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Abstract

This paper deals with the study of products, co-products, equalizers,
co-equalizers, intersections, pullbacks and pushouts in the category of
pointed G-sets. Further, it is shown that the category of pointed G-sets
is complete and finitely complete.

1. Introduction

Motivated by the idea of pointed sets, pointed mappings, G-sets and
G-morphisms, the notions of pointed G-sets and pointed G-morphisms have
been defined, henceforth the category of pointed G-sets, denoted by G-Sets*,
has been constructed by taking into account pointed G-sets as the objects
of the category and pointed G-morphisms as the morphisms of the category.
Results regarding special morphisms like monomorphisms, epimorphisms, core-
tractions and retractions in the category G-Sets* have been proved in [4]. In
the present analysis, we study some more properties of the category G-Sets™*
and show that the category G-Sets* has products, co-products, equalizers,
co-equalizers, intersections, pullbacks and pushouts. After showing the ex-
istence of these notions, we obtain that the category G-Sets* is complete and
finitely complete.
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16 Some Constructions in the Category of Pointed G-Sets

2. Preliminaries

We begin with the following definitions and results that will be needed in the
sequel [8,9,10]:

Definition 2.1. Let G be a group and X be a set. Then X is said to be a
G-set if there exists a mapping ¢ : G x X — X such that for all a,b € G and
x € X the following conditions are satisfied:

(1) ¢(aba x) = ¢(aa ¢(ba $)),
(ii) ¢(e, x) ==,

where e is the identity of G. The G-set X defined above will be denoted by the

pair (X, ¢).
For the sake of convenience, one can denote ¢(a, z) as az. Under this notation,
above conditions become

(i) (ab)z = a(bx),
(ii) ex = .

Definition 2.2. Let (X, ¢) be a G-set. Then a subset A of X is called a
G-subset of X if (A, ¢) is also a G-set.

Definition 2.3. Let X and Y be two G-sets. Then a mapping f: X — Y is
called a G-morphism from X to Y if f(ax) =af(z) for all a € G,z € X.

Definition 2.4. Let {X;}i;c;r be a family of G-sets. Then the product of

{X.}ier, denoted by [] X;, is defined to be the set {f : I — UX; | f(i) €
icl
X, forallie I}

Proposition 2.1 [10, Theorem 3.2]. Let {X;};c; be a family of G-sets.

Then, the product [] X; of the family {X;}icr is a G-set.
i€l

Definition 2.5. A pointed set (X, z’) is said to be a pointed G-set if there
exists a mapping ¢ : G x X — X such that

(i) (X, o) is a G-set,

(ii) ¢(g,2") =2’ forall g € G.
Definition 2.6. Let (X, 2’) be a pointed G-set. Then a pointed set (A, z’) is
called a pointed G-subset of (X, z’) if A is a G-subset of X.

Definition 2.7. Let (X,2’) be a pointed G-set and (A, z’), (B,z') be two
pointed G-subsets of (X,z’) such that AN B = (. Then disjoint union of
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(A,2") and (B, ') is defined to be the set (AU B, z’).

Definition 2.8. Let (X,2’) be a pointed G-set and (A, z’), (B,z') be two
pointed G-subsets of (X, x’). Then intersection of (A, z’) and (B, z') is defined
to be the set (AN B, z’).

Definition 2.9. Let (X,z’) and (Y,y’) be two pointed G-sets. Then their
product is defined to be the ordered pair (X x Y, (2, ¢/)).

Definition 2.10. Let (X, ') and (Y, y’) be two pointed G-sets. Then a map-
ping f: (X, 2') — (Y,y') is called a pointed G-morphism if

(i) f is a G-morphism i.e., f(ax) =af(z) foralla e G, z € X,
(ii) f(=') =y
We shall use the following lemmas in our main results:
Lemma 2.1. Let X and Y be two pointed G-sets. Then
(i) The cartesian product of any two pointed G-sets is a pointed G-set,
(ii) Disjoint union of pointed G-subsets is a pointed G-subset,
(iii) Intersection of a finite family of pointed G-subsets is a pointed G-subset.

Proof. The proof of Lemma 2.1 is trivial.

Lemma 2.2. Let (X, ¢) be a G-set. Then

(i) for any z,y € X, a relation ~g on X defined by z~cy & y = ¢(g,x)
for some g € G, is an equivalence relation,

(ii) the set X/~¢ of all G-equivalence classes is a G-set.

Proof(i). Let e be the identity element of G. Then for every = € X, we have
x = ¢(e, x) implying thereby z~gx. Now, suppose x~gy. Then y = ¢(g, x) for
some g € G. So, we have ¢(g~',y) = ¢(g~ ', d(g,2)) = (9~ 'g,2) = d(e,z) ==
implies that y~gx. Further, suppose z~gy and y ~ z. Then there exist
91,92 € G such that y = ¢(g1,2) and z = ¢(ga,y). Thus we have ¢(g2g1,x) =
d(g2, ¢(91, %)) = ¢(g2,y) = z implying thereby z~gz. Consequently, ~¢ is an
equivalence relation.

We call this equivalence relation as G-equivalence relation and corresponding
equivalence class as G-equivalence class.

Proof(ii). Proof is trivial.
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Lemma 2.3. Let (X, z') be a pointed G-set and ~¢g be a G-equivalence rela-
tion on X. Then the pointed set (X/~g, [2/]) is a pointed G-set.

Proof. Define a mapping ¢ : G x X/~g — X/~g by ¢(g, [z]) = [gz] for all
g € G,z € X. Tt can be easily seen that (X/~¢, ¢) is a G-set and for any a € G,
we get ¢(a, [2]) = [az’] = [«'] which shows that (X/~g, [2/]) is a pointed G-set.

3. Main Results
Theorem 3.1. The category G-Sets* has finite products.

Proof. If (X,z') and (Y,y') are two pointed G-sets, then in view of
Lemma 2.1 (), (X x Y, (2',y')) is also a pointed G-set. Define natural projec-
tionsp; : X xY — Xandps : X XY — Y by p1(x,y) = x and p2(x,y) = y for
allz € X,y € Y. Trivially, p; and ps are pointed G-morphisms. We claim that
(X xY,(2',y')) together with morphisms p; and ps is the categorical product
of (X,z) and (Y,v/).

Let a1 : (Z,7) — (X,2') and asg : (Z,2") — (Y,y') be two morphisms in
G-Sets*, then we can define a mapping 7 : (Z,2) — (X x Y, (¢/,4')) by

n(z) = (1(2), az(z)) forall z € Z.

For any z € Z and a € G, one gets n(az) = (a1(az),as(az)) =
a(a(z), a2(z)) = a(n(z)) which shows that 7 is a G-morphism and also n(z’) =
(a1(2"), a2(2)) = (2, 4'). Therefore 7 is a pointed G-morphism. Also, we have
(p1on)(2) = p1(n(z)) = p1(a1(2), a2(z)) = a1(z) which implies p; o = ay.
Similarly, ps o = as.

Finally, we show that 7 is unique. Suppose, there exists another morphism
£:(Z,7) = (X xY,(2,y)) in G-Sets* such that p; 0 & = a3 and p2 0 £ = as.
Then we have £(2) = (p1(£(2)), p2(£(2))) = (@1(2), @2(z)) =n(z) forall z € Z
which implies £ = 1. This completes the proof.

Next, let (X, z') and (Y,y') be two pointed G-sets. Consider the pointed
G-subset of X x Y with the base point (z’,y’), consisting of the elements of
the type (z,y’) and (z/,y) forallz € X, y € Y and denote it by (X+Y, (2/,¢/)).
Trivially, the natural inclusions w; : (X,2’) — (X 4+ Y,(2',y)) and
us: (Y y) — (X +Y,(¢,y)) are pointed G-morphisms.

Theorem 3.2. The category G-Sets* has finite co-products.

Proof. If (X,2’) and (Y,y') are two pointed G-sets, then obviously
(X +Y,(2,y)) is a pointed G-set. Define natural inclusions u; : (X,z') —
)

Y
(X +Y,(@,y)) and ug : (Y,y') — (X +Y,(2',¢)) by wi(x) = (x,y) and
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uz(y) = (2',y) for all x € X, y € Y which are trivially pointed G-morphisms.
We claim that (X + Y, (2/,9')) together with morphisms u; and us is the cat-
egorical co-product of (X, 2’) and (Y, y').

Let a7 : (X,2') — (Z,7') and as : (Y,y') — (Z,2') be two morphisms in
G-Sets*. Define a mapping n: (X +Y, (2/,y')) — (Z, 2') as follows:

n(@',y') =2,
n(zx,y') = ai(x) forallz e X,
n(z',y) = as(y) forallyeY.

For any z € Z and a € G, one gets n(a(z,y’)) = n(azx, ay’) = nlazx,y’) =
a1(az) = a(ar(z)) = an(x,y’). Similarly, n(a(z’,y)) = an(z’,y). Thus 7 is a
G-morphism and as n(z’,y’) = 2/, it follows that 7 is a pointed G-morphism.
Obviously, nou; = a1 and o us = as.

Finally, we show that 7 is unique. Suppose, there exists another morphism
(X +Y,(2,y)) — (Z,7) in G-Sets* such that £ ou; = a3 and o ug =
ag. Then for any z € X, we have (£ o u1)(x) = ai(x) implying thereby
&(u1(x)) = an(z) which yields {(x,y') = n(z,y’) for all (z,y') € X +Y. There-
fore £ = n. Similarly, for any y € Y, we have (£ o us)(y) = as(y) which yields
&(u2(y)) = as(y) implying thereby &(z',y) = n(z’,y) for all (z/,y) € X +Y.
Thus £ = n and consequently 7 is unique. This completes the proof.

Theorem 3.3. The category G-Sets* has finite intersections.

Proof. Let {u; : (X;,2') — (X,2') | ¢ = 1,2,...,n} be a family of sub-
objects of an object (X, 2’) in G-Sets* where u;’s are inclusion mappings which

are trivially pointed G-morphisms. Consider the set X' = [\ X;. In view
i=1

of Lemma 2.1 (i43), X' is a pointed G-set with the basepoint 2’. Hence,
(X',2') € G-Sets*. Let u : (X',2') — (X,2’) defined by u(xz) = z for all
z € X', be a morphism in G-Sets*. We claim that X' together with
u : (X',2') — (X,2’) is the intersection of the family of sub-objects
{wi: (X;,2") = (X,2') | i =1,2,...,n} in G-Sets*.

Consider morphisms v; : (X', 2) — (X, 2’) defined by v;(z) = z for all
z € X' i=1,2,..,n Trivially v;’s are G-morphisms and also v;(z') = «’.
Therefore v;’s are pointed G-morphisms.

For any x € X, we have (u; 0v;)(x) = u;(vi(z)) = w;(x) = 2 = u(z) which
implies u; o v; = u. Now, for any object Y € G-Sets, let f : (YV,y) — (X, ')
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be a morphism in G-Sets* which factors through each u; i.e., f =w; o f;.

For any y € Y, one gets f(y) = (ui o fi)(y) = wi(fi(y)) = fily) €
X; which yields f(Y) C X; for each i, (i = 1,2,...,n) implying thereby
f(Y) C NX; = X'. Therefore, we can define a mapping n : (Y,v') — (X', )
by n(y) = f(y) forally € Y. It can be easily shown that 1 is a pointed

G-morphism. Now, for any y € Y, we get (uon)(y) = u(n(y)) = nly) = f(y)
which implies uon = f.

It remains to show that 7 is unique. Suppose there exists another mor-
phism ¢ : (Y,y') — (X',2') in G-Sets* such that w o & = f. Then we have
(uo&)(y) = f(y) yielding thereby u({(y)) = n(y) which gives {(y) = n(y) for

all y € Y implying thereby & = 7. This completes the proof.

To prove our next Theorem we require the following propositions:

Proposition 3.1. If § : I — |J X; is the mapping defined by 6(i) = z;’ for all
i € I. Then the set [] X; together with the base point ¢ is a pointed G-set.

i€l
Proof. By Proposition 2.1, [] X; is a G-set under the mapping ¢ : G x
i€l
11 Xi — [] Xi defined by ¢(a, f) = af for all a € G and f € [] X;, where
i€l i€l i€l
af : I — |J X; is defined by (af)(i) = a(f(:)) for each i € I.

i€l
For any a € G, we have (¢(a,9))(i) = (ad)(i) = a(6(i)) = a(z;) =z =
§(7) for all ¢ € I which implies ¢(a,d) = § and henceforth (][] X;, ) is a pointed
iel
G-set.

Proposition 3.2. Projections are pointed G-morphisms.

Proof. Let {(X;,x;)}icr be a family of pointed G-sets. Then in view of the
above Proposition 3.1, [ X; with the base point ¢ is a pointed G-set. For each
i€l
index i € I, we define projections p; : [[ X; — X; by pi(f) = f(4).
i€l

a(pi(f)) which

Now, for any a € G, we have p;(af) = (af)(i) = a(f(7))
0(i) = x;'. Therefore

shows that p;’s are G-morphisms. Also we have p;(§) =
pi : (I Xi,0) — (X;, z;") are pointed G-morphisms.
iel

Theorem 3.4. The category G-Sets* has arbitrary products.

Proof. Let {(X;,z;')}icr be a family of objects in G-Sets*. Consider the set

[1X: ={f:I— UX;} such that f(i) € X, for all ¢ € I. In view of the above
il
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Proposition 3.1, the set ([] X;,d) is a pointed G-set.
iel

For each i € I, there are natural projections p; : ([] X4,9) — (X;, 24')

iel
defined by p;(f) = f(i) for all f € [] X;. In view of the above Proposition
iel
3.2, p;’s are pointed G-morphisms. We claim that (][] X;,0) together with the

i€l
projection mappings {p;}ics is the categorical product of the family {X;}icr
in G-Sets*.

Let {¢; : (X,2') — (X;,z;")} be a family of morphisms in G-Sets*. Define

a mapping 7 : (X, x’) — (][] X;,d) such that z — n(zx), where n(z) : I — UX;
icl
is defined by (n(z))(i) = ¢;(z) for all x € X, i € I.

For any a € G, one gets (n(ax))(i) = ¢;i(ax) = a(qi(z)) = a(n(x))(i) for
all ¢ € T which implies n(az) = a(n(x)). Therefore n is a G-morphism. Also,
we have (n(z'))(i) = ¢;(2') = ;' = §(4) for all ¢ € I which implies n(z’) = 4.
Consequently, 1 is a pointed G-morphism.

Moreover, for any © € X and ¢ € I, we have (p; o n)(z) = pi(n(x)) =
(n(2)) (i) = ¢;(x) implying thereby p; o7 = g;.

For the uniqueness of 7, suppose there exists another morphism
& (X,2") — (I] Xi,0) in G-Sets* such that p; o & = ¢; for all i € I. Then we
il
have (p; o §)(z) = ¢;(x) yielding thereby p;({(x)) = ¢i(z) implying ({(x))(i) =
n(x) (@) which gives &(z) = n(z) for all x € X. Therefore & = n. This completes
the proof.

Theorem 3.5. The category G-Sets* has arbitrary co-products.

Proof. Let {(X;,z;)}icr be a family of objects in G-Sets*. Consider the set
|J X together with base point 2’ such that we identify each z;" with 2/, then
obviously (| X;,z’) is a pointed G-set.

For each ¢ € I, define natural inclusions u; : (X;,2;') — (U X, 2') by
u;(z) = x for all x € X;. Trivially u;’s are pointed G-morphisms. We claim
that (|J X;, ") together with the natural inclusions {u;};cr is the categorical
co-product of the family (X;,x;’) in G-Sets*.

Let {g; : (X;,2) — (Y,y')} be a family of morphisms in G-Sets*. Define
a mapping 7 : (U X, 2’) — (Y, ') by n(x) = ¢;(x) for all x € X, i € I.
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For any a € G, we get n(ax) = ¢;(ax) = a(g;(x)) = a(n(z)) which shows
that 7 is a G-morphism and also n(z') = n(x}) = ¢:(z;") = v/. Therefore, 7 is
a pointed G-morphism.

Moreover, for any x € X;, we have (o w;)(z) = n(u;(z)) = n(z) = ¢;(x)
which implies 1 o u; = ¢;.

It remains to show that 7 is unique. Suppose there exists another mor-
phism ¢ : (UX;,2') — (Y,y') in G-Sets* such that £ ou; = ¢; for all ¢ € I.
Then we have (§ou;)(z) = ¢;(x) which implies £(u;(x)) = n(x) yielding thereby
&(z) = n(x) for all z € X;. Therefore £ = n which completes the proof.

Theorem 3.6. The category G-Sets* has equalizers and co-equalizers.

Proof. If o, 8: (X,2") — (Y, /) are two morphisms in G-Sets*, then we have
two morphisms o, : X — Y in G-Sets. In view of [11, Theorem 3.3], the
equalizer of a, 8 is (K, i), where K = {x € X | a(z) = B(z)} € X. Obviously,
K is a G-subset of X under the mapping ¢ : G x K — K define by ¢(g, k) = gk
for all g € G, k € K. Also, we get ¢(g,2') = g’ = 2’ and hence (K,z’) is a
pointed G-subset of (X, z').

Furthermore, 7 : K — X is an inclusion morphism in G-Sets and also
i(z") = 2’ which shows that i is a pointed G-morphism.

The above discussion yields that in the category G-Sets*
(K.') == (X,2') 5 (Vi) = (K.2) = (X.a') 5 (V).
Let there be a morphism « : (Z, 2') — (X, ') in G-Sets* such that
(2.2) = (X,2)) 2 (V) = (2,2) = (X.a)) 25 (V).

Then
z45x Sy=z%x Ly
holds in G-Sets.
Since G-Sets has equalizers, for the morphism v : Z7 — X, we have
Im(u) € K by [11, Theorem 3.3]. Therefore, by the universal property of

equalizer there exists a unique morphism 7 : Z — K defined by n(z) = u(z)
for all z € Z in G-Sets such that

7K x=7"%X.
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Now, 7 is a G-morphism and also 7(z’) = u(2") = 2’ which show that 7 is
a pointed G-morphism. Thus, we have
(2,2) 25 (K.a') = (X,2') = (2,2) = (X,2).

This shows that (K, z’) together with the morphism ¢ is the equalizer of
the pair of morphisms o and 3 in G-Sets*.

We now proceed to prove the result for co-equalizers:

Let R be a relation on Y such that for any y1,42 € Y, y1 Ry2 & y1 = a(z)
and yo = fB(z) for some z € X. Consider a smallest equivalence relation 12 on
Y containing R. Then in view of Lemma 2.3, (Y/R, [y]) forms a pointed G-set.

Consider the projection mapping p : (Y,y') — (Y/R,[y]), then in view

of [11, Theorem 3.4], p : Y — Y/R is the co-equalizer of o and /8 in G-Sets.
Obviously, p is a pointed G-morphism such that

(X,2') <5 (V,y') 2 (YR, ) = (X,2) 5 (V) 2 (Y/R, [y).

For any (Z, 2') € G-Sets*, let q : (Y,y') — (Z,2’) be another G-morphism
such that

(X,2) % (Voy) 5 (2,2) = (X.a') 5 (Voy) % (2,2)
holds in G-Sets*. Then
XYy SLz-x" v 1z

holds in G-Sets. Therefore, by the universal property of co-equalizer there
exists a unique morphism 7 : Y/R — Z defined by n([y]) = ¢q(y) forall y € Y
in G-Sets such that

y Ly R-Lz=y L2z
implying nop =gq.

Now, 71 is a G-morphism and also n([z']) = ¢(¢/) = 2’ which in turn yields
that n is a pointed G-morphism. Thus, we have

(Y,y') == (Y/R[Y)) == (2.2) = (V.y) = (2,2
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holds in G-Sets*. This completes the proof.
Theorem 3.7. The category G-Sets* has pullbacks and pushouts.

Proof. In view of Theorem 3.1 and Theorem 3.6, the category G-Sets* has
finite products and equalizers. Therefore, the category G-Sets* has
pullbacks [1, Theorem 3.7].

Again, in view of Theorem 3.2 and Theorem 3.6, the category G-Sets* has finite
co-products and co-equalizers. Taking in to account the dual of [1, Theorem
3.7], the category G-Sets* has pushouts.

Theorem 3.8. The category G-Sets* is complete.

Proof. In view of Theorem 3.4 and Theorem 3.6, the category G-Sets* has
arbitrary products and equalizers. Therefore, the category G-Sets* is left
complete [3, pp. 26]. Also, in view of Theorem 3.5 and Theorem 3.6, the
category G-Sets* has arbitrary co-products and co-equalizers. Therefore, the
category G-Sets* is right complete [3, pp. 26]. Henceforth, the category
G-Sets* is complete [3, pp. 26].

In view of [1, Theorem 6.3], completeness implies finitely completeness,
the following is an immediate corollary to Theorem 3.8.

Corollary 3.1. The category G-Sets* is finitely complete.
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