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Abstract

This paper deals with the study of products, co-products, equalizers,
co-equalizers, intersections, pullbacks and pushouts in the category of
pointed G-sets. Further, it is shown that the category of pointed G-sets
is complete and finitely complete.

1. Introduction

Motivated by the idea of pointed sets, pointed mappings, G-sets and
G-morphisms, the notions of pointed G-sets and pointed G-morphisms have
been defined, henceforth the category of pointed G-sets, denoted by G-Sets*,
has been constructed by taking into account pointed G-sets as the objects
of the category and pointed G-morphisms as the morphisms of the category.
Results regarding special morphisms like monomorphisms, epimorphisms, core-
tractions and retractions in the category G-Sets* have been proved in [4]. In
the present analysis, we study some more properties of the category G-Sets*
and show that the category G-Sets* has products, co-products, equalizers,
co-equalizers, intersections, pullbacks and pushouts. After showing the ex-
istence of these notions, we obtain that the category G-Sets* is complete and
finitely complete.
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2. Preliminaries

We begin with the following definitions and results that will be needed in the
sequel [8,9,10]:

Definition 2.1. Let G be a group and X be a set. Then X is said to be a
G-set if there exists a mapping φ : G × X → X such that for all a, b ∈ G and
x ∈ X the following conditions are satisfied:

(i) φ(ab, x) = φ(a, φ(b, x)),

(ii) φ(e, x) = x,

where e is the identity of G. The G-set X defined above will be denoted by the
pair (X, φ).
For the sake of convenience, one can denote φ(a, x) as ax. Under this notation,
above conditions become

(i) (ab)x = a(bx),

(ii) ex = x.

Definition 2.2. Let (X, φ) be a G-set. Then a subset A of X is called a
G-subset of X if (A, φ) is also a G-set.

Definition 2.3. Let X and Y be two G-sets. Then a mapping f : X → Y is
called a G-morphism from X to Y if f(ax) = af(x) for all a ∈ G, x ∈ X.

Definition 2.4. Let {Xi}i∈I be a family of G-sets. Then the product of
{Xi}i∈I , denoted by

∏

i∈I

Xi, is defined to be the set {f : I → ∪Xi | f(i) ∈
Xi for all i ∈ I}.

Proposition 2.1 [10, Theorem 3.2]. Let {Xi}i∈I be a family of G-sets.
Then, the product

∏

i∈I

Xi of the family {Xi}i∈I is a G-set.

Definition 2.5. A pointed set (X, x′) is said to be a pointed G-set if there
exists a mapping φ : G× X → X such that

(i) (X, φ) is a G-set,

(ii) φ(g, x′) = x′ for all g ∈ G.

Definition 2.6. Let (X, x′) be a pointed G-set. Then a pointed set (A, x′) is
called a pointed G-subset of (X, x′) if A is a G-subset of X.

Definition 2.7. Let (X, x′) be a pointed G-set and (A, x′), (B, x′) be two
pointed G-subsets of (X, x′) such that A ∩ B = ∅. Then disjoint union of
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(A, x′) and (B, x′) is defined to be the set (A ∪ B, x′).

Definition 2.8. Let (X, x′) be a pointed G-set and (A, x′), (B, x′) be two
pointed G-subsets of (X, x′). Then intersection of (A, x′) and (B, x′) is defined
to be the set (A ∩ B, x′).

Definition 2.9. Let (X, x′) and (Y, y′) be two pointed G-sets. Then their
product is defined to be the ordered pair (X × Y , (x′, y′)).

Definition 2.10. Let (X, x′) and (Y, y′) be two pointed G-sets. Then a map-
ping f : (X, x′) → (Y, y′) is called a pointed G-morphism if

(i) f is a G-morphism i.e., f(ax) = af(x) for all a ∈ G, x ∈ X,

(ii) f(x′) = y′.

We shall use the following lemmas in our main results:

Lemma 2.1. Let X and Y be two pointed G-sets. Then

(i) The cartesian product of any two pointed G-sets is a pointed G-set,

(ii) Disjoint union of pointed G-subsets is a pointed G-subset,

(iii) Intersection of a finite family of pointed G-subsets is a pointed G-subset.

Proof. The proof of Lemma 2.1 is trivial.

Lemma 2.2. Let (X, φ) be a G-set. Then

(i) for any x, y ∈ X, a relation ∼G on X defined by x∼Gy ⇔ y = φ(g, x)
for some g ∈ G, is an equivalence relation,

(ii) the set X/∼G of all G-equivalence classes is a G-set.

Proof(i). Let e be the identity element of G. Then for every x ∈ X, we have
x = φ(e, x) implying thereby x∼Gx. Now, suppose x∼Gy. Then y = φ(g, x) for
some g ∈ G. So, we have φ(g−1, y) = φ(g−1, φ(g, x)) = φ(g−1g, x) = φ(e, x) = x
implies that y∼Gx. Further, suppose x∼Gy and y ∼ z. Then there exist
g1, g2 ∈ G such that y = φ(g1, x) and z = φ(g2, y). Thus we have φ(g2g1, x) =
φ(g2, φ(g1, x)) = φ(g2, y) = z implying thereby x∼Gz. Consequently, ∼G is an
equivalence relation.
We call this equivalence relation as G-equivalence relation and corresponding
equivalence class as G-equivalence class.

Proof(ii). Proof is trivial.
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Lemma 2.3. Let (X, x′) be a pointed G-set and ∼G be a G-equivalence rela-
tion on X. Then the pointed set (X/∼G, [x′]) is a pointed G-set.

Proof. Define a mapping φ : G × X/∼G → X/∼G by φ(g, [x]) = [gx] for all
g ∈ G, x ∈ X. It can be easily seen that (X/∼G, φ) is a G-set and for any a ∈ G,
we get φ(a, [x′]) = [ax′] = [x′] which shows that (X/∼G, [x′]) is a pointed G-set.

3. Main Results

Theorem 3.1. The category G-Sets* has finite products.

Proof. If (X, x′) and (Y, y′) are two pointed G-sets, then in view of
Lemma 2.1 (i), (X × Y, (x′, y′)) is also a pointed G-set. Define natural projec-
tions p1 : X × Y → X and p2 : X × Y → Y by p1(x, y) = x and p2(x, y) = y for
all x ∈ X, y ∈ Y . Trivially, p1 and p2 are pointed G-morphisms. We claim that
(X × Y, (x′, y′)) together with morphisms p1 and p2 is the categorical product
of (X, x′) and (Y, y′).

Let α1 : (Z, z′) → (X, x′) and α2 : (Z, z′) → (Y, y′) be two morphisms in
G-Sets*, then we can define a mapping η : (Z, z′) → (X × Y, (x′, y′)) by

η(z) = (α1(z), α2(z)) for all z ∈ Z.

For any z ∈ Z and a ∈ G, one gets η(az) = (α1(az), α2(az)) =
a(α1(z), α2(z)) = a(η(z)) which shows that η is a G-morphism and also η(z′) =
(α1(z′), α2(z′)) = (x′, y′). Therefore η is a pointed G-morphism. Also, we have
(p1 ◦ η)(z) = p1(η(z)) = p1(α1(z), α2(z)) = α1(z) which implies p1 ◦ η = α1.
Similarly, p2 ◦ η = α2.

Finally, we show that η is unique. Suppose, there exists another morphism
ξ : (Z, z′) → (X × Y, (x′, y′)) in G-Sets* such that p1 ◦ ξ = α1 and p2 ◦ ξ = α2.
Then we have ξ(z) = (p1(ξ(z)), p2(ξ(z))) = (α1(z), α2(z)) = η(z) for all z ∈ Z
which implies ξ = η. This completes the proof.

Next, let (X, x′) and (Y, y′) be two pointed G-sets. Consider the pointed
G-subset of X × Y with the base point (x′, y′), consisting of the elements of
the type (x, y′) and (x′, y) for all x ∈ X, y ∈ Y and denote it by (X+Y, (x′, y′)).
Trivially, the natural inclusions u1 : (X, x′) → (X + Y, (x′, y′)) and
u2 : (Y, y′) → (X + Y, (x′, y′)) are pointed G-morphisms.

Theorem 3.2. The category G-Sets* has finite co-products.

Proof. If (X, x′) and (Y, y′) are two pointed G-sets, then obviously
(X + Y, (x′, y′)) is a pointed G-set. Define natural inclusions u1 : (X, x′) →
(X + Y, (x′, y′)) and u2 : (Y, y′) → (X + Y, (x′, y′)) by u1(x) = (x, y′) and
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u2(y) = (x′, y) for all x ∈ X, y ∈ Y which are trivially pointed G-morphisms.
We claim that (X + Y, (x′, y′)) together with morphisms u1 and u2 is the cat-
egorical co-product of (X, x′) and (Y, y′).

Let α1 : (X, x′) → (Z, z′) and α2 : (Y, y′) → (Z, z′) be two morphisms in
G-Sets*. Define a mapping η : (X + Y, (x′, y′)) → (Z, z′) as follows:

η(x′, y′) = z′,

η(x, y′) = α1(x) for all x ∈ X,

η(x′, y) = α2(y) for all y ∈ Y.

For any z ∈ Z and a ∈ G, one gets η(a(x, y′)) = η(ax, ay′) = η(ax, y′) =
α1(ax) = a(α1(x)) = aη(x, y′). Similarly, η(a(x′, y)) = aη(x′, y). Thus η is a
G-morphism and as η(x′, y′) = z′, it follows that η is a pointed G-morphism.
Obviously, η ◦ u1 = α1 and η ◦ u2 = α2.

Finally, we show that η is unique. Suppose, there exists another morphism
ξ : (X + Y, (x′, y′)) → (Z, z′) in G-Sets* such that ξ ◦ u1 = α1 and ξ ◦ u2 =
α2. Then for any x ∈ X, we have (ξ ◦ u1)(x) = α1(x) implying thereby
ξ(u1(x)) = α1(x) which yields ξ(x, y′) = η(x, y′) for all (x, y′) ∈ X +Y . There-
fore ξ = η. Similarly, for any y ∈ Y , we have (ξ ◦ u2)(y) = α2(y) which yields
ξ(u2(y)) = α2(y) implying thereby ξ(x′, y) = η(x′, y) for all (x′, y) ∈ X + Y .
Thus ξ = η and consequently η is unique. This completes the proof.

Theorem 3.3. The category G-Sets* has finite intersections.

Proof. Let {ui : (Xi, x
′) → (X, x′) | i = 1, 2, ..., n} be a family of sub-

objects of an object (X, x′) in G-Sets* where ui’s are inclusion mappings which

are trivially pointed G-morphisms. Consider the set X′ =
n⋂

i=1

Xi. In view

of Lemma 2.1 (iii), X′ is a pointed G-set with the basepoint x′. Hence,
(X′, x′) ∈ G-Sets*. Let u : (X′, x′) → (X, x′) defined by u(x) = x for all
x ∈ X′, be a morphism in G-Sets*. We claim that X′ together with
u : (X′, x′) → (X, x′) is the intersection of the family of sub-objects
{ui : (Xi, x

′) → (X, x′) | i = 1, 2, ..., n} in G-Sets*.

Consider morphisms vi : (X′, x′) → (Xi, x
′) defined by vi(x) = x for all

x ∈ X′, i = 1, 2, ..., n. Trivially vi’s are G-morphisms and also vi(x′) = x′.
Therefore vi’s are pointed G-morphisms.

For any x ∈ X, we have (ui ◦vi)(x) = ui(vi(x)) = ui(x) = x = u(x) which
implies ui ◦ vi = u. Now, for any object Y ∈ G-Sets, let f : (Y, y′) → (X, x′)
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be a morphism in G-Sets* which factors through each ui i.e., f = ui ◦ fi.

For any y ∈ Y , one gets f(y) = (ui ◦ fi)(y) = ui(fi(y)) = fi(y) ∈
Xi which yields f(Y ) ⊆ Xi for each i, (i = 1, 2, ..., n) implying thereby
f(Y ) ⊆ ∩Xi = X′. Therefore, we can define a mapping η : (Y, y′) → (X′, x′)
by η(y) = f(y) for all y ∈ Y. It can be easily shown that η is a pointed
G-morphism. Now, for any y ∈ Y , we get (u ◦ η)(y) = u(η(y)) = η(y) = f(y)
which implies u ◦ η = f .

It remains to show that η is unique. Suppose there exists another mor-
phism ξ : (Y, y′) → (X′, x′) in G-Sets* such that u ◦ ξ = f. Then we have
(u ◦ ξ)(y) = f(y) yielding thereby u(ξ(y)) = η(y) which gives ξ(y) = η(y) for
all y ∈ Y implying thereby ξ = η. This completes the proof.

To prove our next Theorem we require the following propositions:

Proposition 3.1. If δ : I → ⋃
Xi is the mapping defined by δ(i) = xi

′ for all
i ∈ I. Then the set

∏

i∈I

Xi together with the base point δ is a pointed G-set.

Proof. By Proposition 2.1,
∏

i∈I

Xi is a G-set under the mapping φ : G ×
∏

i∈I

Xi → ∏

i∈I

Xi defined by φ(a, f) = af for all a ∈ G and f ∈ ∏

i∈I

Xi, where

af : I → ⋃

i∈I

Xi is defined by (af)(i) = a(f(i)) for each i ∈ I.

For any a ∈ G, we have (φ(a, δ))(i) = (aδ)(i) = a(δ(i)) = a(xi
′) = xi

′ =
δ(i) for all i ∈ I which implies φ(a, δ) = δ and henceforth (

∏

i∈I

Xi, δ) is a pointed

G-set.

Proposition 3.2. Projections are pointed G-morphisms.

Proof. Let {(Xi, xi
′)}i∈I be a family of pointed G-sets. Then in view of the

above Proposition 3.1,
∏

i∈I

Xi with the base point δ is a pointed G-set. For each

index i ∈ I, we define projections pi :
∏

i∈I

Xi → Xi by pi(f) = f(i).

Now, for any a ∈ G, we have pi(af) = (af)(i) = a(f(i)) = a(pi(f)) which
shows that pi’s are G-morphisms. Also we have pi(δ) = δ(i) = xi

′. Therefore
pi : (

∏

i∈I

Xi, δ) → (Xi, xi
′) are pointed G-morphisms.

Theorem 3.4. The category G-Sets* has arbitrary products.

Proof. Let {(Xi, xi
′)}i∈I be a family of objects in G-Sets*. Consider the set∏

i∈I

Xi = {f : I → ∪Xi} such that f(i) ∈ Xi for all i ∈ I. In view of the above
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Proposition 3.1, the set (
∏

i∈I

Xi, δ) is a pointed G-set.

For each i ∈ I, there are natural projections pi : (
∏

i∈I

Xi, δ) → (Xi, xi
′)

defined by pi(f) = f(i) for all f ∈ ∏

i∈I

Xi. In view of the above Proposition

3.2, pi’s are pointed G-morphisms. We claim that (
∏

i∈I

Xi, δ) together with the

projection mappings {pi}i∈I is the categorical product of the family {Xi}i∈I

in G-Sets*.

Let {qi : (X, x′) → (Xi, xi
′)} be a family of morphisms in G-Sets*. Define

a mapping η : (X, x′) → (
∏

i∈I

Xi, δ) such that x �→ η(x), where η(x) : I → ∪Xi

is defined by (η(x))(i) = qi(x) for all x ∈ X, i ∈ I.

For any a ∈ G, one gets (η(ax))(i) = qi(ax) = a(qi(x)) = a(η(x))(i) for
all i ∈ I which implies η(ax) = a(η(x)). Therefore η is a G-morphism. Also,
we have (η(x′))(i) = qi(x′) = xi

′ = δ(i) for all i ∈ I which implies η(x′) = δ.
Consequently, η is a pointed G-morphism.

Moreover, for any x ∈ X and i ∈ I, we have (pi ◦ η)(x) = pi(η(x)) =
(η(x))(i) = qi(x) implying thereby pi ◦ η = qi.

For the uniqueness of η, suppose there exists another morphism
ξ : (X, x′) → (

∏

i∈I

Xi, δ) in G-Sets* such that pi ◦ ξ = qi for all i ∈ I. Then we

have (pi ◦ ξ)(x) = qi(x) yielding thereby pi(ξ(x)) = qi(x) implying (ξ(x))(i) =
η(x)(i) which gives ξ(x) = η(x) for all x ∈ X. Therefore ξ = η. This completes
the proof.

Theorem 3.5. The category G-Sets* has arbitrary co-products.

Proof. Let {(Xi, xi
′)}i∈I be a family of objects in G-Sets*. Consider the set⋃

Xi together with base point x′ such that we identify each xi
′ with x′, then

obviously (
⋃

Xi, x
′) is a pointed G-set.

For each i ∈ I, define natural inclusions ui : (Xi, xi
′) → (

⋃
Xi, x

′) by
ui(x) = x for all x ∈ Xi. Trivially ui’s are pointed G-morphisms. We claim
that (

⋃
Xi, x

′) together with the natural inclusions {ui}i∈I is the categorical
co-product of the family (Xi, xi

′) in G-Sets*.

Let {qi : (Xi, xi
′) → (Y, y′)} be a family of morphisms in G-Sets*. Define

a mapping η : (
⋃

Xi, x
′) → (Y, y′) by η(x) = qi(x) for all x ∈ Xi, i ∈ I.
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For any a ∈ G, we get η(ax) = qi(ax) = a(qi(x)) = a(η(x)) which shows
that η is a G-morphism and also η(x′) = η(x′

i) = qi(xi
′) = y′. Therefore, η is

a pointed G-morphism.

Moreover, for any x ∈ Xi, we have (η ◦ ui)(x) = η(ui(x)) = η(x) = qi(x)
which implies η ◦ ui = qi.

It remains to show that η is unique. Suppose there exists another mor-
phism ξ : (

⋃
Xi, x

′) → (Y, y′) in G-Sets* such that ξ ◦ ui = qi for all i ∈ I.
Then we have (ξ◦ui)(x) = qi(x) which implies ξ(ui(x)) = η(x) yielding thereby
ξ(x) = η(x) for all x ∈ Xi. Therefore ξ = η which completes the proof.

Theorem 3.6. The category G-Sets* has equalizers and co-equalizers.

Proof. If α, β : (X, x′) → (Y, y′) are two morphisms in G-Sets*, then we have
two morphisms α, β : X → Y in G-Sets. In view of [11, Theorem 3.3], the
equalizer of α, β is (K, i), where K = {x ∈ X | α(x) = β(x)} ⊆ X. Obviously,
K is a G-subset of X under the mapping φ : G×K → K define by φ(g, k) = gk
for all g ∈ G, k ∈ K. Also, we get φ(g, x′) = gx′ = x′ and hence (K, x′) is a
pointed G-subset of (X, x′).

Furthermore, i : K → X is an inclusion morphism in G-Sets and also
i(x′) = x′ which shows that i is a pointed G-morphism.

The above discussion yields that in the category G-Sets*

(K, x′) i−→ (X, x′) α−→ (Y, y′) = (K, x′) i−→ (X, x′) β−→ (Y, y′).

Let there be a morphism u : (Z, z′) → (X, x′) in G-Sets* such that

(Z, z′) u−→ (X, x′) α−→ (Y, y′) = (Z, z′) u−→ (X, x′) β−→ (Y, y′).

Then

Z
u−→ X

α−→ Y = Z
u−→ X

β−→ Y

holds in G-Sets.

Since G-Sets has equalizers, for the morphism u : Z → X, we have
Im(u) ⊆ K by [11, Theorem 3.3]. Therefore, by the universal property of
equalizer there exists a unique morphism η : Z → K defined by η(z) = u(z)
for all z ∈ Z in G-Sets such that

Z
η−→ K

i−→ X = Z
u−→ X.
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Now, η is a G-morphism and also η(z′) = u(z′) = x′ which show that η is
a pointed G-morphism. Thus, we have

(Z, z′) η−→ (K, x′) i−→ (X, x′) = (Z, z′) u−→ (X, x′).

This shows that (K, x′) together with the morphism i is the equalizer of
the pair of morphisms α and β in G-Sets*.

We now proceed to prove the result for co-equalizers:

Let R be a relation on Y such that for any y1, y2 ∈ Y , y1Ry2 ⇔ y1 = α(x)
and y2 = β(x) for some x ∈ X. Consider a smallest equivalence relation R̄ on
Y containing R. Then in view of Lemma 2.3, (Y/R̄, [y′]) forms a pointed G-set.

Consider the projection mapping p : (Y, y′) → (Y/R̄, [y′]), then in view
of [11, Theorem 3.4], p : Y → Y/R̄ is the co-equalizer of α and β in G-Sets.
Obviously, p is a pointed G-morphism such that

(X, x′) α−→ (Y, y′) p−→ (Y/R̄, [y′]) = (X, x′) β−→ (Y, y′) p−→ (Y/R̄, [y′]).

For any (Z, z′) ∈ G-Sets*, let q : (Y, y′) → (Z, z′) be another G-morphism
such that

(X, x′) α−→ (Y, y′) q−→ (Z, z′) = (X, x′) β−→ (Y, y′) q−→ (Z, z′)

holds in G-Sets*. Then

X
α−→ Y

q−→ Z = X
β−→ Y

q−→ Z

holds in G-Sets. Therefore, by the universal property of co-equalizer there
exists a unique morphism η : Y/R̄ → Z defined by η([y]) = q(y) for all y ∈ Y
in G-Sets such that

Y
p−→ Y/R̄

η−→ Z = Y
q−→ Z

implying η ◦ p = q.

Now, η is a G-morphism and also η([z′]) = q(y′) = z′ which in turn yields
that η is a pointed G-morphism. Thus, we have

(Y, y′)
p−→ (Y/R̄, [y′])

η−→ (Z, z′) = (Y, y′)
q−→ (Z, z′)
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holds in G-Sets*. This completes the proof.

Theorem 3.7. The category G-Sets* has pullbacks and pushouts.

Proof. In view of Theorem 3.1 and Theorem 3.6, the category G-Sets* has
finite products and equalizers. Therefore, the category G-Sets* has
pullbacks [1, Theorem 3.7].

Again, in view of Theorem 3.2 and Theorem 3.6, the category G-Sets* has finite
co-products and co-equalizers. Taking in to account the dual of [1, Theorem
3.7], the category G-Sets* has pushouts.

Theorem 3.8. The category G-Sets* is complete.

Proof. In view of Theorem 3.4 and Theorem 3.6, the category G-Sets* has
arbitrary products and equalizers. Therefore, the category G-Sets* is left
complete [3, pp. 26]. Also, in view of Theorem 3.5 and Theorem 3.6, the
category G-Sets* has arbitrary co-products and co-equalizers. Therefore, the
category G-Sets* is right complete [3, pp. 26]. Henceforth, the category
G-Sets* is complete [3, pp. 26].

In view of [1, Theorem 6.3], completeness implies finitely completeness,
the following is an immediate corollary to Theorem 3.8.

Corollary 3.1. The category G-Sets* is finitely complete.
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