On Epi-Projective Modules

Derya Keskin Tütüncü* and Yosuke Kuratomi[†]

*Department of Mathematics, Hacettepe University 06800 Beytepe, Ankara, Turkey e-mail:keskin@hacettepe.edu.tr

[†]Kitakyushu National College of Technology Shii, Kokuraminami, Kitakyushu, Fukuoka, Japan e-mail:kuratomi@kct.ac.jp

Abstract

In this paper, firstly we show that for lifting modules M and N, M is N-projective if and only if M is epi-N-projective and im-small N-projective. Secondly we show that for any weakly supplemented module N, if $M \oplus N$ is small epi-N-projective then M is N-projective.

1 Preliminaries

Throughout this paper R is a ring with identity and all modules considered are unitary right R-modules.

A submodule S of a module M is called a *small* submodule, if $M \neq K + S$ for any proper submodule K of M. In this case we write $S \ll M$. Let M be a module and let N and K be submodules of M with $K \subseteq N$. K is called a *coessential* submodule of N in M if $N/K \ll M/K$ and we write $K \subseteq_c N$ in M. Let X be a submodule of M. X is called a *co-closed* submodule in M if X does not have a proper co-essential submodule in M. X' is called a *co-closure* of Xin M if X' is a co-closed submodule of M with $X' \subseteq_c X$ in M. $K <_{\oplus} N$ means that K is a direct summand of N. Let $M = M_1 \oplus M_2$ and let $\varphi : M_1 \to M_2$ be a homomorphism. Put $\langle M_1 \xrightarrow{\varphi} M_2 \rangle = \{m_1 - \varphi(m_1) \mid m_1 \in M_1\}$. Then this is a submodule of M which is called the graph with respect to $M_1 \xrightarrow{\varphi} M_2$. Note that $M = M_1 \oplus M_2 = \langle M_1 \xrightarrow{\varphi} M_2 \rangle \oplus M_2$.

A module M is said to be a *lifting* module if, for any submodule X, there exists a direct summand X^* of M such that $X^* \subseteq_c X$ in M.

^{*} Correspoding author

 $^{{\}bf Key \ words: \ epi-projective \ module, \ lifting \ module.}$

²⁰⁰⁰ AMS Mathematics Subject Classification: Primary 16D10; Secondary 16D99.

Let X be a submodule of a module M. A submodule Y of M is called a supplement of X in M if M = X + Y and $X \cap Y \ll Y$. Note that a supplement Y of X in M is co-closed in M. A module M is supplemented (\oplus -supplemented) if, for any submodule X of M, there exists a submodule (direct summand) Y of M such that Y is a supplement of X in M. A module M is called amply supplemented if, X contains a supplement of Y in M whenever M = X + Y. A module M is said to be weakly supplemented if for any submodule X of M, there exists a submodule X of M, there exists a submodule Y of M such that M = X + Y and $X \cap Y \ll M$. We see that M is an amply supplemented module if and only if M is a weakly supplemented module and any submodule of M has a co-closure in M (cf. [3, Lemma 1.7]).

Let M and N be modules. M is called (epi-)N-projective if, for any submodule A of N, every homomorphism (epimorphism) $f: M \to N/A$ can be lifted to a homomorphism $g: M \to N$. M is called quasi-projective (epi-projective) if it is (epi-)M-projective. A module M is called small epi-N-projective if, for any small submodule A of N, every epimorphism $f: M \to N/A$ can be lifted to a homomorphism $g: M \to N$. If M is small epi-N-projective, then M need not be epi-N-projective (Example 3.1). A module M is called im-small N-projective if, for any submodule A of N, any homomorphism $f: M \to N/A$ with $f(M) \ll N/A$ can be lifted to a homomorphism $g: M \to N$. In the study of discrete modules and lifting modules, these projectivities are important (cf. [1], [2]).

Let M be any module. Consider the following conditions:

 (D_2) If $A \leq M$ such that M/A is isomorphic to a direct summand of M, then A is a direct summand of M.

 (D_3) If M_1 and M_2 are direct summands of M with $M = M_1 + M_2$, then $M_1 \cap M_2$ is a direct summand of M.

Then the module M is called *discrete* if it is lifting and satisfies the condition (D_2) and it is called *quasi-discrete* if it is lifting and satisfies the condition (D_3) . Since (D_2) implies (D_3) , every discrete module is quasi-discrete. It is easy to see that any epi-projective module M satisfies the condition (D_2) (see, [1, 4.24(4)]). But the converse is not true (see, Example 2.3).

In this paper, we show the following:

(1) Let M and N be lifting modules. Then M is N-projective if and only if M is epi-N-projective and im-small N-projective.

(2) Let N be weakly supplemented. If $M \oplus N$ is small epi-N-projective, then M is N-projective.

For undefined terminologies, the reader is referred to [1], [7] and [8].

Lemma 1.1 Let $X' \subseteq X \subseteq M$. If M = X' + Y and $X \cap Y \ll M$, then $X' \subseteq_c X$ in M.

Proof By [5, Lemma 1.4].

Lemma 1.2 (cf. [6, Lemma 1.7]) Let $f : M \to N$ be an epimorphism with ker $f \ll M$. If X is co-closed in M, then f(X) is co-closed in N.

2 Epi-projective Modules

We recall the definition of relative epi-projectivity.

Definition Let M and N be modules. M is called *epi-N-projective* if, for any submodule A of N, every epimorphism $f : M \to N/A$ can be lifted to a homomorphism $g : M \to N$. In particular, M is called *epi-projective* if M is epi-M-projective. Note that epi-projective modules are well known as pseudo-projective modules.

Lemma 2.1 If M is epi-projective, then the following are equivalent:

(1) M is discrete,

(2) M is quasi-discrete,

(3) M is lifting,

(4) M is \oplus -supplemented.

Proof It is enough to show that $(4) \Rightarrow (1)$: Let A be any submodule of M. Since M is \oplus -supplemented, then M = A + B and $A \cap B \ll B$ for some direct summand B of M. Assume that $M = B \oplus B'$. By [1, 4.24(2)], B' is B-projective. Then by $[1, 4.12], M = A' \oplus B$ for some submodule A' of M with $A' \leq A$. It is easy to show that $A/A' \ll M/A'$. Thus M is lifting. On the other hand, M is a (D_2) -module by [1, 4.24(4)]. \Box Recall that a module M is called *hollow* if every proper submodule of M is small in M.

Lemma 2.2 (see, [1] and [2]) Let M be a hollow epi-projective module. Then M is quasi-projective.

Proof Let A be a submodule of M and $f: M \to M/A$ be a nonzero homomorphism. If f(M) = M/A, then f can be lifted to a homomorphism from M to M since M is epi-projective. So assume that $f(M) \neq M/A$. Let $\gamma = \pi - f$, where $\pi: M \to M/A$ is the natural epimorphism. Since $f(M) \neq M/A$ and M/A is hollow, $\gamma(M) = M/A$. Then by epi-projectivity assumption γ can be lifted to a homomorphism $g: M \to M$. Now 1 - g lifts f. \Box

We note that discrete modules need not be epi-projective as the following example shows:

Example 2.3 Let R be an incomplete rank one discrete valuation ring and let K be its quotient field. The R-module K_R is indecomposable and discrete and hence hollow, but is not quasi-projective. By Lemma 2.2, K_R cannot be epi-projective.

By the same argument of the proof of Lemma 2.2, we obtain the following:

Lemma 2.4 If M is epi-projective then M is im-small M-projective.

Now we discuss the relationship between relative epi-projectivity and relative projectivity of modules.

Proposition 2.5 Let M and N be lifting modules. Then M is N-projective if and only if M is epi-N-projective and im-small N-projective.

Proof "Only if" part is clear. "If" part: Let $g: N \to X$ be an epimorphism and let $f: M \to X$ be a homomorphism. Since M and N are lifting, we may assume ker $f \ll M$ and ker $g \ll N$. As X = g(N) is amply supplemented, there exist a co-closure K of f(M) in X and a supplement K' of f(M) in X. Then X = f(M) + K' = K + K' and so $f(M) = K + (f(M) \cap K')$. As f(M) is amply supplemented, there exists a co-closure S of $f(M) \cap K'$ in f(M). Since M is lifting, there exists a decomposition $M = L \oplus M'$ with $L \subseteq_c f^{-1}(S)$ in M. Hence $f(L) \subseteq_c S$ in f(M) by [1, 3.2(7)] and so f(L) = S. Then

$$f(M) = f(L) + f(M') = S + f(M') \cdots (*).$$

By $f^{-1}(S) \cap M' \ll M'$, $S \cap f(M') = f(f^{-1}(S) \cap M') \ll f(M)$. Now we prove f(M') is co-closed in X. Let $A \subseteq_c f(M')$ in X. As $S \subseteq f(M) \cap K' \ll K' \subseteq X$, $S \ll X \quad \cdots (**)$. By (*), f(M) = S + f(M') = S + A and so X = f(M) + K' = S + f(M') + K' = f(M') + K'. Since $f(M') \cap S \ll f(M)$, by Lemma 1.1, $A \subseteq_c f(M')$ in f(M). As f(M') is co-closed in f(M) (by Lemma 1.2) A = f(M'). Thus f(M') is co-closed in X.

Since N is lifting, there exists a decomposition $N = T \oplus N'$ with $T \subseteq_c g^{-1}(f(M'))$ in N. Hence $g(T) \subseteq_c f(M')$ in X and so g(T) = f(M'). Since M' is epi-T-projective, there exists a homomorphism $\varphi_1 : M' \to T$ such that $(g|_T) \circ \varphi_1 = f|_{M'}$. On the other hand, by (**), there exists a homomorphism $\varphi_2 : L \to N$ such that $g \circ \varphi_2 = f|_L$ since L is im-small N-projective.

Thus f is extended to $\varphi = \varphi_1 + \varphi_2 : M = L \oplus M' \to N$. Therefore M is N-projective.

The following is due to L. Ganesan and N. Vanaja [2]. As a corollary of Lemma 2.4 and Proposition 2.5, we obtain this result.

Corollary 2.6 Let M be a lifting module. Then M is epi-projective if and only if M is quasi-projective.

There exist modules M and N such that M is epi-N-projective but M is not im-small N-projective.

Example 2.7 Let S and S' be simple modules with $S \not\simeq S'$. Let M and K be uniserial modules with the following conditions:

- (i) $M \cap K = S$,
- (ii) $M \supset S \supset 0, K \supset K_1 \supset K_2 \supset S \supset 0,$
- (iii) $M/S \simeq S$, $K/K_1 \simeq S'$, $K_1/K_2 \simeq S$, $K_2/S \simeq S'$.

Put N = M + K. (Using path algebra, we can see that there exist such modules M, N.)

(1) First we show "*M* is epi-*N*-projective." Let $f: M \to X$ and $g: N \to X$ be epimorphisms. Since f is an epimorphism, $X \simeq M$ or $X \simeq M/S$. Assume that $X \simeq M$. Since $N/\ker g \simeq X \simeq M$ is uniserial with length 2, we see $\ker g = M + K_2$ (essentially, factor modules of N are $0, N, N/S \simeq M/S \oplus K/S$, $N/M \simeq K/S, N/(M+K_2) \simeq K/K_2$ and $N/(M+K_1) \simeq K/K_1$). Now $M/S \simeq S \not\simeq S' \simeq K/K_1$ imply $X \simeq M \not\simeq K/K_2 \simeq N/\ker g$, a contradiction. Hence we see $X \simeq M/S$, that is, $\ker g = K$. Since $g|_M : M \stackrel{i}{\hookrightarrow} N = M + K \stackrel{g}{\to} X$ is an epimorphism, there exist a homomorphism $h: M \to M$ such that $(g|_M) \circ h = f$ and so $g \circ h = f$. Thus M is epi-N-projective.

(2) Next we show "*M* is not im-small *N*-projective." Let $f: M \to X$ be a homomorphism with ker f = S and let $g: N \to X$ be an epimorphism with ker $g = M + K_2$. Then $S \simeq f(M) \ll X$. Since the tops of *K* and *M* are not isomorphic, *f* can not be lifted. Thus *M* is not im-small *N*-projective.

Therefore, by (1) and (2), M is epi-N-projective, but not im-small N-projective.

The following example shows that N is not lifting in Example 2.7.

Example 2.8 Let M and K be uniserial modules with

 $0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_s = M$, and $0 = K_0 \subset K_1 \subset K_2 \subset \cdots \subset K_t = K$,

where s < t. Let $0 \neq M \cap K$ be a proper submodule of M and put N = M + K. Then N is not lifting.

Proof (1) Since K is a proper submodule of N and N = M + K, we see M is not small in N.

(2) Now we show that "any nonzero submodule of M is not a direct summand of N." Let L be a nonzero proper submodule of M. Since $L <_{\oplus} N$ imply $L <_{\oplus} M$, L is not a direct summand of N. Next we assume that M is a direct summand of N. Put $N = M \oplus T$. Let $p : N = M \oplus T \to M$ be the projection. By $M \cap K \neq 0$, $M_1 = K_1 \subseteq M \cap K$ and so $T \cap K = 0$. Thus $p|_K : K \to p_M(K)$ is an isomorphism and hence $t \leq s$, a contradiction. So any nonzero submodule of M is not a direct summand of N.

By (1) and (2), N is not lifting.

In [4], Keskin studied the *T*-modules. Recall that a module *M* is called a *T*-module if $M/A \cong M/B$ where *A* is a co-closed submodule of *M* and *B* is any submodule of *M* implies that *B* is a co-closed submodule of *M*. In the following proposition we show that any amply supplemented epi-projective module is a *T*-module.

Proposition 2.9 If M is an amply supplemented epi-projective module, then M is a T-module.

Proof Let M be amply supplemented and epi-projective. Let A and K be submodules of M where K is co-closed in M and $f: M/K \longrightarrow M/A$ be any isomorphism. By [3, Proposition 1.5], there exists a submodule B of A such that $A/B \ll M/B$ and B is co-closed in M. Let $\pi: M/B \longrightarrow M/A$ be the epimorphism with the kernel A/B, $\pi_K: M \longrightarrow M/K$, $\pi_A: M \longrightarrow M/A$ and $\pi_B: M \longrightarrow M/B$ the natural epimorphisms. Since M is epi-projective, there exists a homomorphism $\gamma: M \longrightarrow M$ such that $\pi_A \gamma = f \pi_K$. Now we have the homomorphism $g = \pi_B \gamma: M \longrightarrow M/B$. Clearly, $\pi g = f \pi_K$. Therefore by [4, Proposition 2.11], M is a T-module.

Note that Example 2.3 shows that any amply supplemented T-module need not be epi-projective.

3 Small Epi-N-projective Modules

In this section, we study the relative small epi-projectivity. Let us recall the definition of relative small epi-projectivity.

Definition A module M is called *small epi-N-projective* if, for any small submodule A of N, every epimorphism $f : M \to N/A$ can be lifted to a homomorphism $g : M \to N$.

Obviously any epi-*N*-projective module is small epi-*N*-projective, but the converse is not true in general, as the following shows:

Example 3.1 Let *S* be a small submodule of $G = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and let $\pi_S : G \to G/S$ be a canonical epimorphism. As $J(\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}) = 0$, S = 0. So π_S is an isomorphism. So *G* is small epi-projective. Let $p : G = \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ be the projection and put $K = 2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Assume that *G* is epi-projective. Then there exists a homomorphism $h : G \to G$ such that $\pi \circ h = p$, where $\pi : G \to G/K$ is a canonical epimorphism. For any $0 \neq x \in \mathbb{Z}/2\mathbb{Z}$, we see

$$x = p(x) = \pi \circ h(x) = \pi(x) = 0.$$

This is a contradiction. Therefore G is not epi-projective.

Note that by the same proof as Lemma 2.2, any small epi-projective hollow module is quasi-projective. The following proposition gives a characterization of small epi-*N*-projectivity.

Proposition 3.2 Let M and N be two modules and $X = M \oplus N$ amply supplemented. The following are equivalent:

- (1) M is small epi-N-projective,
- (2) For any supplement K of N in X with X = M + K, $X = N \oplus K$.

DERYA KESKIN TÜTÜNCÜ AND YOSUKE KURATOMI

Proof $(1) \Longrightarrow (2)$: Let K be a supplement of N in X with X = M + K. Let $\pi : N \longrightarrow N/(K \cap N)$ be the natural epimorphism, $\pi_M : M \longrightarrow X/K$ the epimorphism with $\pi_M(m) = m + K$ $(m \in M)$ and $\alpha : X/K \longrightarrow N/(K \cap N)$ the obvious isomorphism. Then we have the epimorphism $\alpha \pi_M : M \longrightarrow N/(K \cap N)$ the obvious isomorphism. Then we have the epimorphism $\alpha \pi_M : M \longrightarrow N/(K \cap N)$. By hypothesis, there exists a homomorphism $\psi : M \longrightarrow N/(K \cap N)$. By hypothesis, there exists a homomorphism $\psi : M \longrightarrow N$ such that $\pi \psi = \alpha \pi_M$. Now $X = \langle M \xrightarrow{\psi} N \rangle \oplus N$. Since K is a supplement of N in X, $K = \langle M \xrightarrow{\psi} N \rangle$. Therefore $X = N \oplus K$.

 $\begin{array}{ll} (2) \Longrightarrow (1): \mbox{ Let } A \mbox{ be a small submodule of } N, \ f: M \longrightarrow N/A \mbox{ an epimorphism} \\ \mbox{ and } \pi: N \longrightarrow N/A \ \mbox{ the natural epimorphism. Let } H = \{m+n \mid f(m) = -\pi(n), m \in M, n \in N\}. \ \mbox{ Obviously, } X = N + H = M + H \ \mbox{ and } A \leq H. \ \mbox{ Since } \\ N \cap H = A, \ N \cap H \ll N. \ \mbox{ Let } H' \ \mbox{ be a supplement of } N \ \mbox{ in } X \ \mbox{ contained in } H. \\ \mbox{ Now } [(N \cap H) + H']/H' = H/H' \ll X/H'. \ \mbox{ Then } X = M + H'. \ \mbox{ By hypothesis, } \\ X = N \oplus H'. \ \mbox{ Now let } \psi : N \oplus H' \longrightarrow N \ \mbox{ be the projection. Then the restriction } \\ \psi|_M: M \longrightarrow N \ \mbox{ is the desired homomorphism. } \end{array}$

Proposition 3.3 Let R be a right perfect ring. Let M and N be modules with $X = M \oplus N$. The following are equivalent:

(1) M is N-projective,

(2) M is small epi-L-projective for every $L \leq N$.

 $Proof(1) \Longrightarrow (2)$: Clear.

 $(2) \Longrightarrow (1)$: Assume M is small epi-L-projective for every $L \leq N$. Let $X = M \oplus N = A + N$ for any submodule A of X. Let K be a supplement of N in X which is contained in A, namely X = K + N, $K \cap N \ll K \leq A$. Assume that $L = N \cap (K+M)$. By hypothesis, M is small epi-L-projective. Let $X' = M \oplus L$. It is easy to see that X' = K + M = K + L. Since $K \cap L = K \cap N \ll K$, K is a supplement of L in X'. Therefore $X' = K \oplus L$ by Propsition 3.2. Hence $X = K \oplus N$. Thus by [1, 4.12], M is N-projective.

Lemma 3.4 Let M be small epi-N-projective and put $M = M' \oplus M''$. Then M' is small epi-N-projective.

*Proof*Let *f* be any epimorphism from *M'* to *N/X* with *X* ≪ *N* and *g* : *N* → *N/X* be the canonical epimorphism. Consider the projection map $\alpha : M \longrightarrow M'$. Since *M* is small epi-*N*-projective, there exists a homomorphism *h* : *M* → *N* such that $g \circ h = f \circ \alpha$. Therefore, $g \circ (h|_{M'}) = f$.

Lemma 3.5 Let N be $a \oplus$ -supplemented module. Then M is epi-N-projective if and only if M is small epi-N'-projective for any direct summand N' of N.

Proof "Only if" part is clear.

"If" part : Let $g: N \to N/K$ be a canonical epimorphism and let $f: M \to N/K$ be an epimorphism. Since N is \oplus -supplemented, there exists a direct summand N' of N such that $N = \ker g + N'$ and $\ker g \cap N' \ll N'$. Since M is small epi-N'-projective, there exists a homomorphism $h: M \to N'$ such that

 $\phi \circ h = \alpha \circ f$, where $\phi : N' \to N'/(N' \cap \ker g)$ is the natural epimorphism and $\alpha : N/K \to N'/(K \cap N')$ is the obvious isomorphism. Thus f is lifted to h. \Box

Proposition 3.6 If $M \oplus N$ is small epi-N-projective then M is small epi-N'projective for any direct summand N' of N.

Proof Let $g: N' \to N'/X$ be the canonical epimorphism with $X \ll N'$ and $f: M \to N'/X$ be an epimorphism. Define $g^* = g + 1_{N''}: N = N' \oplus N'' \to N'/X \oplus N''$ by $(n', n'') \mapsto (g(n'), n'')$ and $f^* = f + 1_{N''}: M \oplus N'' \to N'/X \oplus N''$ by $(m, n'') \mapsto (f(m), n'')$. By ker $g^* = X \ll N'$ and Lemma 3.4, there exists a homomorphism $h: M \oplus N'' \to N$ such that $g^* \circ h = f^*$. Let p' and p'' be the projections : $N = N' \oplus N'' \to N'$, $N = N' \oplus N'' \to N''$, respectively. Then, for $m \in M$,

$$(f(m), 0) = f^*(m, 0) = g^*h(m, 0) = g^*(n', n'') = (g(n'), n'')$$

where h(m,0) = (n',n''). Thus n'' = 0 and f(m) = g(n'). Put $\varphi = p' \circ (h|_M)$. Then $f(m) = g(p'h(m,0)) = g\varphi(m,0)$. Thus f is lifted to φ . Therefore M is small epi-N'-projective.

Proposition 3.7 Let N be weakly supplemented. If $M \oplus N$ is small epi-N-projective, then M is N-projective.

Proof Let $\pi: N \to N/K$ be the canonical epimorphism and let $f: M \to N/K$ be a homomorphism. Since N is weakly supplemented, there exists a weak supplement L of K in N and so N = L + K and $L \cap K \ll N$. Define $g: N = L+K \to N/K \oplus K/(L \cap K)$ by $g(l+k) = (\pi(l), \nu(k))$ for $l \in L$ and $k \in K$, where $\nu: K \to K/(L \cap K)$ is the canonical epimorphism. Then g is an epimorphism. Hence $\varphi = f - g : M \oplus N \to N/K \oplus K/(L \cap K)$ is an epimorphism. Since $M \oplus N$ is small epi-N-projective, there exists a homomorphism $\psi: M \oplus N \to N$ such that $g \circ \psi = \varphi$. As $\psi(M) \subseteq L$,

$$f(m) = \varphi(m) = g\psi(m) = \pi\psi(m).$$

Thus $f = \pi \circ (\psi|_M)$.

Corollary 3.8 Let M be a lifting module. Then the following are equivalent: (1) M is epi-projective,

- (2) M is small epi-M'-projective for any direct summand M' of M,
- (3) $M \oplus M$ is small epi-M-projective,
- (4) M is quasi-projective.

Corollary 3.9 The following are equivalent for a ring R:

(1) R is semisimple,

(2) For every simple right R-module $M, M \oplus R$ is small epi-R-projective and R_R is weakly supplemented, DERYA KESKIN TÜTÜNCÜ AND YOSUKE KURATOMI

- (3) Every right R-module satisfies (D_2) ,
- (4) Every 2-generated right R-module satisfies (D_2) ,
- (5) The direct sum of two right R-module with (D_2) satisfies (D_2) ,
- (6) The direct sum of two quasi-projective right R-module satisfies (D_2) ,
- (7) Every right R-module is epi-projective,
- (8) Every 2-generated right R-module is epi-projective,
- (9) The direct sum of two epi-projective right R-module is epi-projective,
- (10) The direct sum of two quasi-projective right R-module is epi-projective.

 $Proof(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (1)$: Let M be a simple right R-module. By hypothesis, $M \oplus R$ is small epi-R-projective. By Proposition 3.7, M is R-projective. Therefore M is Fprojective for every free right R-module F. Hence M is projective and so R is semisimple. $(1) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6)$ by [9, Theorem 9]. $(1) \Leftrightarrow (7) \Leftrightarrow (8) \Leftrightarrow (9) \Leftrightarrow (10)$ are clear because every epi-projective module satisfies (D_2) . \Box

Acknowledgements The authors are thankful to Professor Kazutoshi Koike for valuable comments.

References

- J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting Modules, Supplements and Projectivity in Module Theory* (Frontiers in Math. Boston: Birkhäuser, 2006.)
- [2] L. Ganesan and N. Vanaja, Strongly Discrete Modules, Comm. Algebra 35 (2007) 897–913.
- [3] D. Keskin, On Lifting Modules, Comm. Algebra 28 (2000) 3427–3440.
- [4] D. Keskin Tütüncü, On Coclosed Submodules, Indian J. pure appl. Math. 36 (2005) 135–144.
- [5] Y. Kuratomi, On direct sums of lifting modules and internal exchange property, *Comm. Algebra* 33 (2005) 1795–1804.
- [6] Y. Kuratomi, Generalized Projectivity of Quasi-Discrete Modules, International Electronic Journal of Algebra 3 (2008) 125–134.
- [7] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules (London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge, 1999).
- [8] R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach, Reading, 1991).
- [9] W. Xue, Characterization of rings using direct-projective modules and direct-injective modules, *Journal of Pure and Applied Algebra* 87 (1993) 99–104.