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1 Introduction

We consider the multiple objective linear programming problem

MIN Cx, s.t. x ∈ M, (V P )

where M ⊂ R
n is a nonempty polyhedral convex set and C is a (p× n) matrix

with p ≥ 2 rows c1, · · · , cp. The problem (V P ) has p linear objective functions
fj(x) = 〈cj , x〉, j = 1, 2, · · · , p. Generally, these objective functions conflict
with one another over the decision set

M = {x ∈ Rn : Ax = h, x ≥ 0}, (1)

where A is a (m × n) matrix with m rows a1, · · · , am, m < n, A is of full row
rank and h = (h1, · · · , hm)T ∈ R

m.
The problem (V P ) arises from various applications in engineering, eco-

nomics, network planning, production planning etc. (see., e.g, [7], [20], [22],
[25]). For instance, for the perfect economical production plan, one wants to
simultaneously minimize the cost and maximize the quality. This example il-
lustrates a natural feature of this problem, namely, that typically the different
objectives contradict each other.

Various solution concepts for problem (V P ) have been proposed. The con-
cept of an efficient solution is commonly used. In particular, a point x0 ∈ M is
said to be an efficient solution for problem (V P ) if there exists no x ∈ M such
that Cx0 ≥ Cx and Cx0 �= Cx. Let ME denote the set of all efficient solutions
of problem (V P ). Many algorithms have been proposed to generate either all
of the efficient set ME , or a representative portion thereof, without any input
from decision maker; see, e.g., [1, 2, 10, 11, 15, 21, 24] and references therein.
For a survey of these and related results see [4].

It is well known that ME consists of a union of faces of M . While ME is
also always a connected set, generally, it is a complicated nonconvex subset
of the boundary of M [16]. Let Mex denote the set of all extreme points of
M . The set of all efficient extreme solutions ME ∩ Mex is a finite, discrete set
and is smaller than all of ME . Therefore, it ought to be more computationally
practical to generate the set ME ∩Mex and to present it to the decision maker
without overwhelming him or her than ME [4].

In this paper, we present a quite easy algorithm for generating all efficient
extreme solutions ME∩Mex and all unbounded efficient edges in problem (V P ).
As an application we solve the linear multiplicative programming associated
with the problem (V P ).

2 Efficient Condition

Assume henceforth that the decision M is a nonempty, nondegenerate polyhe-
dral convex set. In the case of degeneracy, one can use the right hand side per-
turbation method of Charnes (see, e.g., Chapter 10 [8]; Chapter 6 [13]) to reduce
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the nondegeneracy. For two vectors y1 = (y1
1 , ..., y1

p), y2 = (y2
1 , ..., y2

p) ∈ R
p,

y1 ≥ y2 denotes y1
j ≥ y2

j for j = 1, ..., p and y1 	 y2 denotes y1
j > y2

j for
j = 1, ..., p. As usual, R

p
+ denotes the nonnegative orthant of R

p.
A key result in all the sequel is the following characterization of efficiency

which can be found in many places (see, e.g., [16],[21], [23])

Theorem 2.1. A point x0 ∈ M is an efficient solution of the problem (VP) if
and only if there are real numbers λ1 > 0, · · · , λp > 0 such that x0 is an optimal
solution of the linear programming problem

min
{〈 p∑

j=1

λjc
j, x

〉
: x ∈ M

}
. (LP 1)

It is well known that a set Γ ⊂ R
n is a face of M if and only if Γ equals the

optimal solution set to the problem

min{〈α, x〉 : x ∈ M},

for some α ∈ R
n \ {0}. The following result is directly deduced from this fact

and Theorem 2.1.

Proposition 2.1. Let x0 be a relative interior point of a face Γ ⊆ M . If x0

is an efficient solution to the problem (V P ) then every point of Γ is efficient
solution (i.e., Γ ⊂ ME).

Let x0 be a point of M and let

I(x0) = {j ∈ {1, · · · , n} : x0
j = 0}. (2)

Denote ej = (0, · · · , 0, 1︸︷︷︸
jth

, 0, · · · , 0)T . Below is an optimality condition that

will be important in helping to develop our algorithm.

Theorem 2.2. A feasible solution x0 ∈ M is an efficient solution to the
problem (VP) if and only if there are real numbers λj > 0, j = 1, · · · , p, vj ≥ 0,
j ∈ I(x0), u1, · · · , um such that

p∑
j=1

λjc
j +

m∑
i=1

uia
i −

∑
j∈I(x0)

vje
j = 0. (3)

Proof. By Theorem 2.1, a point x0 ∈ M is an efficient solution of the problem
(V P ) if and only if there are real numbers λ1 > 0, · · · , λp > 0 such that x0

is an optimal solution of the linear programming problem (LP 1). Since the
problem (LP 1) is a linear programming problem, any x0 ∈ M is regular. By
Kuhn-Tucker Theorem, a point x0 ∈ M is an optimal solution of (LP 1), i.e
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x0 is an efficient solution of (V P ), if and only if there exists real numbers ui,
i = 1, · · · , m and vj ≥ 0, j = 1, · · · , n such that

p∑
j=1

λjc
j +

m∑
i=1

uia
i −

n∑
j=1

vje
j = 0 (4)

and
vjxj = 0, j = 1, · · · , n. (5)

From (5) and (2), we have

vj = 0 ∀j �∈ I(x0).

Combine this fact and (4), we can rewrite (4) as follows

p∑
j=1

λjc
j +

m∑
i=1

uia
i −

∑
j∈I(x0)

vje
j = 0.

The proof is straight forward. �

3 Determination of Efficient Extreme Solutions

and Unbounded Efficient Edges

It is well known that the efficient solution set ME is pathwise connected [16].
Hence, according to standard scheme (see [1], [2], [10],[15] etc.), to generate
the set of all efficient extreme solutions and all unbounded efficient edges in
the problem (V P ) we just need to present the procedure that generates all the
efficient extreme solutions adjacent to a given efficient extreme solution x0 ∈ M
and all unbounded efficient edges emanating from x0.

The mail tool for our algorithm is Theorem 2.2 that provides a condition
for a point x0 ∈ M to be an efficient solution for multiple objective linear
programming problem (V P ). This condition is closed to the efficient condition
which presented in [15] in terms of normal cones. Combining this condition and
pivot technique of the simplex procedure we will introduce a simple algorithm
for generating all efficient extreme solutions and all unbounded efficient edges in
the problem (V P ). Notice that this algorithm does not require the assumption
“M is nonempty polyhedral convex set in R

n of dimension n” as the algorithm
is proposed in [15].

Denote by A1, A2, · · · , An the columns of matrix A. Let x0 be a given
extreme point of M . Let J0 = {j ∈ {1, 2, · · · , n} : x0

j > 0}. It is clear
that J0 = {1, · · · , n} \ I(x0). We have |J0| = m and the set of m linearly
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independent vectors {Aj : j ∈ J0} are grouped together to form m× m basic
matrix B [8, 9]. The variables xj, j ∈ J0, are said to be basic variables and the
vectors Aj , j ∈ J0, are said to be basic vectors. For each k �∈ J0, we denote by
zk = (zk

1 , · · · , zk
n)T ∈ R

n,

zk
j =

{−zjk if j ∈ J0

0 if j �∈ J0, j �= k
1 if j = k,

(6)

where the real numbers zjk, j ∈ J0, satisfy the system of linear equations

Ak =
∑
j∈J0

zjkAj.

The next result is easily obtained by the theory linear programming and
Proposition 2.1, but we give a proof here for the convenience of the reader.

Proposition 3.1. Let x0 be an efficient extreme solution to the problem (V P ).
Assume that k �∈ J0 and x̂ := x0 + εzk where zk defined by (6) and ε is a small
enough positive number. Then

i) If x̂ is an efficient solution to the problem (V P ) and zjk ≤ 0 for all
j ∈ J0 then Γ(k) = {x = x0 + tzk : t ≥ 0} is an unbounded efficient edge of
M emanating from x0.

ii) If x̂ is an efficient solution to the problem (V P ) and there is at least
j0 ∈ J0 such that zj0k > 0 then [x0, x1] is an efficient edge to problem (V P )
where x1 = (x1

1, · · · , x1
n) ∈ M is an efficient extreme solution adjacent to the

efficient extreme solution x0,

x1
j =

⎧⎨
⎩

x0
j − θ0zjk if j ∈ J0 \ {r}

θ0 if j = k
0 otherwise,

(7)

and

θ0 = min{ x0
j

zjk
: zjk > 0, j ∈ J0} =

x0
r

zrk
.

Proof. Consider a given efficient extreme solution x0 = (x0
1, · · · , x0

n)T and
vector zk defined by (6) with k �∈ J0. For every θ > 0, let

x(θ) = x0 + θzk.

Compute directly, we have
Ax(θ) = h. (8)

i) If zjk ≤ 0 for all j ∈ J0 then x(θ) ≥ 0 for all θ ≥ 0. Combining this fact
and (8) once can see that Γ(k) = {x = x0 + tzk : t ≥ 0} is an unbounded edge
of the feasible solution set M emanating from x0. The point x̂ = x0 + εzk is a
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relative interior point of this ray Γ(k). Since x̂ ∈ ME , we invoke Proposition
2.1 to deduce that Γ(k) ⊂ ME .

ii) In case there is j0 ∈ J0 such that zj0k > 0, we have

x(θ) = x0 + θzk ≥ 0, ∀0 ≤ θ ≤ θ0, (9)

where

θ0 = min{ x0
j

zjk
: zjk > 0, j ∈ J0} =

x0
r

zrk
.

From (8) and (9) we have

[x0, x1] := {x0 + θzk : 0 ≤ θ ≤ θ0}
is a finite edge of the feasible solution set M emanating from x0 and x1 is
determined by (7). By virtue of Proposition 2.1 we have [x0, x1] ⊂ ME because
x̂ ∈ ME is a relative interior point of this edge. �

Proposition 3.1 give us a way for finding all efficient edges emanating from
a given efficient extreme solution x0. In view of Theorem 2.2, in order to decide
whether a point x̂ ∈ M is an efficient solution to problem (V P ) we have to
verify whether the following system has a solution

p∑
j=1

λjc
j +

m∑
i=1

uia
i −

∑
j∈I(x̂)

vje
j = 0

λj > 0, j = 1, · · · , p (10)

vj ≥ 0, j ∈ I(x̂),

where I(x̂) = {j ∈ {1, · · · , n} : x̂j = 0}.
Note that if (λ, u, v) ∈ Rp+m+|I(x̂)| is a solution of the system (10) then

(tλ, tu, tμ) is also a solution of this system for an arbitrary real number t > 0.
Therefore, instead of checking the consistency of the system (10), one can use
Phase I of simplex algorithm to check the consistency of the following system

p∑
j=1

λjc
j +

m∑
i=1

(ūi − ¯̄ui)ai −
∑

j∈I(x̂)

vje
j = 0

λj ≥ 1, j = 1, · · · , p; vj ≥ 0, j ∈ I(x̂), (11)

ūi, ¯̄ui ≥ 0, i = 1, · · · , m.

Let x0 be a given efficient extreme solution. The procedure for determining
all the efficient extreme solutions adjacent to x0 and all the unbounded efficient
edges emanating from x0 can be described as follows.

Procedure EFFICIENCY(x0)
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Step 1. Determine the set J0 = {j ∈ {1, 2, · · ·, n} : x0
j > 0}. Let ε be a small

enough positive real number.

Step 2.
for each k �∈ {1, · · · , n} \ J0 do


 Solve the system of linear equations

Ak =
∑
j∈J0

zjkAj

to determine the coefficients zjk, j ∈ J0.


 Let x̂ := x0 + εzk, where zk defined by (6).

 if x̂ ∈ ME (i.e., the system (11) has a solution) then

if zjk ≤ 0 ∀j ∈ J0 then
Γ = {x0 + θzk : θ ≥ 0} is an unbounded efficient edge.
Store the result.
else

[x0, x1] is a finite efficient edge where x1 determined by (7).
Store x1 if it has not been stored before

end if
end if

end for.

Note that the efficient solution set of (V P ) is pathwise connected. Hence, by
applying the above procedure for each new efficient extreme solution uncovered
in the process, we obtain all efficient extreme solutions and all unbounded
efficient edges of the problem (V P ).

Remark 3.1 It is well known that the data associated to a given extreme
point x0 ∈ M can be performed in the simplex tableau. Without loss of
generality and for the convenience, assume that J0 = {1, ..., m} and the basis
B = (A1, ..., Am) is the unit matrix Im. Then we have

Ak =
∑
j∈J0

zjkAj = (z1k, ..., zmk)T ,

where (z1k, ..., zmk)T stands for the transpose of the vector (z1k, ..., zmk). The
following Tableau 1 is the simplex tableau associated to x0.

Tableau 1
B basic variables A1 A2 ... Am Am+1 Am+2 ... An

A1 x1 1 0 ... 0 z1 m+1 z1 m+2 ... z1 n

A2 x2 0 1 ... 0 z2 m+1 z2 m+2 ... z2 n

...
...

...
...

...
...

...
...

...
...

Am xm 0 0 ... 1 zm m+1 zm m+2 ... zm n
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Then the Procedure EFFICIENCY (x0) has become much simpler by familiar
simplex pivot technique [8, 9, 13] (See illustrated example in Section 4).

Remark 3.2 Several methods for finding an initial efficient extreme solution
for (V P ) have proposed (see, e.g., [3], [12], [15], [21]). Here we have made use
of Benson’s test [3]. This procedure determines whether the problem (V P ) has
efficient solutions and to find an initial extreme solution if it exists. Namely,
solve

min{−zT Cx̄ + uT b}
s.t. zT C − uT A + wT = −eT C

w, z ≥ 0,

where x̄ is any feasible solution. If no optimal solution exists, the problem
(V P ) has ME = ∅. Otherwise, let (z̄, ū, w̄) be an optimal solution and we
obtain an efficient extreme solution to the problem (V P ) by solving

min
{〈 p∑

j=1

λ̄jc
j, x

〉
: x ∈ M

}
,

where λ̄ = (λ̄1, · · · , λ̄p) = (z̄ + e) and e is the vector in R
p whose entries are

each equal to one.

4 Computational Results

We begin with the following simple example to illustrate our algorithm. Con-
sider the multiple objective linear programming

MIN{Cx : Ax = b, x ≥ 0},
where

C =
(

1 0 0 0 0
0 1 0 0 0

)
, A =

⎛
⎝−2 −1 1 0 0

−1 −2 0 1 0
1 1 0 0 1

⎞
⎠ and b =

⎛
⎝−2

−2
6

⎞
⎠ .

In this example, m = 3, n = 5 and p = 2. Choose ε = 0.1. Using Benson’s
test, we obtain the first efficient extreme solution

x0 =
(2

3
,
2
3
, 0, 0,

14
3

)
.

It is clear that

J0 = {j ∈ {1, · · · , 5} : x0
j > 0} = {1, 2, 5} and {1, · · · , 5} \ J0 = {3, 4}.

The data associated to this efficient extreme solution is shown in Tableau 2.
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Tableau 2
AJ basic variables A1 A2 A3 A4 A5

A1
2
3 1 0 −2

3
1
3 0

A2
2
3 0 1 1

3 −2
3 0

A5
14
3 0 0 1

3
1
3 1

• Consider k = 3. We have θ0 = 2, r = 2 and

z3 =
(2

3
,−1

3
, 1, 0,−1

3

)
.

The system (11) associated to x̂ = x0+εz3 has a solution. That means x̂ ∈ ME .
We have a new efficient extreme solution x1 = x0 + θ0z

3 = (2, 0, 2, 0, 4) which
adjacent x0. The data associated to efficient extreme solution x1 is shown in
Tableau 3.

Tableau 3
AJ basic variables A1 A2 A3 A4 A5

A1 2 1 2 0 -1 0
A3 2 0 3 1 -2 0
A5 4 0 -1 0 1 1

• Consider k = 4. We have θ0 = 2, r = 1 and

z4 =
(
− 1

3
,
2
3
, 0, 1,−1

3

)
.

The system (11) associated to x̂ = x0 +εz4 has a solution. So, we have x̂ ∈ ME

and obtain a new efficient extreme solution x2 = x0+θ0z
4 = (0, 2, 0, 2, 4) which

adjacent x0. The data associated to efficient extreme solution x2 is shown in
Tableau 4.

Tableau 4
AJ basic variables A1 A2 A3 A4 A5

A4 2 3 0 -2 1 0
A2 2 2 1 -1 0 0
A5 4 -1 0 1 0 1

Repeat using Procedure EFFICIENCY(x1) and EFFICIENCY(x2) where
x1 and x2 are two efficient vertices have just determined above. At last, we have
obtained 3 efficient extreme solution x0 = (2

3 , 2
3 , 0, 0, 4 2

3); x1 = (2, 0, 2, 0, 4);
x2 = (0, 2, 0, 2, 4) for this problem.



10 Generating All Efficient Extreme Points...

In order to obtain a preliminary evaluation of the performance of the pro-
posed algorithm, we built a test software using C++ programming language
that implements the algorithm.

The following example introduced by Yu and Zeleny [24], and also consid-
ered in [1,2,15]. The problem is stated as follows.

MIN{Cx : Ax ≤ b, x ≥ 0},
where

C =

⎛
⎜⎜⎜⎝

−3 7 −4 −1 0 1 1 −8
−2 −5 −1 1 −6 −8 −3 2
−5 2 −5 0 −6 −7 −2 −6
0 −4 1 1 3 0 0 −1
−1 −1 −1 −1 −1 −1 −1 −1

⎞
⎟⎟⎟⎠ ,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 −4 1 −1 1 2 4
5 2 4 −1 3 7 2 7
0 4 −1 −1 −3 0 0 1
−3 −4 8 2 3 −4 5 −1
12 8 −1 4 0 1 1 0
−1 −1 −1 −1 −1 −1 −1 −1
8 −12 −3 4 −1 0 0 0
15 −6 13 1 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

40
84
18
100
40
−12
30
100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that each vertex is nondegenerate. We computed and have obtained 29
efficient extreme solutions in 0.031 seconds. This numerical result coincides the
result reported in [2] and [15].

Below we present our computational experimentation with the algorithm.
For each triple (p, m, n), the algorithm was run on 20 randomly generated test
problems having form similar to Yu and Zeleny problem. The elements of
constraint matrix A, the right-hand-side vector b and the objective function
coefficient matrix C were randomly generated integers belonging to the dis-
crete uniform distribution in the intervals [−12, 15], [−12, 100] and [−7, 8],
respectively. Test problems are executed on IBM-PC, chip Intel Celeron PIV
1.7 GHz, RAM 640 MB, C++ programming language, Microsoft Visual C++

compiler. Numerical results are summarized in Table 5.

In Table 5, it can be observed that computational requirements increase
with constraints size (i.e. m× n size). Another observation is that the number
of objectives have a significant effect on number of efficient points, therefore,
effect on computational time.

Table 5. Computational Results
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p m n NEPs TIME

3 17 20 8 0.08
3 20 20 6 0.068
3 25 30 8 0.248
5 17 20 110 1.308
5 20 20 106 1.324
5 25 30 40 1.467
7 17 20 209 3.292
7 20 20 160 2.166
7 25 30 176 7.178
8 17 20 553 14.471
9 17 20 665 23.769
10 17 20 372 7.033

NEPs: Average number of efficient vertices
TIME: Average CPU-Time in seconds.

5 An Application

As an application of above proposed algorithm, we consider the linear multi-
plicative programming

min{
p∏

j=1

〈cj , x〉 : x ∈ M}, (LMP )

where M is the polyhedral convex set defined by (1), p ≥ 2 is an integer, and
for each j = 1, · · · , p, vector cj ∈ R

n satisfies

〈cj, x〉 > 0 for all x ∈ M. (12)

It is well known that the problem (LMP ) is difficult global optimization
problem and it has been shown to be NP -hard, even when p = 2 [17]. This
problem have some important applications in engineering, finance, economics,
and other fields (see, e.g., [6]). In recent years, due to the requirement of the
practical applications, a resurgence of interest in problem (LMP ) occurred
(see. e.g., [5, 6, 14, 18]). In this section, we solve the problem (LMP ) based on
the relationships between this problem and associated multiple objective linear
programming problem.

First, we show the existence of solution of the problem (LMP ).

Proposition 5.1 The problem (LMP ) always has an optimal solution.

Proof. It is clear that it is sufficient to treat the case in which M is unbounded.
Let C denote the p × n matrix whose jth row equals cj , j = 1, 2, ..., p. Let Y
be defined by

Y = {y ∈ R
p|y = Cx, for some x ∈ M}.
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It follows readily from definitions that the problem (LMP ) is equivalent to the
following problem

min{g(y) =
p∏

j=1

yj : y ∈ Y }. (LMPY )

Therefore instead of showing the existence of solution of the problem (LMP )
we show the existence of solution of the problem (LMPY ). It can be shown
that the set Y is a nonempty polyhedral convex set in R

p, see, e.g., [19]. Denote
the set extreme points of Y by V (Y ) and the set of extreme directions of Y by
R(Y ). Then

Y = convV (Y ) + coneR(Y ), (13)

where convV (Y ) is the convex hull of V (Y ) and coneR(Y ) is the cone gener-
ated by R(Y ) [19]. Taking account of the assumption (12) the set Y must be
contained in intRp

+ = {u ∈ R
p|u 	 0}. It implies that

coneR(Y ) ⊂ intRp
+ ∪ {0}. (14)

Since convV (Y ) is a compact set, there is y0 ∈ convV (Y ) such that

g(ŷ) ≥ g(y0), for all ŷ ∈ convV (Y ). (15)

We claim that y0 must be a global optimal solution for problem (LMPY ).
Indeed, for any y ∈ Y , it follows from (13) and (14) that

y = ȳ + v ≥ ȳ, (16)

where ȳ ∈ convV (Y ) and v ∈ coneR(Y ). Furthermore, it is easily seen that the
objective function g(y) =

∏p
j=1 yj of problem (LMPY ) is increasing on intRp

+,
i.e., if y1 ≥ y2 	 0 implies that g(y1) ≥ g(y2). Combining (15), (16) and this
fact gives

g(y) ≥ g(ȳ) ≥ g(y0).

In other words, y0 is a minimal optimal solution of problem (LPMY ). The
proof is complete. �

The multiple objective linear programming problem (V P ) associated with
the linear multiplicative programming problem (LMP ) may be written as

MIN{Cx, x ∈ M},

where C is the p × n matrix whose jth row equals cj, j = 1, ..., p.
The next proposition tells us the relationships between problem (V P ) and

problem (LMP ). It is obtained from the definitions and the fact that the
objective function h(x) =

∏p
j=1〈cj , x〉 of problem (LMP ) is a quasiconcave

function [5].
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Proposition 5.2. The problem (LMP) has at least one global optimal solution
that belongs to the efficient extreme solution set ME ∩ Mex of the problem
(V P ).

As a consequence of Proposition 5.2, one can find a global optimal solution
to the problem (LMP ) by evaluating the objective function h(x) =

∏p
j=1〈cj, x〉

at each efficient extreme solution of problem (V P ). More precise, we have the
following procedure

Procedure SOLVE(LMP)
Step 1. Determine the set of all efficient extreme solution ME ∩ Mex for the
multiple objective linear programming problem which associates the problem
(LMP ) (Section 3).

Step 2. Determine the set

S∗ = {x∗ ∈ ME ∩ Mex : h(x∗) ≤ h(x) ∀ x ∈ ME ∩ Mex}
and terminate the procedure: each x∗ ∈ S∗ is a global optimal solution to
(LMP ).
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