a quadratic extension of F , this obser-
vation has been given in [4, Chapter 10, Theorem 1.5] with an incorrect proof.
We give here another proof for this link in general case.

This paper is based on the research which is part of the doctoral disser-
tation [2] of the author. The results are useful in the study of supercuspidal
representations of spin groups over a p-adic field, where some calculations arise
involving the restriction of the spinor norm to unitary groups contained in the
orthogonal group under study. The author is grateful to Corinne Blondel for
her support, advice and interest in this work at various times.

2 Proof of the proposition

In order to prove the formula (1.3), we distinguish two cases: v is an isotropic
vector and v is not one with respect to the form h′.

In the first case, the element s = s(v,ϕ) is called a transvection of V . We
have ϕ−1 − ϕ̄−1 = h′(v, v) = 0, hence ϕ belongs to E×

0 and the spinor norm
snE is trivial at s. Now we calculate the left side of (1.3). Let x be an element
of ker(1 + s). Then x belongs to the one-dimensional E-vector subspace of
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V generated by v, i.e., x = kv for some k ∈ E. Since v is isotropic, we have
x+x = 0 and then x = 0. It follows that the subspace

⋃
n≥1

ker (1 + s)n is trivial.

Furthermore, there exists a basis {v, v′, w1, ..., wn−2} of V such that v′ is also
isotropic with respect to h′, h′(v, v′) = 1 and h′(v, wi) = 0, i = 1, ..., n − 2.
Calculating the determinant in this basis, we have

detE

(
1 + s

2

)
= det

E

(
1 −ϕ

2
0 1

)
= 1.

So we see that the formula (1.3) holds for the first case.
In the second case, we have an orthogonal decomposition V = (Ev) ⊥

(Ev)⊥ where (Ev)⊥ is the orthogonal complement of the line Ev in V with
respect to h′. Let x be an element of ker(1 + s). Then x = kv for some k ∈ E
and we have 2kv − ϕh′(v, kv)v = 0. Since ϕ−1 − ϕ̄−1 = h′(v, v), we have

k[1 + ϕϕ̄−1]v = 0.

It follows that the subspace
⋃

n≥1

ker(1+s)n is either zero or the line Ev. In the

first situation, we have

detE

(
1 + s

2

)
=

1 + ϕϕ̄−1

2
≡ ϕ mod E×

0

while, in the second, we have ϕϕ̄−1 = −1 and

disc (h′|Ev) =
(
ϕ−1 − ϕ̄−1

) ≡ ϕ mod E×
0 .

Then it is easy to see that the formula (1.3) holds in these two situations.

3 Proof of the theorem

3.1 One-dimensional elements

Firstly we note that in the case where ϕϕ̄−1 = −1 the element s = s(v,ϕ) is the
reflection of V defined by the vector v with respect to h′, i.e., it is the linear
transformation of V such that s(v) = −v and s(x) = x for all x ∈ V such that
h′(v, x) = 0. Otherwise the subspace

⋃
n≥1

ker(1+s)n is zero as seen in the proof

of the Proposition. Then by (1.1) we have

sn(s) = detF

(
1 + s

2

)
mod (F×)2

and by (1.3) we have

snE(s) = detE

(
1 + s

2

)
mod (E×

0 ).



Ngo V. Dinh 41

This gives us the following lemma which is the affirmation of the formula (1.4)
for one-dimensional elements which are not reflections.

Lemma 3.1. Let s = s(v,ϕ) be an one-dimensional element of U(V, h′) which
is not a reflection. Then

sn(s) = NormE/F (snE(s)) .

3.2 Quadratic case

We consider now the case where E0 = F . In this case, sn and NormE/F ◦ snE

are two homomorphisms of U(V, h′) in F×/(F×)2. Then it suffices to verify the
equality (1.4) for the one-dimensional elements since they generate U(V, h′).

Given Lemma 3.1, we only need to verify the formula for the reflections of
V . Let u = s(v,ϕ) be a reflection of V , i.e., ϕϕ̄−1 = −1. Then the identity
(1.4) becomes

disc(bh|Ev) = NormE/F (disc(h′|Ev)) mod (F×)2.

Note that, in this case, we have h′ = δh where δ ∈ E and {1, δ} forms a
orthogonal F -basis of E with respect to bh. Identifying the space Ev with E,
the restriction of h to this space is a hermitian form on E. Then we have
h(x, y) = axȳ, ∀x, y ∈ E, for some a ∈ E0. It follows that disc(h′|E) = aδ
mod (E×

0 ) and

disc(bh|E) = detF

(
2a 0
0 −2aδ2

)
mod (F×)2 = NormE/F (aδ) mod (F×)2.

That means the formula (1.4) holds for the quadratic case:

Proposition 3.2. If E0 = F then we have

sn(u) = NormE/F (snE(u)), for all u ∈ U(V, h′).

Remark 3.3. Let u be an element of U(V, h′). Suppose detE(u) = α. Then
NormE/E0 (α) = 1. By Hilbert’s Theorem 90, there exists a unique element β ∈
E× up to a scalar in E0 such that α = ββ̄−1 . Then we have a homomorphism

Hil : Norm−1
E/E0

(1) → E×/E×
0 , α �→ βE×

0 , where α = ββ̄−1 .

The spinor norm snE is in fact the composition of the determinant and the
homomorphism Hil, i.e., we have

snE(u) = Hil(detE(u)), ∀u ∈ U(V, h′).

In order to prove this identity we only need to verify it for the one-dimensional
elements of U(V, h′). Let u = s(v,ϕ) be an one-dimensional element of U(V, h′).



42 On the Spinor norm on unitary groups

If v is an isotropic vector then the identity is evident since detE(u) = 1 and
the spinor norm of u is trivial by definition. If v is non-isotropic then we have

detE(u) = 1 − ϕh′(v, v) = 1 − ϕ(ϕ−1 − ϕ̄−1) = ϕϕ̄−1.

It follows that Hil(detE(u)) = ϕE×
0 = snE(u). With this point of view on

the spinor norm on U(V, h′), we can see that Proposition 3.2 is similar to [4,
Chapter 10, Theorem 1.5]. However the proof in loc.cit. is not correct since
σ̃ 	= αβ in its notations.

3.3 General case

We prove now the Theorem in the general case. For all x, y ∈ V , put

h0(x, y) = trE/E0(h(x, y)).

Then h0 is a non-degenerate symmetric bilinear form on the E0-vector space
V . Denote SO(V, h0) the group of the rotations of V with respect to h0 and
snE0 the spinor norm in SO(V, h0). Note that we have

U(V, h) ⊂ SO(V, h0) ⊂ O(V, bh)

and, by Proposition 3.2, we have

snE0(u) = NormE/E0(snE(u)), ∀u ∈ U(V, h).

For the passage from E0 to F , we use the transfer properties of the Witt
ring of quadratic spaces [4, Chapter 9, §5]: Consider E0 as an E0-vector space
and denote φ0 the symmetric bilinear form on E0 defined by

φ0(x, y) = xy, ∀x, y ∈ E0.

Then μ0 ◦ φ0 is a symmetric bilinear form on F -vector space E0. Put ζ =
disc(μ0 ◦ φ0). Let φ be a symmetric bilinear form on an E0-vector space W of
dimension n. Then μ0 ◦ φ is also a symmetric bilinear form on F -vector space
W . In this situation, we have [4, Chapter 9, Theorem 5.12]

disc(μ0 ◦ φ) = (ζ)nNormE0/F (disc(φ)).

Return to our situation, let s be a reflection of the E0-vector space V with
respect to h0. Using Zassenhaus’ formula (1.1) and the transfer property above
we have

sn(s) = ζNormE0/F (snE0(s)).

Since the reflections generate the group SO(V, h0) [1], we obtain

sn(u) = NormE0/F (snE0(u)), for all u ∈ SO(V, h0).

This completes the proof of the Theorem.
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