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Abstract

Let R be a ring. A right R-module N is called an M -p-injective module
if any homomorphism from an M -cyclic submodule of M to N can be
extended to an endomorphism of M . Generalizing this notion, we in-
vestigated the class of M -rp-injective modules and M -lp-injective mod-
ules, and proved that for a finitely generated Kasch module M , if M is
quasi-rp-injective, then there is a bijection between the class of maximal
submodules of M and the class of minimal left right ideals of its endomor-
phism ring S. In this paper, we give some characterizations and properties
of the structure of endomorphisms ring of M -rp-injective modules and
M -lp-injective modules and the relationships between them.

Lemma 1. Let M be a right R- module and S := End(MR). Then M is a
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quasi-rp-injective module if and only if for any non-zero element s ∈ S, there
exists t ∈ S with ts �= 0 satisfying one of the following equivalent conditions:
(1) lSKer(ts) = Sts;
(2) For any v ∈ S, if Ker(ts) ⊂ Ker(v), then Sv ⊆ Sts;
(3) For any u ∈ S, lS(Im(u) ∩Ker(ts)) = lS(Im(u)) + Sts.

Proof. Note that the condition (1) is a characterization of quasi-rp-injective
modules (see [23]), and the proof of (1) ⇔ (2) is routine.

We now prove (2) ⇒ (3). It is easy to see that lS(Im(u)) ⊂ lS(Im(u) ∩
Ker(ts)). Take any fts ∈ Sts and m ∈ Im(u) ∩ Ker(ts). Then fts(m) = 0.
This shows that fts ∈ lS(Im(u) ∩ Ker(ts)), and hence Sts ⊂ lS(Im(u) ∩
Ker(ts)). It follows that lS(Im(u)) + Sts ⊂ lS(Im(u) ∩Ker(ts)). Conversely,
let v ∈ lS(Im(u) ∩ Ker(ts)). Then v(Im(u) ∩ Ker(ts)) = 0. It follows that
Ker(tsu) ⊂ Ker(vu). This implies that Svu ⊂ Stsu. Then there is an f ∈ S
such that vu = ftsu. Hence (v − fts)u = 0, and therefore v − fts ∈ lS(Im(u))
or equivalently, v ∈ lS(Im(u)) + Sts. This shows that lS(Im(u) ∩Ker(ts)) ⊂
lS(ImU)) + Sts, proving our assertion.

(3) ⇒ (1) Taking u = 1M , we get the result immediately. �

By a similar argument, we can prove the following lemma for quasi-lp-
modules:

Lemma 2. Let M be a right R- module and S := End(MR). Then M is a
quasi-lp-injective module if and only if for any non-zero element s ∈ S, there
exists t ∈ S with st �= 0 satisfying one of the following equivalent conditions:
(1) lSKer(st) = Sst;
(2) For any v ∈ S, if Ker(st) ⊂ Ker(v), then Sv ⊆ Sst;
(3) For any u ∈ S, lS(Im(u) ∩Ker(st)) = lS(Im(u)) + Sst.

Recall that a right R- module is finitely cogenerated if and only if for any
family {Ai|i ∈ I} of submodules with

⋂

i∈I
Ai = 0, there is a finite subset I0 of

I such that
⋂

i∈I0
Ai = 0.

Lemma 3. Let M be a right R-module, S = End(MR) and 	 the set of all
s ∈ S such that Ker(s) is essential in M. If Soc(M) is essential in M, then
	 = lS(Soc(M)).
Proof. Take any s ∈ 	, we have 0 �= s and Ker(s) is essential in M . It
follows that Ker(s) ⊃ Soc(M), and hence lS(Ker(s)) ⊂ lS(Soc(M)). Since
Ss ⊂ lS(Ker(s)), we have s ∈ lS(Soc(M)). Conversely, if s ∈ lS(Soc(M)),
then Soc(M) ⊂ Ker(s). Because Soc(M) is essential in M, and then Ker(s)
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is essential in M, showing that s ∈ 	. �

Recall that a right R-module M is called a semiartinian module if and only
if for any proper submodule U of M, we have Soc(M/U) �= 0. If M is finitely
cogenerated or semiartinian, then Soc(M) is an essential submodule of M .

In special case, Let M be a quasi-rp-injective module. If M is finitely co-
generated or semiartinian then we also have 	 = lS(Soc(M)).

Let K be a subset of S. We denote Ker(K) =
⋂

ϕ∈K
Kerϕ.

Theorem 4. Let M be a quasi-rp-injective module and S = End(MR). If M
is a finitely generated Kasch module, then the following properties hold.
(1) Soc(SS) is essential in SS;
(2) Rad(M) = Ker(Soc(SS));
(3) If SS is finitely cogenerated as a left S-module, then lS(Rad(M)) is essen-
tial in SS.

Proof. (1) Since M is a quasi-rp-injective module, for any nonzero element
s ∈ S, there is an element t ∈ S satisfying ts �= 0 and lS(Ker(ts)) = Sts.
Since M is a finitely generated module, there exists a maximal submodule T
of M such that Ker(ts) ⊂ T. It follows that lS(T ) ⊂ lS(Ker(ts)) = Sts ⊂
Ss. By [[23],Theorem 2.4(2b)], lS(T ) is a minimal left ideal of S and hence
Soc(SS) ∩ Ss �= 0. This shows that Soc(SS) is essential in S.

(2) Take any maximal submodule T of M. By [[23], Theorem 2.4], lS(T ) is a
minimal left ideal of S contained in Soc(SS). It follows that Ker(Soc(SS)) ⊂ T
for any maximal submodule T of M, showing that Ker(Soc(SS)) ⊂ Rad(M).
Conversely, take any minimal left ideal I of S. By [[23], Theorem 2.4], Ker(I)
is a maximal submodule of M which implies that Rad(M) ⊂ Ker(Soc(SS)),
and hence Rad(M) = Ker(Soc(SS)).

(3) We have from (2) that lS(Rad(M)) = lSKer(Soc(SS)). In other hand,
we always have Soc(SS) ⊂ lSKer(SS)). Since SS is finitely cogenerated, by
[[13],Theorem 9.4.3], Soc(SS) is essential in SS. It follows that lS(Rad(M)) is
essential in SS. �

The following corollary is routine:

Corollary 5. Let M be a quasi-rp-injective module, S = End(MR). If M is
a finitely generated Kasch module and SS is semiartinian as a left S-module,
then lS(Rad(M)) is essential in SS.
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An element u of S is called a uniform element if u(M) is a uniform sub-
module of M.

Let R be a ring. An element u of R is called a right uniform element, if
u �= 0 and uR is a uniform right ideal of R.

Lemma 6. Let M be a right R-module. If u is a uniform element of S, then
the set:

Au = {s ∈ S|Ker(s) ∩ Im(u) �= 0}
is a left ideal containing lS(Im(u)).

Proof. Clearly Au �= ∅.
Taking any s1, s2 ∈ Au, we haveKer(s1)∩Im(u) �= 0, Ker(s2)∩Im(u) �= 0.

Because u is a uniform element of S, Ker(s1) ∩Ker(s2) ∩ Im(u) �= 0. Hence
there exists m ∈M such that s1(u(m)) = s2(u(m)) = 0 with u(m) �= 0. There-
fore Ker(s1−s2)∩Im(u) �= 0, and hence s1−s2 ∈ Au. Since Ker(s) ⊂ Ker(αs)
for any α, s ∈ S, we have αs ∈ Au for all α ∈ S, s ∈ Au. Clearly, lS(Im(u)) ⊂
Au. This shows that Au is a left ideal of S containing lS(Im(u)). �

The following lemma is helpful in proving the next theorem.

Lemma 7. Let M be a right R-module and u a uniform element of S. If s0 ∈ S
such that Ker(s0) ∩ Im(u) = 0, then the set:

Bu = {t ∈ S|Ker(ts0) ∩ Im(u) �= 0}
is a left ideal of S.

Proof. Clearly, Bu �= ∅.
Take any t1, t2 ∈ Bu. Then Ker(t1s0)∩ Im(u) �= 0, Ker(t2s0)∩ Im(u) �= 0.

Since u is a uniform element of S, Ker(t1s0)∩Ker(t2s0)∩Im(u) �= 0. It follows
that there is non-zero element x ∈ M such that t1s0u(x) = t2s0u(x) = 0.
Therefore Ker((t1 − t2)s0) ∩ Im(u) �= 0, and hence t1 − t2 ∈ Bu.

We now take any α ∈ S and t ∈ Bu. Then Ker(ts0) ∩ Im(u) �= 0. Since
Ker(ts0) ⊂ Ker(αts0) and Ker(αts0) ∩ Im(u) �= 0, we can see that αt ∈ Bu.
This shows that Bu is a left ideal of S. �

Lemma 8. Let M be a quasi-lp-injective right R-module. If u is a uniform
element of S, then the set:

Au = {s ∈ S|Ker(s) ∩ Im(u) �= 0}
is a maximal left ideal containing lS(Im(u)).
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Proof. Applying Lemma 3, we see that Au is a left ideal of S containing
lS(Im(u)). The remainder of the proof is to show the maximality of Au.

Take any s /∈ Au. Then Ker(s) ∩ Im(u) = 0, and hence su �= 0. Since M is
quasi-lp-injective, there exists t ∈ S such that sut �= 0 and lSKer(sut) = Ssut.
If m ∈ Ker(sut), then sut(m) = 0. It follows from s /∈ Au that m ∈ Ker(ut).
This shows that Ker(sut) = Ker(ut), and hence ut ∈ lS(Ker(sut)) = Ssut.
Thus, there exists f ∈ S such that ut = fsut which implies that (1−fs)ut = 0.
Then 1 − fs ∈ lS(ut), and hence the element 1 can be written in the form
1 = fs + h for some h ∈ lS(ut). It follows that S = Sfs + Sh. We will
prove that Sh ⊂ Au. Let gh ∈ Sh. Then we have ghut = 0. This shows that
0 �= Im(ut) ⊂ Ker(gh). Since Im(ut) ⊂ Im(u), we get Ker(gh) ∩ Im(u) �= 0,
showing that Sh ⊂ Au. Since Sfs ⊂ Ss, we have S = Au + Ss, proving the
maximality of Au. �

Corollary 9 [[25], Lemma 3.10]. Let R be a right self-rp-injective ring. If
u ∈ R is a right uniform element, then the set:

Mu = {x ∈ R|uR ∩ rR(x) �= 0}
is a maximal left ideal containing lR(u). �

Corollary 10 follows directly from Theorem 8.

Corollary 10. Let M be a quasi-lp-injective right R-module. If S is uniform,
then S is local.

Lemma 11. Let M be a quasi-lp-injective module and S its endomorphisms
ring. We assume that 0 �= ϕ ∈ S such that ϕ(M) is a simple submodule of M.
For any 0 �= ψ ∈ S, if ϕ(M) ∼= ψ(M), then Sϕ ∼= Sψ.

Proof. Since M is a quasi-lp-injective module and ψ �= 0, there exists ψ′ ∈ S
such that ψψ′ �= 0 and any homomorphism from ψψ′(M) −→ M can be ex-
tended to an endomorphism of M . Let σ : ψ(M) = ψψ′(M) −→ ϕ(M) be
an isomorphism. Then σ can be extended to an endomorphism σ of M. Let
ι1 : ψ(M) −→M and ι2 : ϕ(M) −→M be inclusions. We have σι1 = ι2σ.

We note that σ|ψ(M) = σ and σψ(M) = σψ(M) = ϕ(M). (∗)

We now define γ : Sϕ −→ Sψ with γ(sϕ) = sσψ.

If sϕ = s′ϕ, then (s − s′)ϕ = 0. It follows that Im(ϕ) ⊂ Ker(s − s′). By
(∗), we have Im(σψ) = Im(ϕ) ⊂ Ker(s− s′). Then (s− s′)σψ = 0, and hence
sσψ = s′σψ. Thus γ(sϕ) = γ(s′ϕ), showing that γ is well-defined.
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We have γ(sϕ + s′ϕ) = γ((s + s′)ϕ) = ((s + s′)σψ) = ((sσψ) + s′σψ) =
γ(sϕ) + γ(s′ϕ). In other hand, we have γ(tsϕ) = γ((ts)ϕ) = tsσψ = t(sσψ) =
t(γ(sϕ)). This indicates that γ is an S-homomorphism.

Suppose that γ(sϕ) = γ(s′ϕ). Then sσψ = s′σψ, and hence we have
Im(σψ) ⊂ Ker(s− s′). By (∗), we have Im(ϕ) ⊂ Ker(s− s′). Thus sϕ = s′ϕ,
proving that γ is one-to-one.

To prove γ is onto, we take any sψ ∈ Sψ. Let σ−1 : ϕ(M) −→ ψ(M) be
the inverse of σ. As before, σ−1 can be extended to endomorphism σ−1 of M
such that σ−1ι2 = ι1σ

−1. Then for any m ∈M we have:

sσ−1σψ(m) = sσ−1(σψ(m)) = sσ−1(ι2σψ(m)) = s(σ−1ι2)(σψ(m))

= s(ι1σ−1)(σψ(m)) = sι1(σ−1σ)(ψ(m)) = sι1ψ(m) = sψ(m).

This means that there exists sσ−1 ∈ S such that γ(sσ−1ϕ) = sψ, showing that
γ is onto, and the proof of our lemma is completed. �

Remark 12. Let M be a right R-module, S = End(M) and 	 = {s ∈
S|Ker(s) ⊂∗

> M}. Suppose that M is a self-generator. Then rS(s) ⊂∗
> S if

and only if s ∈ 	.

Proof. Let s ∈ 	. Take any 0 �= t ∈ S. Since Ker(s) ⊂∗
> M, t(M)∩Ker(s) �= 0.

It follows that Ker(st) �= 0. Because M is a self-generator, there is 0 �= k ∈ S
such that 0 �= k(M) ⊂> Ker(st). Therefore, we have stk = 0. It means that
tk ∈ rS(s). Since 0 �= k(M) ⊂> Ker(st) ⊂> t(M) ∩ Ker(s), tk �= 0, proving
that rS(s) ⊂∗

> S.

Conversely, take any 0 �= m ∈ M. Since M is self-generator, there is a
nonzero element t ∈ S such that t(M) ⊂ mR. Since rS(s) ⊂∗

> S, there exists
a nonzero element k ∈ S such that 0 �= tk ∈ rS(s). It follows that stk = 0,
i.e. 0 �= tk(M) ⊂> Ker(s). Thus we have Ker(s) ∩mR �= 0. This shows that
Ker(s) ⊂∗

> M, and hence s ∈ 	. �

The following theorem gives a property of the endomorphisms ring of quasi-
lp-injective modules.

Theorem 13. Let M be a quasi-lp-injective module which is self-generator.
Denote S = End(M), 	 = {s ∈ S|Ker(s) ⊂∗

> M} and J(S) the Jacobson radi-
cal of the ring S. Then J(S) ⊆ 	. Especially, if S is left Kasch, then J(S) = 	.

Proof. Suppose on the contrary that J(S) � 	. Then there is a nonzero
element α ∈ J(S) with α /∈ 	. Since M is a self generator, there exists
0 �= β ∈ S such that Ker(α) ∩ Im(β) = 0, and hence αβ �= 0. By the quasi-
lp-injectivity of M, there is an element γ ∈ S such that αβγ �= 0 satisfying
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lS(Ker(αβγ)) = Sαβγ. Put s = αβγ and t = βγ. Clearly, Ker(α)∩Im(t) = 0,
and hence t /∈ J(S). If m ∈ Ker(s), then γ(m) ∈ Ker(αβ) = Ker(β), and
therefore t(m) = βγ(m) = 0. This follows that Ker(s) = Ker(t). Since
t ∈ lS(Ker(t)) = lS(Ker(s)) = Ss, we have t = us for some u ∈ S. Therefore
t ∈ J(S), a contradiction. This shows that J(S) ⊆ 	.

We now assume in addition that S is left Kasch. Take any 0 �= s ∈ 	 and
0 �= t ∈ S. If S(1−ts) �= S, then S(1−ts) ⊂ H for some maximal left ideal H of
S. Since S is left Kasch, there exists 0 �= k ∈ S such that H = lS(k). Therefore
k ∈ rSlS(k) = rS(H). Moreover 1−ts ∈ H, hence rS(H) ⊂ rS(1−ts). It follows
that 0 �= k ∈ rS(1 − ts). Since s ∈ 	, Ker(ts) ⊂∗

> M. Applying Remark 12,
we have rS(ts) ⊂∗

> S. From the fact that, rS(1 − ts) ∩ rS(ts) = 0, we see that
rS(1 − ts) = 0, this is a contradiction. Therefore S(1 − ts) = S, proving that
1 − ts is invertible. Hence s ∈ J(S), and we get J(S) = 	, completing our
proof. �

Combining the Theorem 13 and Lemma 3, we easily get the following corol-
lary.
Corollary 14. Let M be a quasi-lp-injective module which is a self-generator.
Let S = EndR(M) be left Kasch. Denote the Jacobson radical of S by J(S). If
Soc(M) is essential in M, then J(S) = lS(Soc(M)).

The following routine remark is helpful to prove the next theorem:

Remark 15. Let M be a right R-module and Ω =
n⊕

i=1
Ai a direct sum of uni-

form submodules of M . If B is a submodule of M such that B ∩ Ai �= 0, i =
1, 2, ..., n, then B ∩ Ω is an essential submodule of Ω.

Lemma 16. Let M be a quasi-lp-injective module and Ω =
n⊕

i=1

Im(ui) a direct

sum of homomorphic image of uniform elements of S. If K ⊂ S is a maximal
left ideal not of the form Au in Lemma 8, then for any right uniform element
u, there exists k ∈ K such that Ker(1 − k) ∩ Ω is essential in Ω.

Proof. Since K �= Au1 , there exists s0 ∈ K such that Ker(s0) ∩ Im(u1) = 0
and hence s0u1 �= 0. Since M is quasi-lp-injective, there is 0 �= t1 ∈ S
such that s0tu1t1 �= 0 and lSKer(s0u1t1) = Ss0u1t1. If m ∈ Ker(s0u1t1),
then s0u1t1(m) = 0. Since s0 /∈ Au1 , we see that m ∈ Ker(u1t1). Hence,
Ker(u1t1) ⊂ Ker(s0u1t1), and this implies that Ker(s0u1t1) = Ker(u1t1).
Thus we have u1t1 ∈ lS(Ker(s0u1t1)) = Ss0u1t1. Hence, there is f1 ∈ S such
that u1f1 = f1s0u1t1 and therefore (1−f1s0)u1t1 = 0. Then 1−f1s0 ∈ lS(u1t1).
Let k1 = f1s0. Then, we have k1 ∈ K and Ker(1 − k1) ∩ Im(u1) ⊃ Ker(1 −
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k1) ∩ Im(u1t1) �= 0. If Ker(1 − k1) ∩ Im(ui) �= 0 for all i = 1, 2, 3, ..., n, by
Remark 11, we are well done. Suppose that Ker(1 − k1) ∩ Im(u2) = 0. Since
u2 is uniform, (1 − k1)u2 is also uniform. As before, there exists α1 ∈ K such
that Ker(1−α1)∩ Im((1− k1)u2) �= 0. Let k2 = α1 + k1 −α1k1. Then k2 ∈ K
and Ker(1− k2)∩ Im(ui) �= 0, i = 1, 2. Continuing this process, we will obtain
k ∈ K such that Ker(1 − k) ∩ Im(ui) �= 0 for all i ∈ N, and the proof is
complete. �

Theorem 17. Let M be a quasi-lp-injective module which is self-generator
with n-Goldie-dimension and S = EndR(M).
(1) If I ⊂ S is a maximal left ideal, then I = Au for some right uniform ele-
ment u ∈ S.
(2) S/J(S) is semisimple.

Proof. (1) Since M is a self-generator, every submodule of M contains an M -
cyclic submodule. Combining with assumption being n-Goldie-dimension of

M , there is a direct sum Ω =
n⊕

i=1

Im(ui) ⊂∗
> M, where each ui is an uniform

element of S. In the contrary, suppose that I is not of the form Au for some
right uniform element of u ∈ S. By Lemma 16, there exists an element s ∈ I
such that Ker(1 − s) ∩ Ω is essential in Ω. It follows that 1 − s ∈ J(S) ⊂ I, a
contradiction. Thus I = Au for some right uniform element u ∈ S.

(2) Take any s ∈
n⋂

i=1

Aui . We have Ker(s) ∩ Im(ui) �= 0, for all i=1,...,n.

Since ui is uniform, and Ω =
n⊕

i=1
Im(ui) ⊂∗

> M , Ker(s) ⊂∗
> M. It follows that

s ∈ J(S) and hence
n⋂

i=1
Aui = J(S). This shows that S/J(S) is semisimple. �

Corollary 18.Let R be a right self-lp-injective which has finite Goldie dimen-
sion. Then the following statements hold:

(1) If I ⊂ R be a maximal left ideal, then I = Au for some right uniform
element u ∈ R.
(2) R/J(R) is semisimple.
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