Aisuriya Sudprasert^{*}, Hoang Dinh Hai^{**} Supunnee Sanpinij[†] and Nguyen Van Sanh[‡]

* Department of Mathematics, Faculty of Science, University of the Thai Chamber of Commerce, Bangkok, Thailand e-mail: aisuriya@hotmail.com

> ** Hong Duc University Thanh Hoa, Vietnam e-mail: haiedu93@yahoo.com

> > †

e-mail: s_sanpinij@yahoo.com

[‡] Department of Mathematics, Faculty of Science Mahidol University, Bangkok 10400, Thailand e-mail: frnvs@mahidol.ac.th

Abstract

Let R be a ring. A right R-module N is called an M-p-injective module if any homomorphism from an M-cyclic submodule of M to N can be extended to an endomorphism of M. Generalizing this notion, we investigated the class of M-rp-injective modules and M-lp-injective modules, and proved that for a finitely generated Kasch module M, if M is quasi-rp-injective, then there is a bijection between the class of maximal submodules of M and the class of minimal left right ideals of its endomorphism ring S. In this paper, we give some characterizations and properties of the structure of endomorphisms ring of M-rp-injective modules and M-lp-injective modules and the relationships between them.

Lemma 1. Let M be a right R- module and $S := End(M_R)$. Then M is a

^{*} Corresponding author **Key words**: *M*-p-injective modules, quasi-p-injective modules, right quasi-p-injective modules, self-generators, quasi weakly-p-injective, quasi-rp-injective, quasi-lp-injective.

²⁰⁰⁰ AMS Mathematics Subject Classification: 6D50, 16D70, 16D80.

quasi-rp-injective module if and only if for any non-zero element $s \in S$, there exists $t \in S$ with $ts \neq 0$ satisfying one of the following equivalent conditions: (1) $l_S Ker(ts) = Sts$; (2) For any $v \in S$, if $Ker(ts) \subset Ker(v)$, then $Sv \subseteq Sts$;

(2) For any $v \in S$, if $\operatorname{Ker}(v) \subset \operatorname{Ker}(v)$, then $Sv \subseteq Svs$,

(3) For any $u \in S$, $l_S(Im(u) \cap Ker(ts)) = l_S(Im(u)) + Sts$.

Proof. Note that the condition (1) is a characterization of quasi-rp-injective modules (see [23]), and the proof of (1) \Leftrightarrow (2) is routine.

We now prove $(2) \Rightarrow (3)$. It is easy to see that $l_S(Im(u)) \subset l_S(Im(u) \cap Ker(ts))$. Take any $fts \in Sts$ and $m \in Im(u) \cap Ker(ts)$. Then fts(m) = 0. This shows that $fts \in l_S(Im(u) \cap Ker(ts))$, and hence $Sts \subset l_S(Im(u) \cap Ker(ts))$. It follows that $l_S(Im(u)) + Sts \subset l_S(Im(u) \cap Ker(ts))$. Conversely, let $v \in l_S(Im(u) \cap Ker(ts))$. Then $v(Im(u) \cap Ker(ts)) = 0$. It follows that $Ker(tsu) \subset Ker(vu)$. This implies that $Svu \subset Stsu$. Then there is an $f \in S$ such that vu = ftsu. Hence (v - fts)u = 0, and therefore $v - fts \in l_S(Im(u))$ or equivalently, $v \in l_S(Im(u)) + Sts$. This shows that $l_S(Im(u) \cap Ker(ts)) \subset l_S(ImU) + Sts$, proving our assertion.

 $(3) \Rightarrow (1)$ Taking $u = 1_M$, we get the result immediately.

By a similar argument, we can prove the following lemma for quasi-*lp*-modules:

Lemma 2. Let M be a right R- module and $S := End(M_R)$. Then M is a quasi-lp-injective module if and only if for any non-zero element $s \in S$, there exists $t \in S$ with $st \neq 0$ satisfying one of the following equivalent conditions: (1) $l_S Ker(st) = Sst$;

(2) For any $v \in S$, if $Ker(st) \subset Ker(v)$, then $Sv \subseteq Sst$;

(3) For any $u \in S$, $l_S(Im(u) \cap Ker(st)) = l_S(Im(u)) + Sst$.

Recall that a right *R*- module is finitely cogenerated if and only if for any family $\{A_i | i \in I\}$ of submodules with $\bigcap_{i \in I} A_i = 0$, there is a finite subset I_0 of *I* such that $\bigcap A_i = 0$.

I such that $\bigcap_{i \in I_0} A_i = 0$.

Lemma 3. Let M be a right R-module, $S = End(M_R)$ and \triangle the set of all $s \in S$ such that Ker(s) is essential in M. If Soc(M) is essential in M, then $\triangle = l_S(Soc(M))$.

Proof. Take any $s \in \Delta$, we have $0 \neq s$ and Ker(s) is essential in M. It follows that $Ker(s) \supset Soc(M)$, and hence $l_S(Ker(s)) \subset l_S(Soc(M))$. Since $Ss \subset l_S(Ker(s))$, we have $s \in l_S(Soc(M))$. Conversely, if $s \in l_S(Soc(M))$, then $Soc(M) \subset Ker(s)$. Because Soc(M) is essential in M, and then Ker(s)

is essential in M, showing that $s \in \Delta$.

Recall that a right *R*-module *M* is called a semiartinian module if and only if for any proper submodule *U* of *M*, we have $Soc(M/U) \neq 0$. If *M* is finitely cogenerated or semiartinian, then Soc(M) is an essential submodule of *M*.

In special case, Let M be a quasi-rp-injective module. If M is finitely cogenerated or semiartinian then we also have $\Delta = l_S(Soc(M))$.

Let K be a subset of S. We denote $Ker(K) = \bigcap_{\varphi \in K} Ker\varphi$.

Theorem 4. Let M be a quasi-rp-injective module and $S = End(M_R)$. If M is a finitely generated Kasch module, then the following properties hold. (1) $Soc(_SS)$ is essential in $_SS$;

(2) $Rad(M) = Ker(Soc(_{S}S));$

(3) If $_{S}S$ is finitely cogenerated as a left S-module, then $l_{S}(Rad(M))$ is essential in $_{S}S$.

Proof. (1) Since M is a quasi-rp-injective module, for any nonzero element $s \in S$, there is an element $t \in S$ satisfying $ts \neq 0$ and $l_S(Ker(ts)) = Sts$. Since M is a finitely generated module, there exists a maximal submodule T of M such that $Ker(ts) \subset T$. It follows that $l_S(T) \subset l_S(Ker(ts)) = Sts \subset Ss$. By [[23],Theorem 2.4(2b)], $l_S(T)$ is a minimal left ideal of S and hence $Soc({}_SS) \cap Ss \neq 0$. This shows that $Soc({}_SS)$ is essential in S.

(2) Take any maximal submodule T of M. By [[23], Theorem 2.4], $l_S(T)$ is a minimal left ideal of S contained in $Soc(_SS)$. It follows that $Ker(Soc(_SS)) \subset T$ for any maximal submodule T of M, showing that $Ker(Soc(_SS)) \subset Rad(M)$. Conversely, take any minimal left ideal I of S. By [[23], Theorem 2.4], Ker(I) is a maximal submodule of M which implies that $Rad(M) \subset Ker(Soc(_SS))$, and hence $Rad(M) = Ker(Soc(_SS))$.

(3) We have from (2) that $l_S(Rad(M)) = l_SKer(Soc(_SS))$. In other hand, we always have $Soc(_SS) \subset l_SKer(_SS)$. Since $_SS$ is finitely cogenerated, by [[13], Theorem 9.4.3], $Soc(_SS)$ is essential in $_SS$. It follows that $l_S(Rad(M))$ is essential in $_SS$.

The following corollary is routine:

Corollary 5. Let M be a quasi-rp-injective module, $S = End(M_R)$. If M is a finitely generated Kasch module and $_SS$ is semiartinian as a left S-module, then $l_S(Rad(M))$ is essential in $_SS$.

An element u of S is called a *uniform element* if u(M) is a uniform submodule of M.

Let R be a ring. An element u of R is called a right uniform element, if $u \neq 0$ and uR is a uniform right ideal of R.

Lemma 6. Let M be a right R-module. If u is a uniform element of S, then the set:

 $A_u = \{ s \in S | Ker(s) \cap Im(u) \neq 0 \}$

is a left ideal containing $l_S(Im(u))$.

Proof. Clearly $A_u \neq \emptyset$.

Taking any $s_1, s_2 \in A_u$, we have $Ker(s_1) \cap Im(u) \neq 0$, $Ker(s_2) \cap Im(u) \neq 0$. Because u is a uniform element of S, $Ker(s_1) \cap Ker(s_2) \cap Im(u) \neq 0$. Hence there exists $m \in M$ such that $s_1(u(m)) = s_2(u(m)) = 0$ with $u(m) \neq 0$. Therefore $Ker(s_1-s_2) \cap Im(u) \neq 0$, and hence $s_1-s_2 \in A_u$. Since $Ker(s) \subset Ker(\alpha s)$ for any $\alpha, s \in S$, we have $\alpha s \in A_u$ for all $\alpha \in S, s \in A_u$. Clearly, $l_S(Im(u)) \subset A_u$. This shows that A_u is a left ideal of S containing $l_S(Im(u))$.

The following lemma is helpful in proving the next theorem.

Lemma 7. Let M be a right R-module and u a uniform element of S. If $s_0 \in S$ such that $Ker(s_0) \cap Im(u) = 0$, then the set:

$$B_u = \{t \in S | Ker(ts_0) \cap Im(u) \neq 0\}$$

is a left ideal of S.

Proof. Clearly, $B_u \neq \emptyset$.

Take any $t_1, t_2 \in B_u$. Then $Ker(t_1s_0) \cap Im(u) \neq 0$, $Ker(t_2s_0) \cap Im(u) \neq 0$. Since u is a uniform element of S, $Ker(t_1s_0) \cap Ker(t_2s_0) \cap Im(u) \neq 0$. It follows that there is non-zero element $x \in M$ such that $t_1s_0u(x) = t_2s_0u(x) = 0$. Therefore $Ker((t_1 - t_2)s_0) \cap Im(u) \neq 0$, and hence $t_1 - t_2 \in B_u$.

We now take any $\alpha \in S$ and $t \in B_u$. Then $Ker(ts_0) \cap Im(u) \neq 0$. Since $Ker(ts_0) \subset Ker(\alpha ts_0)$ and $Ker(\alpha ts_0) \cap Im(u) \neq 0$, we can see that $\alpha t \in B_u$. This shows that B_u is a left ideal of S.

Lemma 8. Let M be a quasi-lp-injective right R-module. If u is a uniform element of S, then the set:

$$A_u = \{ s \in S | Ker(s) \cap Im(u) \neq 0 \}$$

is a maximal left ideal containing $l_S(Im(u))$.

Proof. Applying Lemma 3, we see that A_u is a left ideal of S containing $l_S(Im(u))$. The remainder of the proof is to show the maximality of A_u .

Take any $s \notin A_u$. Then $Ker(s) \cap Im(u) = 0$, and hence $su \neq 0$. Since M is quasi-lp-injective, there exists $t \in S$ such that $sut \neq 0$ and $l_S Ker(sut) = Ssut$. If $m \in Ker(sut)$, then sut(m) = 0. It follows from $s \notin A_u$ that $m \in Ker(ut)$. This shows that Ker(sut) = Ker(ut), and hence $ut \in l_S(Ker(sut)) = Ssut$. Thus, there exists $f \in S$ such that ut = fsut which implies that (1 - fs)ut = 0. Then $1 - fs \in l_S(ut)$, and hence the element 1 can be written in the form 1 = fs + h for some $h \in l_S(ut)$. It follows that S = Sfs + Sh. We will prove that $Sh \subset A_u$. Let $gh \in Sh$. Then we have ghut = 0. This shows that $0 \neq Im(ut) \subset Ker(gh)$. Since $Im(ut) \subset Im(u)$, we get $Ker(gh) \cap Im(u) \neq 0$, showing that $Sh \subset A_u$. Since $Sfs \subset Ss$, we have $S = A_u + Ss$, proving the maximality of A_u .

Corollary 9 [[25], Lemma 3.10]. Let R be a right self-rp-injective ring. If $u \in R$ is a right uniform element, then the set:

$$M_u = \{x \in R | uR \cap r_R(x) \neq 0\}$$

is a maximal left ideal containing $l_R(u)$.

Corollary 10 follows directly from Theorem 8.

Corollary 10. Let M be a quasi-lp-injective right R-module. If S is uniform, then S is local.

Lemma 11. Let M be a quasi-lp-injective module and S its endomorphisms ring. We assume that $0 \neq \varphi \in S$ such that $\varphi(M)$ is a simple submodule of M. For any $0 \neq \psi \in S$, if $\varphi(M) \cong \psi(M)$, then $S\varphi \cong S\psi$.

Proof. Since M is a quasi-lp-injective module and $\psi \neq 0$, there exists $\psi' \in S$ such that $\psi\psi' \neq 0$ and any homomorphism from $\psi\psi'(M) \longrightarrow M$ can be extended to an endomorphism of M. Let $\sigma : \psi(M) = \psi\psi'(M) \longrightarrow \varphi(M)$ be an isomorphism. Then σ can be extended to an endomorphism $\overline{\sigma}$ of M. Let $\iota_1 : \psi(M) \longrightarrow M$ and $\iota_2 : \varphi(M) \longrightarrow M$ be inclusions. We have $\overline{\sigma}\iota_1 = \iota_2 \sigma$.

We note that $\overline{\sigma}|_{\psi(M)} = \sigma$ and $\overline{\sigma}\psi(M) = \sigma\psi(M) = \varphi(M)$. (*)

We now define $\gamma: S\varphi \longrightarrow S\psi$ with $\gamma(s\varphi) = s\overline{\sigma}\psi$.

If $s\varphi = s'\varphi$, then $(s - s')\varphi = 0$. It follows that $Im(\varphi) \subset Ker(s - s')$. By (*), we have $Im(\overline{\sigma}\psi) = Im(\varphi) \subset Ker(s - s')$. Then $(s - s')\overline{\sigma}\psi = 0$, and hence $s\overline{\sigma}\psi = s'\overline{\sigma}\psi$. Thus $\gamma(s\varphi) = \gamma(s'\varphi)$, showing that γ is well-defined.

We have $\gamma(s\varphi + s'\varphi) = \gamma((s+s')\varphi) = ((s+s')\overline{\sigma}\psi) = ((s\overline{\sigma}\psi) + s'\overline{\sigma}\psi) = \gamma(s\varphi) + \gamma(s'\varphi)$. In other hand, we have $\gamma(ts\varphi) = \gamma((ts)\varphi) = ts\overline{\sigma}\psi = t(s\overline{\sigma}\psi) = t(\gamma(s\varphi))$. This indicates that γ is an S-homomorphism.

Suppose that $\gamma(s\varphi) = \gamma(s'\varphi)$. Then $s\overline{\sigma}\psi = s'\overline{\sigma}\psi$, and hence we have $Im(\overline{\sigma}\psi) \subset Ker(s-s')$. By (*), we have $Im(\varphi) \subset Ker(s-s')$. Thus $s\varphi = s'\varphi$, proving that γ is one-to-one.

To prove γ is onto, we take any $s\psi \in S\psi$. Let $\sigma^{-1} : \varphi(M) \longrightarrow \psi(M)$ be the inverse of σ . As before, σ^{-1} can be extended to endomorphism $\overline{\sigma^{-1}}$ of Msuch that $\overline{\sigma^{-1}}\iota_2 = \iota_1\sigma^{-1}$. Then for any $m \in M$ we have:

$$s\overline{\sigma^{-1}}\overline{\sigma}\psi(m) = s\overline{\sigma^{-1}}(\sigma\psi(m)) = s\overline{\sigma^{-1}}(\iota_2\sigma\psi(m)) = s(\overline{\sigma^{-1}}\iota_2)(\sigma\psi(m))$$
$$= s(\iota_1\sigma^{-1})(\sigma\psi(m)) = s\iota_1(\sigma^{-1}\sigma)(\psi(m)) = s\iota_1\psi(m) = s\psi(m).$$

This means that there exists $s\sigma^{-1} \in S$ such that $\gamma(s\sigma^{-1}\varphi) = s\psi$, showing that γ is onto, and the proof of our lemma is completed.

Remark 12. Let M be a right R-module, S = End(M) and $\Delta = \{s \in S | Ker(s) \subset_{>}^{*} M \}$. Suppose that M is a self-generator. Then $r_{S}(s) \subset_{>}^{*} S$ if and only if $s \in \Delta$.

Proof. Let $s \in \Delta$. Take any $0 \neq t \in S$. Since $Ker(s) \subset_{>}^{*} M$, $t(M) \cap Ker(s) \neq 0$. It follows that $Ker(st) \neq 0$. Because M is a self-generator, there is $0 \neq k \in S$ such that $0 \neq k(M) \subset_{>} Ker(st)$. Therefore, we have stk = 0. It means that $tk \in r_{S}(s)$. Since $0 \neq k(M) \subset_{>} Ker(st) \subset_{>} t(M) \cap Ker(s), tk \neq 0$, proving that $r_{S}(s) \subset_{>}^{*} S$.

Conversely, take any $0 \neq m \in M$. Since M is self-generator, there is a nonzero element $t \in S$ such that $t(M) \subset mR$. Since $r_S(s) \subset_{>}^{*} S$, there exists a nonzero element $k \in S$ such that $0 \neq tk \in r_S(s)$. It follows that stk = 0, i.e. $0 \neq tk(M) \subset_{>} Ker(s)$. Thus we have $Ker(s) \cap mR \neq 0$. This shows that $Ker(s) \subset_{>}^{*} M$, and hence $s \in \Delta$.

The following theorem gives a property of the endomorphisms ring of quasilp-injective modules.

Theorem 13. Let M be a quasi-lp-injective module which is self-generator. Denote S = End(M), $\triangle = \{s \in S | Ker(s) \subset_{>}^{*} M\}$ and J(S) the Jacobson radical of the ring S. Then $J(S) \subseteq \triangle$. Especially, if S is left Kasch, then $J(S) = \triangle$.

Proof. Suppose on the contrary that $J(S) \notin \Delta$. Then there is a nonzero element $\alpha \in J(S)$ with $\alpha \notin \Delta$. Since M is a self generator, there exists $0 \neq \beta \in S$ such that $Ker(\alpha) \cap Im(\beta) = 0$, and hence $\alpha\beta \neq 0$. By the quasilp-injectivity of M, there is an element $\gamma \in S$ such that $\alpha\beta\gamma \neq 0$ satisfying $l_S(Ker(\alpha\beta\gamma)) = S\alpha\beta\gamma$. Put $s = \alpha\beta\gamma$ and $t = \beta\gamma$. Clearly, $Ker(\alpha) \cap Im(t) = 0$, and hence $t \notin J(S)$. If $m \in Ker(s)$, then $\gamma(m) \in Ker(\alpha\beta) = Ker(\beta)$, and therefore $t(m) = \beta\gamma(m) = 0$. This follows that Ker(s) = Ker(t). Since $t \in l_S(Ker(t)) = l_S(Ker(s)) = Ss$, we have t = us for some $u \in S$. Therefore $t \in J(S)$, a contradiction. This shows that $J(S) \subseteq \Delta$.

We now assume in addition that S is left Kasch. Take any $0 \neq s \in \Delta$ and $0 \neq t \in S$. If $S(1-ts) \neq S$, then $S(1-ts) \subset H$ for some maximal left ideal H of S. Since S is left Kasch, there exists $0 \neq k \in S$ such that $H = l_S(k)$. Therefore $k \in r_S l_S(k) = r_S(H)$. Moreover $1-ts \in H$, hence $r_S(H) \subset r_S(1-ts)$. It follows that $0 \neq k \in r_S(1-ts)$. Since $s \in \Delta$, $Ker(ts) \subset^* M$. Applying Remark 12, we have $r_S(ts) \subset^* S$. From the fact that, $r_S(1-ts) \cap r_S(ts) = 0$, we see that $r_S(1-ts) = 0$, this is a contradiction. Therefore S(1-ts) = S, proving that 1-ts is invertible. Hence $s \in J(S)$, and we get $J(S) = \Delta$, completing our proof.

Combining the Theorem 13 and Lemma 3, we easily get the following corollary.

Corollary 14. Let M be a quasi-lp-injective module which is a self-generator. Let $S = End_R(M)$ be left Kasch. Denote the Jacobson radical of S by J(S). If Soc(M) is essential in M, then $J(S) = l_S(Soc(M))$.

The following routine remark is helpful to prove the next theorem:

Remark 15. Let M be a right R-module and $\Omega = \bigoplus_{i=1}^{n} A_i$ a direct sum of uniform submodules of M. If B is a submodule of M such that $B \cap A_i \neq 0, i = 1, 2, ..., n$, then $B \cap \Omega$ is an essential submodule of Ω .

Lemma 16. Let M be a quasi-lp-injective module and $\Omega = \bigoplus_{i=1}^{n} Im(u_i)$ a direct sum of homomorphic image of uniform elements of S. If $K \subset S$ is a maximal left ideal not of the form A_u in Lemma 8, then for any right uniform element u, there exists $k \in K$ such that $Ker(1-k) \cap \Omega$ is essential in Ω .

Proof. Since $K \neq A_{u_1}$, there exists $s_0 \in K$ such that $Ker(s_0) \cap Im(u_1) = 0$ and hence $s_0u_1 \neq 0$. Since M is quasi-lp-injective, there is $0 \neq t_1 \in S$ such that $s_0tu_1t_1 \neq 0$ and $l_SKer(s_0u_1t_1) = Ss_0u_1t_1$. If $m \in Ker(s_0u_1t_1)$, then $s_0u_1t_1(m) = 0$. Since $s_0 \notin A_{u_1}$, we see that $m \in Ker(u_1t_1)$. Hence, $Ker(u_1t_1) \subset Ker(s_0u_1t_1)$, and this implies that $Ker(s_0u_1t_1) = Ker(u_1t_1)$. Thus we have $u_1t_1 \in l_S(Ker(s_0u_1t_1)) = Ss_0u_1t_1$. Hence, there is $f_1 \in S$ such that $u_1f_1 = f_1s_0u_1t_1$ and therefore $(1-f_1s_0)u_1t_1 = 0$. Then $1-f_1s_0 \in l_S(u_1t_1)$. Let $k_1 = f_1s_0$. Then, we have $k_1 \in K$ and $Ker(1-k_1) \cap Im(u_1) \supset Ker(1-k_1)$.

 $k_1) \cap Im(u_1t_1) \neq 0$. If $Ker(1-k_1) \cap Im(u_i) \neq 0$ for all i = 1, 2, 3, ..., n, by Remark 11, we are well done. Suppose that $Ker(1-k_1) \cap Im(u_2) = 0$. Since u_2 is uniform, $(1-k_1)u_2$ is also uniform. As before, there exists $\alpha_1 \in K$ such that $Ker(1-\alpha_1) \cap Im((1-k_1)u_2) \neq 0$. Let $k_2 = \alpha_1 + k_1 - \alpha_1k_1$. Then $k_2 \in K$ and $Ker(1-k_2) \cap Im(u_i) \neq 0, i = 1, 2$. Continuing this process, we will obtain $k \in K$ such that $Ker(1-k) \cap Im(u_i) \neq 0$ for all $i \in \mathbb{N}$, and the proof is complete. \Box

Theorem 17. Let M be a quasi-lp-injective module which is self-generator with n-Goldie-dimension and $S = End_R(M)$. (1) If $I \subset S$ is a maximal left ideal, then $I = A_u$ for some right uniform element $u \in S$. (2) S/J(S) is semisimple.

Proof. (1) Since M is a self-generator, every submodule of M contains an M-cyclic submodule. Combining with assumption being n-Goldie-dimension of M, there is a direct sum $\Omega = \bigoplus_{i=1}^{n} Im(u_i) \subset_{>}^{*} M$, where each u_i is an uniform element of S. In the contrary, suppose that I is not of the form A_u for some right uniform element of $u \in S$. By Lemma 16, there exists an element $s \in I$ such that $Ker(1-s) \cap \Omega$ is essential in Ω . It follows that $1-s \in J(S) \subset I$, a contradiction. Thus $I = A_u$ for some right uniform element $u \in S$.

(2) Take any $s \in \bigcap_{i=1}^{n} A_{u_i}$. We have $Ker(s) \cap Im(u_i) \neq 0$, for all i=1,...,n. Since u_i is uniform, and $\Omega = \bigoplus_{i=1}^{n} Im(u_i) \subset_{>}^{*} M$, $Ker(s) \subset_{>}^{*} M$. It follows that $s \in J(S)$ and hence $\bigcap_{i=1}^{n} A_{u_i} = J(S)$. This shows that S/J(S) is semisimple. \Box

Corollary 18. Let R be a right self-lp-injective which has finite Goldie dimension. Then the following statements hold:

(1) If $I \subset R$ be a maximal left ideal, then $I = A_u$ for some right uniform element $u \in R$. (2) R/J(R) is semisimple.

References

 F.W. Anderson and K.R. Fuller, "Rings and Categories of Modules", Graduate Texts in Math. No.13, Springer-Verlag, New York, Heidelberg, Berlin, 1974.

- [2] V. Camillo, M.F. Yousif, Continuous rings with ACC on annihilators, Cand. Math. Bull. 34 (1991), 642-644.
- [3] J. Clark, D.V. Huynh, A note on self-injective perfect rings, Quartl. J. Math. Oxford,(2) 45 (1994), 13-17.
- [4] J. Clark, D.V. Huynh, When is a self-injective semiperfect ring quasi-Frobenius? J. Algebra, 164 (1994), 531-542.
- [5] N.V. Dung, P.F. Smith, On semi-artinian V-modules, J. Pure Appl. Algebra, 82, 27-37 (1992).
- [6] N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, "Extending Modules", Research Notes in Mathematics Series, 313, Pitman London (1994).
- [7] C. Faith, Rings with ascending chain condition on annihilators, Nagoya Math. J., 27 (1966), 179-191.
- [8] K.R. Goodearl, Singular torsion and splitting properties, Mem. Amer. Math. Soc, 124 (1972).
- D.V. Huynh, B.J. Müller, Rings for which direct sums of extending modules are extending, Advances in Ring Theory (Granville, OH, 1996), Birkhauser, Boston, MA, 1997, 151-159.
- [10] D.V. Huynh, R. Wisbauer, A structure theorem for SI-modules, Glasgow Math. J., 34, 83-89, 1992.
- [11] M. Ikeda and T. Nakayama, On some characteristic properties of quasi-Frobenius and regular rings, Proc. A.M.S. 5(1954), 15-19.
- [12] S.K. Jain, Surjeet Singh, R.G. Symonds, Rings whose proper cyclic modules are quasi-injective, Pacific J. Math, 67 (1976), 461-472.
- [13] F. Kasch, "Moduln und Ringe", Stuttgart, 1977.
- [14] J. Lambek, "Lecture on Rings and Modules", Blaisedell Publishing Co., Waltham, 1966.
- [15] S.H. Mohamed, B.J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series, No 147, Cambridge Univ. Press (1990).
- [16] G.O. Michler, and O.E. Villamayor, On rings whose simple modules are injective, J. of Algebra, 1973, 25(1).
- [17] W. K. Nicholson and M. F. Yousif. Principally injective rings, *Journal of Algebra*, 174 (1995), 77-93.
- [18] B.L. Osofsky, A generalization of Quasi-Frobenius rings, J. Algebra, 4 (1966), 373-387.
- [19] E.A. Rutter, Jr., Ring with the principal extension property, Comm. in Algebra, 3 (3) (1975), 203-212.
- [20] N.V. Sanh, On SC-modules, Bull. Austral. Math. Soc, 48(1993), 251-255.
- [21] N.V. Sanh, On weakly SI-modules, Bull. Austral. Math. Soc, 49(1994), 159-164.

- [22] N.V. Sanh, K.P. Shum, S. Dhompongsa and S. Wongwai, On quasiprincipally injective modules, Algebra Colloquium, 6:3 (1999), 269-276.
- [23] A.Sudprasert, H.D.Hai and N.V.Sanh, A Weaker form p-Injectivity, to appear at Southeast Asian Bull. Math.
- [24] R. Wisbauer, "Foundations of Module and Ring Theory", Gordon and Breach, London, Tokyo, e.a. 1991.
- [25] Zhu Zhanmin, Weakly p-injective rings, Southeast Asian Bull. Math., 31(2007), 615-624.