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Abstract

In this paper, we give some results on direct sums of uniform modules.
We also characterized of QF−rings by class of modules having finite com-
position length and characterized of QF−rings by class of semiartinian,
CS−semisimple, SC rings.

1 Introduction

Throughout this paper, all rings are associative with identity and all modules
are unital right modules. The socle, the injective hull and the endomorphism
ring of M is denoted by Soc(M), E(M), and End(M). If the composition
length of a module M is finite, then we denote its length by l(M).

Given two R−modules M and N , N is called M−projective if for every
submodule X of M , any homomorphism ϕ : N −→ M/X can be lifted to a
homomorphism ψ : N −→ M . A module N is called projective if it is M−
projective for every R−module M . On the other hand, N is called quasi - pro-
jective if N is N−projective. N is called M−injective if for every submodule
A of M , any homomorphism α : A −→ N can be extended to a homomor-
phism β : M −→ N . A module N is called injective if it is M− injective for
every R−module M . On the other hand, N is called quasi−injective if N is
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N−injective. In particular, a ring R is called right (left) self−injective if RR

(RR) is quasi−injective. For basic properties of injective (projective) modules
we refer to [1], [2], [5], [7], [8], [9], [18], [21] and [24].

For a module M consider the following conditions:
(C1) Every submodule of M is essential in a direct summand of M .
(C2) Every submodule isomorphic to a direct summand of M is itself a di-

rect summand.
(C3) If A,B are direct summand of M with A ∩ B = 0, then A ⊕ B is a

direct summand of M .
A module M is called CS (or extending module) if it satisfies the condition

(C1); a continuous module if it satisfies (C1) and (C2), and a quasi−continuous
if it satisfies (C1) and (C3). A module M is called uniform extending if every
uniform submodule of M is essential in a direct summand of M . We have the
following implications:

Injective ⇒ quasi−injective ⇒ continuous ⇒ quasi−continuous ⇒ CS ⇒
uniform extending.

We refer to [5] and [18] for background on CS and (quasi−)continuous mod-
ules.

A family of submodules of a module M , whose sum in M is direct, is called
a local direct summand if every finite subsum is a direct summand of M . A
decomposition M = ⊕i∈IMi is said to be complement (uniform) direct sum-
mand if for every (uniform) direct summand A of M there exists a subset J of
I such that M = A ⊕ (⊕j∈JMj).

A module M is called uniserial if the set of all its submodules is linearly or-
dered by inclusion. If RR (RR) is uniserial, then we call R right (left) uniserial.
We call a module M serial if it is a direct sum of uniserial modules. The ring
R is called right (left) serial if RR (RR) is a serial module. For basic properties
of uniserial (serial) modules and rings we refer to [1], [5], [7], [20], [21] and [24].

For any module M , the submodule Z(M) =def {x ∈ M | xI = 0 for some
essential right ideal I of R}, called singular submodule of M . If Z(M) = M
then M is called singular, while if Z(A) = 0 then A is called nonsingular. For
basic properties of singular (nonsingular) modules we refer to [8], [9].

A moduleM is called (countably) Σ−uniform extending (CS, quasi−injective,
injective) ifM (A) (respectively, M (N)) is uniform extending (CS, quasi−injective,
injective) for any set A. Note that N denotes the set of all natural numbers.
A ring R is right (left) (countably) Σ−uniform extending (CS, injective) if
RR (RR) is (countably) Σ−uniform extending (CS, injective). If every right
R−module is CS, then R is defined to be CS−semisimple. A ring R is called
right (left) SC if every singular right (left) R−module is continuous.

In [10], Harada introduced and investigated the following condition for a
given ring R.

(∗)∗ Every non−cosmall right R−module contains a nonzero projective di-
rect summand.
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In [19], [20], a ring R is called a right co−H−ring if it satisfies (∗)∗ and the
ACC on right annihilator ideals. A ring R is right co−H if and only if R is a
right Σ−CS ring.

A ring R is called right (left) semi−artinian if every nonzero right (left)
R−module has a nonzero socle. A ring R is right (left) perfect if every right
(left) modules has a projective cover. The ring R is right semiperfect if every
finitely generated right (or left) modules has a projective cover. Every right
(left) perfect rings is semiperfect rings and right (left) perfect rings is also left
(right) semi - artinian rings. For basic properties of semi−artinian, perfect,
semiperfect rings we refer to [1], [5], [18], [21] and [24].

A ring R is called QF (quasi−Frobenius) if R is right and left self−injective
and Artinian. In [5, 18.1], R is a QF−ring iff R is right or left self−injective,
right or left Artinian. QF−rings have been studied in [2], [3], [4], [5], [6], [7],
[10], [12], [13], [15], [16], [19], [20] and [24].

In this paper, we give some results on direct sums of uniform modules. We
also characterized of QF−rings by class of modules having finite composition
length and characterized of QF−rings by class of semiartinian, CS−semisimple,
SC rings.

2 Direct sums of uniform modules

Proposition 2.1. (a) Let M be a module with l(M) = 2. Then M is CS.
(b) Let M = ⊕n

i=1Mi be a direct sum of submodules of length 2 such that Mi

is Mj−injective for any i, j = 1, .., n and i �= j. Then M is CS.

Proof. (a) Case 1. If M is an indecomposable module of length 2, we will
show that M is a uniform module. Suppose that M is not uniform. Consider
two non−zero submodules A,B of M such that A ∩ B = 0. Then, we have
0 ⊂ A ⊂ A ⊕ B ⊂ M and 0 �= A �= A ⊕ B �= M . Hence l(M) > 2, a
contradiction. Since M is a uniform module, so that M is CS.
Case 2. If M = A⊕B, with A,B are non−zero submodules of M , then A,B

are simple modules (because l(M) = 2). Hence M is CS.
(b) By (a), Mi is CS for any i = 1, 2, ..., n. By [11, Theorem 8] we have

(b).

Theorem 2.2. Let U1, U2 be uniform modules such that l(U1) = l(U2) < ∞.
Set U = U1 ⊕ U2. Then U satisfies (C3).

Proof. By [1], End(U1) and End(U2) are local rings. We show that U satisfies
(C3), i.e., for two direct summands S1, S2 of U with S1∩S2 = 0, S1⊕S2 is also
a direct summand of U . Note that, since u−dim(U) = 2, the following case is
trivial:

If one of the S′
is has uniform dimension 2, the other is zero.

Hence we consider the case that both S1, S2 are uniform. Write U = S2 ⊕
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K. By Azumaya’s Lemma (cf. [1, 12.6, 12.7]), either S2 ⊕ K = S2 ⊕ U1

or S2 ⊕ K = S2 ⊕ U2. Since U1 and U2 can interchange with each other,
we need only to consider one of the two possibilities. Let us consider the case
U = S2⊕K = S2⊕U1 = U1⊕U2 . Then, it follows S2

∼= U2. Write U = S1⊕H .
Then either U = S1 ⊕H = S1 ⊕ U1 or S1 ⊕H = S1 ⊕ U2.

If U = S1 ⊕ H = S1 ⊕ U1, then by modularity, we get S1 ⊕ S2 = S1 ⊕ X
where X = (S1 ⊕ S2) ∩ U1. From here, we get X ∼= S2

∼= U2. Since l(U1) =
l(U2) = l(X), we have U1 = X, and hence S1 ⊕ S2 = S1 ⊕ U1 = U .

If U = S1⊕H = S1⊕U2, then by modularity, we get S1⊕S2 = S1⊕V where
V = (S1 ⊕ S2) ∩ U2. From here, we get V ∼= S2

∼= U2. Since l(U2) = l(V ), we
have U2 = V , and hence S1 ⊕ S2 = S1 ⊕ U2 = U .

Thus U satisfies (C3), as desired.

Remark . Theorem 2.2 is not true, in general, if U1, U2 are uniform
modules such that l(U1) �= l(U2) < ∞, then U = U1 ⊕ U2 does not satisfy
(C3). For example, consider the special case of Z−modules. Take U1 = Z/2Z,
U2 = Z/4Z. Then U = U1 ⊕ U2 does not satisfy (C3).

Proof. We have U = {(x, y) | x ∈ U1, y ∈ U2}. Set S1 =< (1̄, 2̄) >=
{(0̄, 0̄); (1̄, 2̄)}, S2 = U1. Then U = S1 ⊕ U2 = S2 ⊕ U2, S1 ∩ S2 = 0. Since
S1 ⊕ S2 = {(0̄, 0̄); (1̄, 2̄); (1̄, 0̄); (0̄, 2̄)}, thus S1 ⊕ S2 is not direct summand of
U . Hence U does not satisfy (C3).

Corollary 2.3. ([6, Proposition 2.2.1]) Let U be a uniform module with finite
composition length. Then U is quasi−injective if and only if U ⊕ U is CS.

Proof. If M = U ⊕U is CS, then combining with Theorem 2.2 we can see that
M is quasi−continuous. Hence U is a quasi−injective module.

Corollary 2.4. Let U1, U2 be uniform modules such that l(U1) = l(U2) < ∞.
Set U = U1 ⊕ U2. If U is CS, then U1 is U2−injective and U2 is U1−injective.

Proof. If U is CS, then combining with Theorem 2.2 we can see that U is
quasi−continuous. The mutual injectivity of the U1, U2 follows from [18, 2.10].

Corollary 2.5. Let R be a ring with R = e1R ⊕ ...⊕ enR where each eiR is
a uniform right ideal and {ei}n

1 is a system of idempotents. Moreover assume
that l(e1R) = l(e2R) = ... = l(enR) <∞. Then R is right self−injective if and
only if (R⊕ R)R is CS.

Proof. Combining Corollary 2.3 and Corollary 2.4.

Corollary 2.6. Let U1, U2 be uniform modules such that l(U1) = l(U2) < ∞.
Set U = U1 ⊕ U2. The following assertions are equivalent:

(i) U satisfies (C2);
(ii) If X ⊆ U and X ∼= Uk (with k = 1 or k = 2), then X ⊆⊕ M .
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Proof. The implication (i) =⇒ (ii) is clear.
(ii) =⇒ (i). We show that U satisfies (C2), i.e., for two submodules X, Y

of U , with X ∼= Y and Y ⊆⊕ U , X is also a direct summand of U . Note
that, since u−dim(U) = 2, we have u−dim(Y ) = 0, 1, 2, the following case,
u−dim(Y ) = 0 is trival.
Case 1. If u−dim(Y ) = 1, then U = Y ⊕ U1 or U = Y ⊕ U2. Since U1

and U2 can interchange with each other, we need only consider one of the two
possibilities. Let us consider the case U = Y ⊕ U1 = U1 ⊕ U2, then it follows
X ∼= Y ∼= U/U1

∼= U2, by hypothesis (ii), we have X ⊆⊕ U , as required.
Case 2. If u−dim(Y ) = 2, then Y = U , hence X ∼= U . Let ϕ be an

isomorphism U −→ X. Setting Xk = ϕ(Uk), k ∈ {1, 2}, we have Xk
∼= Uk.

Note that X = ϕ(U) = ϕ(U1 ⊕ U2) = ϕ(U1) ⊕ ϕ(Uj) = X1 ⊕ X2. By the
hypothesis (ii), Xi, Xj ⊆⊕ U . By Theorem 2.2, we can see that X = U ,
proving (ii).

Proposition 2.7. Let M = ⊕i∈IMi, with all Mi uniform such that l(Mi) �
2, ∀i ∈ I. The following assertions are equivalent:

(i) M is a CS module;
(ii) Mi ⊕Mj is CS for every i, j ∈ I, i �= j and l(Mi) = l(Mj) = 2.

Proof. The implication (i) =⇒ (ii) is clear.
(ii) =⇒ (i). We will show that M is CS. Suppose that A = Mi ⊕Mj is CS,

where Mi, Mj are uniform modules such that l(Mi) = l(Mj) = 2. By Theorem
2.2, A is the quasi−continuous modules. Hence Mi, Mj are relatively injective
modules for every i, j ∈ I, i �= j and l(Mi) = l(Mj) = 2. Since M = X ⊕ Y ,
where X is semisimple and Y is a direct sum of relatively injective submodules
of length 2. By [5, Lemma 8.14], M is extending.

Theorem 2.8. Let M = ⊕n
i=1Mi be a decomposition such that: (a) all Mi are

uniform; (b) this decomposition of M is complement uniform direct summands;
and (c) all i, j ∈ {1, 2, ..., n}, i �= j, Mi can not be properly embedded in Mj .
Then the following statements are equivalent:

(i) M is CS module;
(ii) Mi ⊕Mj is CS, ∀1 � i < j � n.

Proof. The implication (i) =⇒ (ii) is clear.
(ii) =⇒ (i). We will show that M is CS. Suppose that A = Mi ⊕ Mj

is CS, where Mi, Mj are uniform modules such that Mi can not be properly
embedded in Mj . Let K be a non−zero submodule of Mi and let f : K −→Mj

be a homomorphism. Then K is a uniform module. Set U = {x− f(x) | x ∈
K} ⊆ Mi ⊕Mj . Then U ∼= K. Take y ∈ U ∩Mj , there exists x ∈ K such
that y = x − f(x). Since x = y + f(x) ∈ Mj ∩K = 0, we have y = 0. Hence
U ∩Mj = 0. Since A is a CS module, there exists a direct summand U ′ of A
such that U ⊆e U ′. By [22, Lemma 1], A has a decomposition that uniform



246 On the direct sums of uniform modules and QF rings

exchange, we have A = U ′ ⊕Mi or A = U ′ ⊕Mj.
Case 1. A = U ′ ⊕Mi. Let πi : U ′ ⊕Mi −→Mi be the canonical projection

and let ϕ = πi |Mj . Since U ⊆e U ′, so U ′ is a uniform closed submodule of
A and U ′ ∩Mj = 0. Hence ϕ is the monomorphism and it implies that ϕ is
isomorphism, i.e., A = U ′ ⊕Mj . Let α = πj |Mi, where πj : U ′ ⊕Mi −→ Mj

is the canonical projection. Therefore, for every x ∈ K, x = f(x) + (x− f(x)),
for some f(x) ∈ Mj and x − f(x) ∈ U ′. It follows that α(x) = πj |Mi (x) =
πj |Mi (f(x) + (x − f(x))) = πj |Mi (f(x)) + πj |Mi (x− f(x)) = f(x), i.e., f
can be extended to a homorphism α : Mi −→Mj . Hence Mj is Mi−injective.

Case 2. A = U ′⊕Mj . Let πj : U ′ ⊕Mj −→Mj be the canonical projection
and let β = πj |Mi. Therefore, for every x ∈ K, x = f(x)+(x−f(x)), for some
f(x) ∈Mj and x−f(x) ∈ U ′. It would imply that β(x) = β[(x−f(x))+f(x)] =
f(x), i.e., f can be extended to a homorphism β : Mi −→ Mj . Hence Mj is
Mi−injective.

Thus M = ⊕n
i=1Mi is a finite direct summand of relatively injective modules

Mi. By [11, Theorem 8], M is CS.

3 QF−rings

Theorem 3.1. Let R be a right quasi−continuous, right semi−artinian ring
such that (R ⊕ R)R is extending and R satisfies the ACC on right annihilator
ideals, then R is the QF−ring.

Proof. We show that R is a right Σ−extending ring. By [4, Theorem 3.2], R has
finite right uniform dimension. Then by [21, 5.1, page 189], R is semiperfect.
We have

R = e1R⊕ ...⊕ enR,

where {ei}n
i=1 is a set of mutually orthogonal primitive idempotents of R with

all eiR are uniform by RR is extending. Let M be a right local module. By
[7, 18.23.4], there exists i ∈ {1, .., n} such that M ∼= eiR/X. If X = 0, then
M is a projective module. If X �= 0, then by eiR is uniform, X is an essential
submodule of eiR. Hence M is a singular module.

Let U be a two−generated module, i.e, U = u1R+u2R for some u1, u2 ∈ U ,
then there exists an epimorphism ϕ : (R⊕ R)R −→ U . Let K = kerϕ. There
exist two submodules P1, P2 of (R⊕R)R such that R⊕R = P1 ⊕P2 and K is
an essential submodule of P1. Now

U = ϕ(R⊕ R) = ϕ(P1) ⊕ ϕ(P2),

where ϕ(P1) ∼= P1/K, so that ϕ(P1) is singular; and ϕ(P2) ∼= P2, so that ϕ(P2)
is projective. If U is uniform module and U �= Z(U), then U = U1 ⊕ U2 with
U1 �= 0 and projective, U2 singular. Hence U = U1, i.e., U is a projective
module. If U = Z(U), then U is the singular module.
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Let V be a uniform module. We prove that every submodule N of V , then
or N ⊆ Z(V ) or Z(V ) ⊆ N . If N is not a submodule of Z(V ), then there exists
x ∈ N\Z(V ) such that xR is not singular. If Z(V ) is the submodule of xR, then
Z(V ) ⊆ N , as required. If Z(V ) is not a submodule of xR, then there exists
y ∈ Z(V ) such that yR �⊆ xR. Note that xR + yR is a uniform module and
Z(xR+ yR) �= xR+ yR. Therefore xR+ yR is projective. We imply xR+ yR
is a local module. Set I = xR ∩ yR �= 0. We consider two modules xR/I and
yR/I with two maximal submodules are X/I and Y/I, respectively. We have
(xR+yR)/(xR+Y ) = (xR+Y +yR)/(xR+Y ) ∼= yR/(yR∩(xR+Y )) = yR/Y,
and (xR + yR)/(yR + X) ∼= xR/X. Note that yR/Y and xR/X are simple
modules, hence xR+Y and yR+X are maximal submodules of (xR+yR). By
modularity, (xR+Y )∩ (yR+X) = X+[(xR+Y )∩yR] = X+Y +I = X+Y ,
thus xR+ Y �= yR +X, a contradiction (because xR+ yR is a local module).
Thus Z(V ) ⊆ N .

We aim to show next that V/Z(V ) is a uniserial module. We consider two
submodules A, B of V such that Z(V ) ⊆ A and Z(V ) ⊆ B. Assume that
A �⊆ B and B �⊆ A, then there exist α ∈ A\B and β ∈ B\A with α, β �∈ Z(V ).
Therefore αR+ βR is a local module, a contradiction. Thus A ⊆ B or B ⊆ A,
i.e., V/Z(V ) is the uniserial module.

Set Ei = E(eiR), we show that Ei is a projective module. Set Z = Z(Ei).
By Ei is the uniform module, Ei/Z is also a uniserial module. By R is right
semi - artinian, there is an infinite strictly ascending chain

S1 ⊆ S2 ⊆ S3 ⊆ ... ⊆ Sm ⊆ ...,

where S1/Z = Soc(Ei/Z), S2/S1 = Soc(Ei/S1), ... , Sm+1/Sm = Soc(Ei/Sm),
... By Ei/Z is the uniserial module, Sm is the unique maximal submodule of
Sm+1 and Z is also the unique maximal submodule of S1. Hence Sm is the local
module for all m. But Sm is not the singular module, thus Sm is projective.
We prove that, there is k such that Sk = Ei. Suppose that there exist p < q
such that Sp

∼= Sq . Note that we have Sp ⊆ Sq . Let f : Sq −→ Sp be an
isomorphism and set Z∗ = f−1(Z), then Z∗ = Z (by Z is singular). Now

Sq/Z = Sq/Z
∗ ∼= Sp/Z,

thus l(Sq/Z) = l(Sp/Z), a contradiction. Hence Sp �∼= Sq for all p �= q. By Sm is
the projective, local module, there exists j ∈ {1, ..., n} such that Sm

∼= ejR (see
[1, 27.11]). By the set {1, ..., n} is finite, there is k such that Sk = Sk+1 = ....
Thus Sk = Ei, i.e., Ei is a projective module. Therefore E(RR) is projective.
By [10 , Theorem 3.6], R satisfies (∗)∗. Thus R is the right co−H−ring, i.e., R
is the Σ−extending ring. By [4 , Corollary 3.6], R is the QF−ring.

Theorem 3.2. Let R be a right continuous, right semi−artinian, right count-
ably Σ−uniform extending ring then R is the QF−ring.
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Proof. By [4, Theorem 3.2], R has finite right uniform dimension. We have

RR = R1 ⊕ ...⊕Rn,

where each Ri is the uniform module. Since R is right countably Σ−uniform
extending, thus R is right Σ−injective (see [13, Proposition 2.5]). Hence R is
the QF−ring.

Theorem 3.3. Let R be a left CS, right and left semi−artinian ring such that
(R ⊕R)R is extending and RR satisfies (C3), then R is the QF−ring.

Proof. By [4, Corollary 3.3], R is right perfect. By (R⊕ R)R is the extending
module, we have

R = e1R⊕ ...⊕ enR,

where {ei}n
i=1 is a set of mutually orthogonal primitive idempotents of R with

all eiR uniform and End(eiR) local. Let A be an arbitrary set, then R(A) =⊕
i∈I Mi with all Mi are uniform and End(Mi) local. In particular, where

each direct summand Mi, there exists k ∈ {1, ..., n} such that Mi
∼= ekR. Since

(R ⊕ R)R is CS, Mi ⊕Mj is CS for all i, j ∈ I and i �= j. By [17, Lemma 11],
R(A) is uniform extending.

We show that R(A) is a CS module. Let A be a closed submodule of R(A),
set Γ = {⊕α∈∧Uα | Uα ⊂ A, all Uα is uniform and ⊕α∈∧Uα is locally direct
summand of RA}. Γ is non−empty set by [17, Proposition 6]. We can find
a maximal member ⊕j∈JUj in Γ by Zorn’s lemma. Since R is right perfect
and R(A) is a projective right R−module, the decomposition R(A) =

⊕
i∈I Mi

is complement direct summand. Hence by [18, Theorem 2.25], every local
direct summand of R(A) is a direct summand. It follows that ⊕j∈JUj is a
direct summand of R(A). Set R(A) = ⊕j∈JUj ⊕ X. By modularity, A =
⊕j∈JUj ⊕ (X ∩ A). By X ∩ A is closed in A, and A is also closed in R(A),
so that X ∩ A is closed in R(A). Therefore X ∩ A = 0 by maximality of
⊕j∈JUj. Thus R(A) = A⊕X, i.e., R(A) is a CS module. Note that R is a right
quasi−continuous ring. Hence R is right Σ−CS. By [4, Corollary 3.6], R is the
QF−ring.

Proposition 3.4. Let R be a ring with R = e1R⊕...⊕enR where each eiR is an
uniform right ideal and {ei}n

1 is a system of idempotents. Moreover assume that
l(e1R) = l(e2R) = ... = l(enR) <∞. The following assertions are equivalent:

(a) (R ⊕R)R is CS;
(b) R is right self−injective;
(c) R is left self−injective;
(d) R is the QF−ring.

Proof. (a) ⇐⇒ (b). By Corollary 2.5.
(b) ⇐⇒ (d) and (c) ⇐⇒ (d). Note that l(RR) = l(e1R) + ...+ l(enR) < ∞,

thus R is right artinian. Therefore (b) ⇐⇒ (d) and (c) ⇐⇒ (d) by [5, 18.1].
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Proposition 3.5. Let R be a right quasi−continuous, CS−semisimple ring;
then R is a QF−ring.

Proof. By [5, 13.5], R is right and left artinian, RR = R1 ⊕ ...⊕Rn where each
Ri is uniform module such that l(Ri) <∞. By RR is quasi−continuous, Ri is
Rj−injective for any i �= j. In particular, Ri ⊕ Ri satisfies (C3), by Corollary
2.3. Note thatRi⊕Ri is a CS module. Thus Ri⊕Ri is quasi−continuous, i.e.,Ri

is quasi−injective. Since Ri is an injective module, so R is right self−injective.
This shows that R is a QF−ring.

Corollary 3.6. ([12, Corollary 3.2]) Let R be a right quasi−continuous, right
SC ring. If R(N)

R is CS, then R is a QF−ring.

Proof. By [12, Theorem 3.1], R is CS−semisimple. By Proposition 3.5, R is a
QF−ring.

Proposition 3.7. Let R be a ring such that RR does not contain a direct sum-
mand semisimple module. If R is CS−semisimple ring then R is a QF−ring.

Proof. By [5, 13.5], R is right and left artinian, RR = R1 ⊕ ... ⊕ Rn where
each Ri is uniform module such that l(Ri) � 2. By RR does not contain a
direct summand semisimple module, we have l(Ri) = 2. By Theorem 2.2,
Ri ⊕ Rj satisfies (C3). Note that Ri ⊕ Rj is a CS module. Thus Ri ⊕ Rj is
quasi−continuous, i.e., Ri is Rj−injective. Since Ri is injective, thus R is right
self−injective. This shows that R is a QF−ring.

Theorem 3.8. Let R be a right quasi−continuous ring. If R has finite right
uniform dimension and the direct sum of any two uniform right R−module is
CS, then R is a QF−ring.

Proof. By [6, Theorem 3.1.1], R is a right artinian ring, and uniform right
R−modules have length at most two. By RR is a CS module with finite uniform
dimension, we have RR = R1 ⊕ ...⊕Rn where each Ri is uniform module such
that l(Ri) � 2. Since RR is quasi−continuous, Ri is Rj−injective for any i �= j.
In particular, Ri ⊕ Ri satisfies (C3) (by Theorem 2.2). Note that Ri ⊕ Ri is
a CS module. Thus Ri ⊕ Ri is quasi−continuous, i.e., Ri is quasi−injective.
Since Ri is an injective module, R is right self−injective. This shows that R is
a QF−ring.
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