SOME CONSTRUCTIONS IN THE CATEGORY OF POINTED G-SETS

M. Irfan, Shabbir Khan
and
Gulam Muhiuddin
Department of Mathematics
Aligarh Muslim University
Aligarh - 202 002, India
mohammad_irfanamu@yahoo.com,
skhanmu@rediffmail.com, chishtygm@gmail.com

Abstract

This paper deals with the study of products, co-products, equalizers, co-equalizers, intersections, pullbacks and pushouts in the category of pointed G-sets. Further, it is shown that the category of pointed G-sets is complete and finitely complete.

1. Introduction

Motivated by the idea of pointed sets, pointed mappings, G-sets and G-morphisms, the notions of pointed G-sets and pointed G-morphisms have been defined, henceforth the category of pointed G-sets, denoted by \mathcal{G}-Sets*, has been constructed by taking into account pointed G-sets as the objects of the category and pointed G-morphisms as the morphisms of the category. Results regarding special morphisms like monomorphisms, epimorphisms, coretractions and retractions in the category \mathcal{G}-Sets* have been proved in [4]. In the present analysis, we study some more properties of the category \mathcal{G}-Sets* and show that the category \mathcal{G}-Sets* has products, co-products, equalizers, co-equalizers, intersections, pullbacks and pushouts. After showing the existence of these notions, we obtain that the category \mathcal{G}-Sets* is complete and finitely complete.

[^0]
2. Preliminaries

We begin with the following definitions and results that will be needed in the sequel $[8,9,10]$:

Definition 2.1. Let G be a group and X be a set. Then X is said to be a G-set if there exists a mapping $\phi: G \times X \rightarrow X$ such that for all $a, b \in G$ and $x \in X$ the following conditions are satisfied:
(i) $\phi(a b, x)=\phi(a, \phi(b, x))$,
(ii) $\phi(e, x)=x$,
where e is the identity of G. The G-set X defined above will be denoted by the pair (X, ϕ).
For the sake of convenience, one can denote $\phi(a, x)$ as $a x$. Under this notation, above conditions become
(i) $(a b) x=a(b x)$,
(ii) $e x=x$.

Definition 2.2. Let (X, ϕ) be a G-set. Then a subset A of X is called a G-subset of X if (A, ϕ) is also a G-set.

Definition 2.3. Let X and Y be two G -sets. Then a mapping $f: X \rightarrow Y$ is called a G-morphism from X to Y if $f(a x)=a f(x)$ for all $a \in G, x \in X$.

Definition 2.4. Let $\left\{X_{i}\right\}_{i \in I}$ be a family of G-sets. Then the product of $\left\{X_{i}\right\}_{i \in I}$, denoted by $\prod_{i \in I} X_{i}$, is defined to be the set $\left\{f: I \rightarrow \cup X_{i} \mid f(i) \in\right.$ X_{i} for all $\left.i \in I\right\}$.

Proposition 2.1 [10, Theorem 3.2]. Let $\left\{X_{i}\right\}_{i \in I}$ be a family of G-sets. Then, the product $\prod_{i \in I} X_{i}$ of the family $\left\{X_{i}\right\}_{i \in I}$ is a G -set.
Definition 2.5. A pointed set $\left(X, x^{\prime}\right)$ is said to be a pointed G-set if there exists a mapping $\phi: G \times X \rightarrow X$ such that
(i) (X, ϕ) is a G-set,
(ii) $\phi\left(g, x^{\prime}\right)=x^{\prime}$ for all $g \in G$.

Definition 2.6. Let $\left(X, x^{\prime}\right)$ be a pointed G-set. Then a pointed set $\left(A, x^{\prime}\right)$ is called a pointed G-subset of $\left(X, x^{\prime}\right)$ if A is a G-subset of X.

Definition 2.7. Let $\left(X, x^{\prime}\right)$ be a pointed G -set and $\left(A, x^{\prime}\right),\left(B, x^{\prime}\right)$ be two pointed G-subsets of (X, x^{\prime}) such that $A \cap B=\emptyset$. Then disjoint union of
$\left(A, x^{\prime}\right)$ and $\left(B, x^{\prime}\right)$ is defined to be the set $\left(A \cup B, x^{\prime}\right)$.
Definition 2.8. Let $\left(X, x^{\prime}\right)$ be a pointed G-set and $\left(A, x^{\prime}\right),\left(B, x^{\prime}\right)$ be two pointed G-subsets of $\left(X, x^{\prime}\right)$. Then intersection of $\left(A, x^{\prime}\right)$ and $\left(B, x^{\prime}\right)$ is defined to be the set $\left(A \cap B, x^{\prime}\right)$.

Definition 2.9. Let $\left(X, x^{\prime}\right)$ and $\left(Y, y^{\prime}\right)$ be two pointed G-sets. Then their product is defined to be the ordered pair $\left(X \times Y,\left(x^{\prime}, y^{\prime}\right)\right)$.

Definition 2.10. Let $\left(X, x^{\prime}\right)$ and $\left(Y, y^{\prime}\right)$ be two pointed G-sets. Then a mapping $f:\left(X, x^{\prime}\right) \rightarrow\left(Y, y^{\prime}\right)$ is called a pointed G-morphism if
(i) f is a G-morphism i.e., $f(a x)=a f(x)$ for all $a \in G, x \in X$,
(ii) $f\left(x^{\prime}\right)=y^{\prime}$.

We shall use the following lemmas in our main results:
Lemma 2.1. Let X and Y be two pointed G-sets. Then
(i) The cartesian product of any two pointed G-sets is a pointed G-set,
(ii) Disjoint union of pointed G-subsets is a pointed G-subset,
(iii) Intersection of a finite family of pointed G-subsets is a pointed G-subset.

Proof. The proof of Lemma 2.1 is trivial.
Lemma 2.2. Let (X, ϕ) be a G-set. Then
(i) for any $x, y \in X$, a relation \sim_{G} on X defined by $x \sim_{G} y \Leftrightarrow y=\phi(g, x)$ for some $g \in G$, is an equivalence relation,
(ii) the set X / \sim_{G} of all G-equivalence classes is a G-set.
$\operatorname{Proof}(\mathbf{i})$. Let e be the identity element of G. Then for every $x \in X$, we have $x=\phi(e, x)$ implying thereby $x \sim_{G} x$. Now, suppose $x \sim_{G} y$. Then $y=\phi(g, x)$ for some $g \in G$. So, we have $\phi\left(g^{-1}, y\right)=\phi\left(g^{-1}, \phi(g, x)\right)=\phi\left(g^{-1} g, x\right)=\phi(e, x)=x$ implies that $y \sim_{G} x$. Further, suppose $x \sim_{G} y$ and $y \sim z$. Then there exist $g_{1}, g_{2} \in G$ such that $y=\phi\left(g_{1}, x\right)$ and $z=\phi\left(g_{2}, y\right)$. Thus we have $\phi\left(g_{2} g_{1}, x\right)=$ $\phi\left(g_{2}, \phi\left(g_{1}, x\right)\right)=\phi\left(g_{2}, y\right)=z$ implying thereby $x \sim_{G} z$. Consequently, \sim_{G} is an equivalence relation.
We call this equivalence relation as G-equivalence relation and corresponding equivalence class as G-equivalence class.

Proof(ii). Proof is trivial.

Lemma 2.3. Let (X, x^{\prime}) be a pointed G-set and \sim_{G} be a G-equivalence relation on X. Then the pointed set $\left(X / \sim_{G},\left[x^{\prime}\right]\right)$ is a pointed G-set.

Proof. Define a mapping $\phi: G \times X / \sim_{G} \rightarrow X / \sim_{G}$ by $\phi(g,[x])=[g x]$ for all $g \in G, x \in X$. It can be easily seen that $\left(X / \sim_{G}, \phi\right)$ is a G-set and for any $a \in G$, we get $\phi\left(a,\left[x^{\prime}\right]\right)=\left[a x^{\prime}\right]=\left[x^{\prime}\right]$ which shows that $\left(X / \sim_{G},\left[x^{\prime}\right]\right)$ is a pointed G-set.

3. Main Results

Theorem 3.1. The category \mathcal{G}-Sets* has finite products.
Proof. If $\left(X, x^{\prime}\right)$ and $\left(Y, y^{\prime}\right)$ are two pointed G-sets, then in view of Lemma $2.1(i),\left(X \times Y,\left(x^{\prime}, y^{\prime}\right)\right)$ is also a pointed G-set. Define natural projections $p_{1}: X \times Y \rightarrow X$ and $p_{2}: X \times Y \rightarrow Y$ by $p_{1}(x, y)=x$ and $p_{2}(x, y)=y$ for all $x \in X, y \in Y$. Trivially, p_{1} and p_{2} are pointed G-morphisms. We claim that $\left(X \times Y,\left(x^{\prime}, y^{\prime}\right)\right)$ together with morphisms p_{1} and p_{2} is the categorical product of $\left(X, x^{\prime}\right)$ and $\left(Y, y^{\prime}\right)$.

Let $\alpha_{1}:\left(Z, z^{\prime}\right) \rightarrow\left(X, x^{\prime}\right)$ and $\alpha_{2}:\left(Z, z^{\prime}\right) \rightarrow\left(Y, y^{\prime}\right)$ be two morphisms in \mathcal{G}-Sets*, then we can define a mapping $\eta:\left(Z, z^{\prime}\right) \rightarrow\left(X \times Y,\left(x^{\prime}, y^{\prime}\right)\right)$ by

$$
\eta(z)=\left(\alpha_{1}(z), \alpha_{2}(z)\right) \text { for all } z \in Z .
$$

For any $z \in Z$ and $a \in G$, one gets $\eta(a z)=\left(\alpha_{1}(a z), \alpha_{2}(a z)\right)=$ $a\left(\alpha_{1}(z), \alpha_{2}(z)\right)=a(\eta(z))$ which shows that η is a G-morphism and also $\eta\left(z^{\prime}\right)=$ $\left(\alpha_{1}\left(z^{\prime}\right), \alpha_{2}\left(z^{\prime}\right)\right)=\left(x^{\prime}, y^{\prime}\right)$. Therefore η is a pointed G-morphism. Also, we have $\left(p_{1} \circ \eta\right)(z)=p_{1}(\eta(z))=p_{1}\left(\alpha_{1}(z), \alpha_{2}(z)\right)=\alpha_{1}(z)$ which implies $p_{1} \circ \eta=\alpha_{1}$. Similarly, $p_{2} \circ \eta=\alpha_{2}$.

Finally, we show that η is unique. Suppose, there exists another morphism $\xi:\left(Z, z^{\prime}\right) \rightarrow\left(X \times Y,\left(x^{\prime}, y^{\prime}\right)\right)$ in \mathcal{G}-Sets* such that $p_{1} \circ \xi=\alpha_{1}$ and $p_{2} \circ \xi=\alpha_{2}$. Then we have $\xi(z)=\left(p_{1}(\xi(z)), p_{2}(\xi(z))\right)=\left(\alpha_{1}(z), \alpha_{2}(z)\right)=\eta(z)$ for all $z \in Z$ which implies $\xi=\eta$. This completes the proof.

Next, let (X, x^{\prime}) and (Y, y^{\prime}) be two pointed G-sets. Consider the pointed G-subset of $X \times Y$ with the base point $\left(x^{\prime}, y^{\prime}\right)$, consisting of the elements of the type $\left(x, y^{\prime}\right)$ and $\left(x^{\prime}, y\right)$ for all $x \in X, y \in Y$ and denote it by $\left(X+Y,\left(x^{\prime}, y^{\prime}\right)\right)$. Trivially, the natural inclusions $u_{1}:\left(X, x^{\prime}\right) \rightarrow\left(X+Y,\left(x^{\prime}, y^{\prime}\right)\right)$ and $u_{2}:\left(Y, y^{\prime}\right) \rightarrow\left(X+Y,\left(x^{\prime}, y^{\prime}\right)\right)$ are pointed G-morphisms.

Theorem 3.2. The category \mathcal{G}-Sets* has finite co-products.
Proof. If (X, x^{\prime}) and (Y, y^{\prime}) are two pointed G-sets, then obviously $\left(X+Y,\left(x^{\prime}, y^{\prime}\right)\right)$ is a pointed G-set. Define natural inclusions $u_{1}:\left(X, x^{\prime}\right) \rightarrow$ $\left(X+Y,\left(x^{\prime}, y^{\prime}\right)\right)$ and $u_{2}:\left(Y, y^{\prime}\right) \rightarrow\left(X+Y,\left(x^{\prime}, y^{\prime}\right)\right)$ by $u_{1}(x)=\left(x, y^{\prime}\right)$ and
$u_{2}(y)=\left(x^{\prime}, y\right)$ for all $x \in X, y \in Y$ which are trivially pointed G-morphisms. We claim that $\left(X+Y,\left(x^{\prime}, y^{\prime}\right)\right)$ together with morphisms u_{1} and u_{2} is the categorical co-product of $\left(X, x^{\prime}\right)$ and $\left(Y, y^{\prime}\right)$.

Let $\alpha_{1}:\left(X, x^{\prime}\right) \rightarrow\left(Z, z^{\prime}\right)$ and $\alpha_{2}:\left(Y, y^{\prime}\right) \rightarrow\left(Z, z^{\prime}\right)$ be two morphisms in \mathcal{G}-Sets*. Define a mapping $\eta:\left(X+Y,\left(x^{\prime}, y^{\prime}\right)\right) \rightarrow\left(Z, z^{\prime}\right)$ as follows:

$$
\begin{aligned}
& \eta\left(x^{\prime}, y^{\prime}\right)=z^{\prime} \\
& \eta\left(x, y^{\prime}\right)=\alpha_{1}(x) \text { for all } x \in X \\
& \eta\left(x^{\prime}, y\right)=\alpha_{2}(y) \text { for all } y \in Y
\end{aligned}
$$

For any $z \in Z$ and $a \in G$, one gets $\eta\left(a\left(x, y^{\prime}\right)\right)=\eta\left(a x, a y^{\prime}\right)=\eta\left(a x, y^{\prime}\right)=$ $\alpha_{1}(a x)=a\left(\alpha_{1}(x)\right)=a \eta\left(x, y^{\prime}\right)$. Similarly, $\eta\left(a\left(x^{\prime}, y\right)\right)=a \eta\left(x^{\prime}, y\right)$. Thus η is a G-morphism and as $\eta\left(x^{\prime}, y^{\prime}\right)=z^{\prime}$, it follows that η is a pointed G-morphism. Obviously, $\eta \circ u_{1}=\alpha_{1}$ and $\eta \circ u_{2}=\alpha_{2}$.

Finally, we show that η is unique. Suppose, there exists another morphism $\xi:\left(X+Y,\left(x^{\prime}, y^{\prime}\right)\right) \rightarrow\left(Z, z^{\prime}\right)$ in \mathcal{G}-Sets* such that $\xi \circ u_{1}=\alpha_{1}$ and $\xi \circ u_{2}=$ α_{2}. Then for any $x \in X$, we have $\left(\xi \circ u_{1}\right)(x)=\alpha_{1}(x)$ implying thereby $\xi\left(u_{1}(x)\right)=\alpha_{1}(x)$ which yields $\xi\left(x, y^{\prime}\right)=\eta\left(x, y^{\prime}\right)$ for all $\left(x, y^{\prime}\right) \in X+Y$. Therefore $\xi=\eta$. Similarly, for any $y \in Y$, we have $\left(\xi \circ u_{2}\right)(y)=\alpha_{2}(y)$ which yields $\xi\left(u_{2}(y)\right)=\alpha_{2}(y)$ implying thereby $\xi\left(x^{\prime}, y\right)=\eta\left(x^{\prime}, y\right)$ for all $\left(x^{\prime}, y\right) \in X+Y$. Thus $\xi=\eta$ and consequently η is unique. This completes the proof.

Theorem 3.3. The category \mathcal{G}-Sets* has finite intersections.
Proof. Let $\left\{u_{i}:\left(X_{i}, x^{\prime}\right) \rightarrow\left(X, x^{\prime}\right) \mid i=1,2, \ldots, n\right\}$ be a family of subobjects of an object (X, x^{\prime}) in \mathcal{G}-Sets* where u_{i} 's are inclusion mappings which are trivially pointed G-morphisms. Consider the set $X^{\prime}=\bigcap_{i=1}^{n} X_{i}$. In view of Lemma 2.1 (iii), X^{\prime} is a pointed G-set with the basepoint x^{\prime}. Hence, $\left(X^{\prime}, x^{\prime}\right) \in \mathcal{G}$-Sets*. Let $u:\left(X^{\prime}, x^{\prime}\right) \rightarrow\left(X, x^{\prime}\right)$ defined by $u(x)=x$ for all $x \in X^{\prime}$, be a morphism in \mathcal{G}-Sets*. We claim that X^{\prime} together with $u:\left(X^{\prime}, x^{\prime}\right) \rightarrow\left(X, x^{\prime}\right)$ is the intersection of the family of sub-objects $\left\{u_{i}:\left(X_{i}, x^{\prime}\right) \rightarrow\left(X, x^{\prime}\right) \mid i=1,2, \ldots, n\right\}$ in \mathcal{G}-Sets*.

Consider morphisms $v_{i}:\left(X^{\prime}, x^{\prime}\right) \rightarrow\left(X_{i}, x^{\prime}\right)$ defined by $v_{i}(x)=x$ for all $x \in X^{\prime}, i=1,2, \ldots, n$. Trivially v_{i} 's are G-morphisms and also $v_{i}\left(x^{\prime}\right)=x^{\prime}$. Therefore v_{i} 's are pointed G-morphisms.

For any $x \in X$, we have $\left(u_{i} \circ v_{i}\right)(x)=u_{i}\left(v_{i}(x)\right)=u_{i}(x)=x=u(x)$ which implies $u_{i} \circ v_{i}=u$. Now, for any object $Y \in \mathcal{G}$-Sets, let $f:\left(Y, y^{\prime}\right) \rightarrow\left(X, x^{\prime}\right)$
be a morphism in \mathcal{G}-Sets* which factors through each u_{i} i.e., $f=u_{i} \circ f_{i}$.
For any $y \in Y$, one gets $f(y)=\left(u_{i} \circ f_{i}\right)(y)=u_{i}\left(f_{i}(y)\right)=f_{i}(y) \in$ X_{i} which yields $f(Y) \subseteq X_{i}$ for each $i,(i=1,2, \ldots, n)$ implying thereby $f(Y) \subseteq \cap X_{i}=X^{\prime}$. Therefore, we can define a mapping $\eta:\left(Y, y^{\prime}\right) \rightarrow\left(X^{\prime}, x^{\prime}\right)$ by $\eta(y)=f(y)$ for all $y \in Y$. It can be easily shown that η is a pointed G-morphism. Now, for any $y \in Y$, we get $(u \circ \eta)(y)=u(\eta(y))=\eta(y)=f(y)$ which implies $u \circ \eta=f$.

It remains to show that η is unique. Suppose there exists another morphism $\xi:\left(Y, y^{\prime}\right) \rightarrow\left(X^{\prime}, x^{\prime}\right)$ in \mathcal{G}-Sets* such that $u \circ \xi=f$. Then we have $(u \circ \xi)(y)=f(y)$ yielding thereby $u(\xi(y))=\eta(y)$ which gives $\xi(y)=\eta(y)$ for all $y \in Y$ implying thereby $\xi=\eta$. This completes the proof.

To prove our next Theorem we require the following propositions:
Proposition 3.1. If $\delta: I \rightarrow \bigcup X_{i}$ is the mapping defined by $\delta(i)=x_{i}{ }^{\prime}$ for all $i \in I$. Then the set $\prod_{i \in I} X_{i}$ together with the base point δ is a pointed G-set.

Proof. By Proposition 2.1, $\prod_{i \in I} X_{i}$ is a G-set under the mapping $\phi: G \times$ $\prod_{i \in I} X_{i} \rightarrow \prod_{i \in I} X_{i}$ defined by $\phi(a, f)=a f$ for all $a \in G$ and $f \in \prod_{i \in I} X_{i}$, where $a f: I \rightarrow \bigcup_{i \in I} X_{i}$ is defined by $(a f)(i)=a(f(i))$ for each $i \in I$.

For any $a \in G$, we have $(\phi(a, \delta))(i)=(a \delta)(i)=a(\delta(i))=a\left(x_{i}{ }^{\prime}\right)=x_{i}{ }^{\prime}=$ $\delta(i)$ for all $i \in I$ which implies $\phi(a, \delta)=\delta$ and henceforth $\left(\prod_{i \in I} X_{i}, \delta\right)$ is a pointed G-set.

Proposition 3.2. Projections are pointed G-morphisms.
Proof. Let $\left\{\left(X_{i}, x_{i}^{\prime}\right)\right\}_{i \in I}$ be a family of pointed G-sets. Then in view of the above Proposition 3.1, $\prod_{i \in I} X_{i}$ with the base point δ is a pointed G-set. For each index $i \in I$, we define projections $p_{i}: \prod_{i \in I} X_{i} \rightarrow X_{i}$ by $p_{i}(f)=f(i)$.

Now, for any $a \in G$, we have $p_{i}(a f)=(a f)(i)=a(f(i))=a\left(p_{i}(f)\right)$ which shows that p_{i} 's are G-morphisms. Also we have $p_{i}(\delta)=\delta(i)=x_{i}{ }^{\prime}$. Therefore $p_{i}:\left(\prod_{i \in I} X_{i}, \delta\right) \rightarrow\left(X_{i}, x_{i}{ }^{\prime}\right)$ are pointed G-morphisms.
Theorem 3.4. The category \mathcal{G}-Sets* has arbitrary products.
Proof. Let $\left\{\left(X_{i}, x_{i}{ }^{\prime}\right)\right\}_{i \in I}$ be a family of objects in \mathcal{G}-Sets*. Consider the set $\prod_{i \in I} X_{i}=\left\{f: I \rightarrow \cup X_{i}\right\}$ such that $f(i) \in X_{i}$ for all $i \in I$. In view of the above

Proposition 3.1, the set $\left(\prod_{i \in I} X_{i}, \delta\right)$ is a pointed G-set.
For each $i \in I$, there are natural projections $p_{i}:\left(\prod_{i \in I} X_{i}, \delta\right) \rightarrow\left(X_{i}, x_{i}{ }^{\prime}\right)$ defined by $p_{i}(f)=f(i)$ for all $f \in \prod_{i \in I} X_{i}$. In view of the above Proposition $3.2, p_{i}$'s are pointed G-morphisms. We claim that $\left(\prod_{i \in I} X_{i}, \delta\right)$ together with the projection mappings $\left\{p_{i}\right\}_{i \in I}$ is the categorical product of the family $\left\{X_{i}\right\}_{i \in I}$ in \mathcal{G}-Sets*

Let $\left\{q_{i}:\left(X, x^{\prime}\right) \rightarrow\left(X_{i}, x_{i}{ }^{\prime}\right)\right\}$ be a family of morphisms in \mathcal{G}-Sets*. Define a mapping $\eta:\left(X, x^{\prime}\right) \rightarrow\left(\prod_{i \in I} X_{i}, \delta\right)$ such that $x \mapsto \eta(x)$, where $\eta(x): I \rightarrow \cup X_{i}$ is defined by $(\eta(x))(i)=q_{i}(x)$ for all $x \in X, i \in I$.

For any $a \in G$, one gets $(\eta(a x))(i)=q_{i}(a x)=a\left(q_{i}(x)\right)=a(\eta(x))(i)$ for all $i \in I$ which implies $\eta(a x)=a(\eta(x))$. Therefore η is a G-morphism. Also, we have $\left(\eta\left(x^{\prime}\right)\right)(i)=q_{i}\left(x^{\prime}\right)=x_{i}{ }^{\prime}=\delta(i)$ for all $i \in I$ which implies $\eta\left(x^{\prime}\right)=\delta$. Consequently, η is a pointed G-morphism.

Moreover, for any $x \in X$ and $i \in I$, we have $\left(p_{i} \circ \eta\right)(x)=p_{i}(\eta(x))=$ $(\eta(x))(i)=q_{i}(x)$ implying thereby $p_{i} \circ \eta=q_{i}$.

For the uniqueness of η, suppose there exists another morphism $\xi:\left(X, x^{\prime}\right) \rightarrow\left(\prod_{i \in I} X_{i}, \delta\right)$ in \mathcal{G}-Sets* such that $p_{i} \circ \xi=q_{i}$ for all $i \in I$. Then we have $\left(p_{i} \circ \xi\right)(x)=q_{i}(x)$ yielding thereby $p_{i}(\xi(x))=q_{i}(x)$ implying $(\xi(x))(i)=$ $\eta(x)(i)$ which gives $\xi(x)=\eta(x)$ for all $x \in X$. Therefore $\xi=\eta$. This completes the proof.

Theorem 3.5. The category \mathcal{G}-Sets* has arbitrary co-products.
Proof. Let $\left\{\left(X_{i}, x_{i}{ }^{\prime}\right)\right\}_{i \in I}$ be a family of objects in \mathcal{G}-Sets*. Consider the set $\bigcup X_{i}$ together with base point x^{\prime} such that we identify each $x_{i}{ }^{\prime}$ with x^{\prime}, then obviously $\left(\bigcup X_{i}, x^{\prime}\right)$ is a pointed G-set.

For each $i \in I$, define natural inclusions $u_{i}:\left(X_{i}, x_{i}{ }^{\prime}\right) \rightarrow\left(\bigcup X_{i}, x^{\prime}\right)$ by $u_{i}(x)=x$ for all $x \in X_{i}$. Trivially u_{i} 's are pointed G-morphisms. We claim that $\left(\bigcup X_{i}, x^{\prime}\right)$ together with the natural inclusions $\left\{u_{i}\right\}_{i \in I}$ is the categorical co-product of the family $\left(X_{i}, x_{i}{ }^{\prime}\right)$ in \mathcal{G}-Sets*.

Let $\left\{q_{i}:\left(X_{i}, x_{i}{ }^{\prime}\right) \rightarrow\left(Y, y^{\prime}\right)\right\}$ be a family of morphisms in \mathcal{G}-Sets*. Define a mapping $\eta:\left(\bigcup X_{i}, x^{\prime}\right) \rightarrow\left(Y, y^{\prime}\right)$ by $\eta(x)=q_{i}(x)$ for all $x \in X_{i}, i \in I$.

For any $a \in G$, we get $\eta(a x)=q_{i}(a x)=a\left(q_{i}(x)\right)=a(\eta(x))$ which shows that η is a G-morphism and also $\eta\left(x^{\prime}\right)=\eta\left(x_{i}^{\prime}\right)=q_{i}\left(x_{i}{ }^{\prime}\right)=y^{\prime}$. Therefore, η is a pointed G-morphism.

Moreover, for any $x \in X_{i}$, we have $\left(\eta \circ u_{i}\right)(x)=\eta\left(u_{i}(x)\right)=\eta(x)=q_{i}(x)$ which implies $\eta \circ u_{i}=q_{i}$.

It remains to show that η is unique. Suppose there exists another morphism $\xi:\left(\bigcup X_{i}, x^{\prime}\right) \rightarrow\left(Y, y^{\prime}\right)$ in \mathcal{G}-Sets* such that $\xi \circ u_{i}=q_{i}$ for all $i \in I$. Then we have $\left(\xi \circ u_{i}\right)(x)=q_{i}(x)$ which implies $\xi\left(u_{i}(x)\right)=\eta(x)$ yielding thereby $\xi(x)=\eta(x)$ for all $x \in X_{i}$. Therefore $\xi=\eta$ which completes the proof.

Theorem 3.6. The category \mathcal{G}-Sets* has equalizers and co-equalizers.
Proof. If $\alpha, \beta:\left(X, x^{\prime}\right) \rightarrow\left(Y, y^{\prime}\right)$ are two morphisms in \mathcal{G}-Sets*, then we have two morphisms $\alpha, \beta: X \rightarrow Y$ in \mathcal{G}-Sets. In view of [11, Theorem 3.3], the equalizer of α, β is (K, i), where $K=\{x \in X \mid \alpha(x)=\beta(x)\} \subseteq X$. Obviously, K is a G-subset of X under the mapping $\phi: G \times K \rightarrow K$ define by $\phi(g, k)=g k$ for all $g \in G, k \in K$. Also, we get $\phi\left(g, x^{\prime}\right)=g x^{\prime}=x^{\prime}$ and hence $\left(K, x^{\prime}\right)$ is a pointed G-subset of $\left(X, x^{\prime}\right)$.

Furthermore, $i: K \rightarrow X$ is an inclusion morphism in \mathcal{G}-Sets and also $i\left(x^{\prime}\right)=x^{\prime}$ which shows that i is a pointed G-morphism.

The above discussion yields that in the category \mathcal{G}-Sets*

$$
\left(K, x^{\prime}\right) \xrightarrow{i}\left(X, x^{\prime}\right) \xrightarrow{\alpha}\left(Y, y^{\prime}\right)=\left(K, x^{\prime}\right) \xrightarrow{i}\left(X, x^{\prime}\right) \xrightarrow{\beta}\left(Y, y^{\prime}\right)
$$

Let there be a morphism $u:\left(Z, z^{\prime}\right) \rightarrow\left(X, x^{\prime}\right)$ in \mathcal{G}-Sets* such that

$$
\left(Z, z^{\prime}\right) \xrightarrow{u}\left(X, x^{\prime}\right) \xrightarrow{\alpha}\left(Y, y^{\prime}\right)=\left(Z, z^{\prime}\right) \xrightarrow{u}\left(X, x^{\prime}\right) \xrightarrow{\beta}\left(Y, y^{\prime}\right)
$$

Then

$$
Z \xrightarrow{u} X \xrightarrow{\alpha} Y=Z \xrightarrow{u} X \xrightarrow{\beta} Y
$$

holds in \mathcal{G}-Sets.
Since \mathcal{G}-Sets has equalizers, for the morphism $u: Z \rightarrow X$, we have $\operatorname{Im}(u) \subseteq K$ by [11, Theorem 3.3]. Therefore, by the universal property of equalizer there exists a unique morphism $\eta: Z \rightarrow K$ defined by $\eta(z)=u(z)$ for all $z \in Z$ in \mathcal{G}-Sets such that

$$
Z \xrightarrow{\eta} K \xrightarrow{i} X=Z \xrightarrow{u} X
$$

Now, η is a G-morphism and also $\eta\left(z^{\prime}\right)=u\left(z^{\prime}\right)=x^{\prime}$ which show that η is a pointed G-morphism. Thus, we have

$$
\left(Z, z^{\prime}\right) \xrightarrow{\eta}\left(K, x^{\prime}\right) \xrightarrow{i}\left(X, x^{\prime}\right)=\left(Z, z^{\prime}\right) \xrightarrow{u}\left(X, x^{\prime}\right) .
$$

This shows that $\left(K, x^{\prime}\right)$ together with the morphism i is the equalizer of the pair of morphisms α and β in \mathcal{G}-Sets*.

We now proceed to prove the result for co-equalizers:
Let R be a relation on Y such that for any $y_{1}, y_{2} \in Y, y_{1} R y_{2} \Leftrightarrow y_{1}=\alpha(x)$ and $y_{2}=\beta(x)$ for some $x \in X$. Consider a smallest equivalence relation \bar{R} on Y containing R. Then in view of Lemma $2.3,\left(Y / \bar{R},\left[y^{\prime}\right]\right)$ forms a pointed G-set.

Consider the projection mapping $p:\left(Y, y^{\prime}\right) \rightarrow\left(Y / \bar{R},\left[y^{\prime}\right]\right)$, then in view of [11, Theorem 3.4], $p: Y \rightarrow Y / \bar{R}$ is the co-equalizer of α and β in \mathcal{G}-Sets. Obviously, p is a pointed G-morphism such that

$$
\left(X, x^{\prime}\right) \xrightarrow{\alpha}\left(Y, y^{\prime}\right) \xrightarrow{p}\left(Y / \bar{R},\left[y^{\prime}\right]\right)=\left(X, x^{\prime}\right) \xrightarrow{\beta}\left(Y, y^{\prime}\right) \xrightarrow{p}\left(Y / \bar{R},\left[y^{\prime}\right]\right) .
$$

For any $\left(Z, z^{\prime}\right) \in \mathcal{G}$-Sets*, let $q:\left(Y, y^{\prime}\right) \rightarrow\left(Z, z^{\prime}\right)$ be another G-morphism such that

$$
\left(X, x^{\prime}\right) \xrightarrow{\alpha}\left(Y, y^{\prime}\right) \xrightarrow{q}\left(Z, z^{\prime}\right)=\left(X, x^{\prime}\right) \xrightarrow{\beta}\left(Y, y^{\prime}\right) \xrightarrow{q}\left(Z, z^{\prime}\right)
$$

holds in \mathcal{G}-Sets*. Then

$$
X \xrightarrow{\alpha} Y \xrightarrow{q} Z=X \xrightarrow{\beta} Y \xrightarrow{q} Z
$$

holds in \mathcal{G}-Sets. Therefore, by the universal property of co-equalizer there exists a unique morphism $\eta: Y / \bar{R} \rightarrow Z$ defined by $\eta([y])=q(y)$ for all $y \in Y$ in \mathcal{G}-Sets such that

$$
Y \xrightarrow{p} Y / \bar{R} \xrightarrow{\eta} Z=Y \xrightarrow{q} Z
$$

implying $\eta \circ p=q$.

Now, η is a G-morphism and also $\eta\left(\left[z^{\prime}\right]\right)=q\left(y^{\prime}\right)=z^{\prime}$ which in turn yields that η is a pointed G-morphism. Thus, we have

$$
\left(Y, y^{\prime}\right) \xrightarrow{p}\left(Y / \bar{R},\left[y^{\prime}\right]\right) \xrightarrow{\eta}\left(Z, z^{\prime}\right)=\left(Y, y^{\prime}\right) \xrightarrow{q}\left(Z, z^{\prime}\right)
$$

holds in \mathcal{G}-Sets*. This completes the proof.
Theorem 3.7. The category \mathcal{G}-Sets* has pullbacks and pushouts.

Proof. In view of Theorem 3.1 and Theorem 3.6, the category \mathcal{G}-Sets* has finite products and equalizers. Therefore, the category \mathcal{G}-Sets* has pullbacks [1, Theorem 3.7].

Again, in view of Theorem 3.2 and Theorem 3.6, the category \mathcal{G}-Sets* has finite co-products and co-equalizers. Taking in to account the dual of [1, Theorem $3.7]$, the category \mathcal{G}-Sets* has pushouts.

Theorem 3.8. The category \mathcal{G}-Sets* is complete.

Proof. In view of Theorem 3.4 and Theorem 3.6, the category \mathcal{G}-Sets* has arbitrary products and equalizers. Therefore, the category \mathcal{G}-Sets* is left complete [3, pp. 26]. Also, in view of Theorem 3.5 and Theorem 3.6, the category \mathcal{G}-Sets* has arbitrary co-products and co-equalizers. Therefore, the category \mathcal{G}-Sets* is right complete [3, pp. 26]. Henceforth, the category \mathcal{G}-Sets* is complete [3, pp. 26].

In view of [1, Theorem 6.3], completeness implies finitely completeness, the following is an immediate corollary to Theorem 3.8.

Corollary 3.1. The category \mathcal{G}-Sets* is finitely complete.

References

[1] T. S. Blyth, Categories, Longman, New York 1987.
[2] S. Eilenberg and S. MacLane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231-294.
[3] P. Freyd, Abelian Categories, Happer and Row, New York (1964).
[4] M. Irfan and Gulam Muhiuddin, On Behaviour of Morphisms in the Category of Pointed G-sets, Bulletin of Pure and Applied Mathematics (2008) (Accepted).
[5] M. Irfan and Gulam Muhiuddin, Images, Co-images and Factorization in the Category of G-sets, International Mathematical Forum (2008) (Accepted).
[6] S. MacLane, Categories for Working Mathematicians, Graduate Text in Mathematics, Springer 1972.
[7] B. Mitchell, Theory of Categories, New York Academic Press, New York 1965.
[8] S.M.A. Zaidi, M. Irfan and Gulam Muhiuddin, On the Category of G-Sets-I, International Mathematical Forum (2007) (Accepted).
[9] S.M.A. Zaidi, M. Irfan, Shabbir Khan and Gulam Muhiuddin, A Study on G-sets, South East Asian J. Math. Math. Sci., Vol. 6 (2007), 115-118.
[10] S. M. A. Zaidi, M. Irfan and Gulam Muhiuddin, On G-sets, Journal of National Academy of Mathematics, Vol. 21 (2007), 118-128.
[11] S. M. A. Zaidi, M. Irfan and Gulam Muhiuddin, On the Category of G-sets-II (communicated).

[^0]: * Correspoding author

 Key words: pointed G-sets, pointed G-morphisms and category of pointed G-sets. 2000 AMS Mathematics Subject Classification: 18A05, 20C05

