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Abstract

A semifield is a commutative semiring (S, +, ·) with zero 0 and iden-
tity 1 such that (S�{0}, ·) is a group. Then every field is a semifield. It
is known that a square matrix A over a field F is an invertible matrix
over F if and only if det A �= 0. In this paper, invertible matrices over
a semifield which is not a field are characterized. It is shown that if S
is a semifield which is not a field, then a square matrix A over S is an
invertible matrix over S if and only if every row and every column of A
contains exactly one nonzero element.

1 Introduction

A semiring is a triple (S, +, ·) such that (S, +) and (S, ·) are semigroups and
for all x, y, z ∈ S, x · (y+z) = x ·y+x ·z and (y+z) ·x = y ·x+z ·x. A semiring
(S, +, ·) is called additively [multiplicatively ] commutative if x + y = y + x
[x · y = y · x] for all x, y ∈ S. We call (S, +, ·) commutative if it is both
additively and multiplicatively commutative. An element 0 ∈ S is called a zero
of a semiring (S, +, ·) if x+0 = 0+x = x and x · 0 = 0 ·x = 0 for all x ∈ S and
by an identity of (S, +, ·) we mean an element 1 ∈ S such that x · 1 = 1 · x = x
for all x ∈ S. Note that a zero and an identity of a semiring are unique.

If a semiring (S, +, ·) has a zero 0 [an identity 1], we say that an element
x ∈ S is additively [multiplicatively ] invertible over S if there exists an element
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y ∈ S such that x+y = y+x = 0 [x ·y = y ·x = 1]. Note that such a y is unique
and may be written as −x [x−1]. Observe that if x is additively invertible, then
for all a ∈ S, ax+a(−x) = a(x−x) = a0 = 0, a(−x)+ax = a(−x+x) = a0 = 0,
xa + (−x)a = (x− x)a = 0a = 0 and (−x)a + xa = (−x + x)a = 0a = 0. Thus
−ax = a(−x) and −xa = (−x)a. Since · is distributive over + in a semiring
(S, +, ·), the following fact holds.

Proposition 1.1. Let S be a additively commutative semiring with zero 0.

If x1, . . . , xk are additively invertible over S, then
k∑

i=1

aixi and
k∑

i=1

xiai are

additively invertible over S for all a1, . . . , ak ∈ S. Moreover, −
k∑

i=1

aixi =

k∑
i=1

ai(−xi) and −
k∑

i=1

xiai =
k∑

i=1

(−xi)ai.

Proof Let x1, . . . , xk be additively invertible in S and a1, . . . , ak ∈ S. Then
k∑

i=1

ai(−xi),
k∑

i=1

(−xi)ai ∈ S. Since S is additively commutative,
∑k

i=1 aixi +

∑k
i=1 ai(−xi) =

∑k
i=1(aixi + ai(−xi)) =

∑k
i=1 ai(xi − xi) =

∑k
i=1 ai0 = 0

and
∑k

i=1 xiai +
∑k

i=1(−xi)ai =
∑k

i=1(xiai + (−xi)ai) =
∑k

i=1(xi − xi)ai =∑k
i=1 0ai = 0, proving our Lemma. �

A commutative semiring (S, +, ·) with zero 0 and identity 1 is called a
semifield if (S�{0}, ·) is a group. Then every field is a semifield. It is clearly
seen that the following fact holds in any semifield.

Proposition 1.2. If S is a semifield, then for all x, y ∈ S, xy = 0 implies
x = 0 or y = 0.

Let R be the set of real numbers, Q the set of rational numbers, R+ =
{x ∈ R | x > 0}, R+

0 = R+ ∪ {0}, Q+ = {x ∈ Q | x > 0} and Q+
0 = Q+ ∪ {0}.

Then (R+
0 , +, ·) and (Q+

0 , +, ·) are semifields which are not fields.
For an n×n matrix A over a semiring S and i, j ∈ {1, . . . , n}, let Aij be the

entry of A in the ith row and jth column. Let At denote the transpose of A , that
is, At

ij = Aji for all i, j ∈ {1, . . . , n}. Then (At)t = A and (A + B)t = At + Bt

for all n × n matrices A, B over S. We have that for all n × n matrices A, B
over a commutative semiring S, (AB)t = BtAt.

Let S = (S, +, ·) be a commutative semiring with zero 0 and identity 1. An
n × n matrix A over S is called invertible over S if there is an n× n matrix B
over S such that AB = BA = In where In is the identity n× n matrix over S.
Note that such a B is unique.
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It is well-known that a square matrix A over a field F is invertible if and
only if det A �= 0. A generalization of this result can be found in [1, page 160]
as follows: A square matrix A over a commutative ring R with identity 1
is invertible over R if and only if detA is a multiplicatively invertible in R,
that is, there exists an element r ∈ R such that (det A)r = r(det A) = 1.
Characterizations of invertible matrices over some kinds of semirings can be
found in [2] and [4].

The above examples of semifields which are not fields have the property
that 0 is the only additively invertible element, that is, for x, y ∈ S, x + y = 0
implies x = y = 0. In fact, this property is generally true.

Proposition 1.3. ([5]) If S is a semifield which is not a field, then 0 is the
only additively invertible element of S.

The purpose of this paper is to show that a square matrix A over a semi-
field S which is not a field is invertible over S if and only if every row and every
column of A contains exactly one nonzero element.

2 Main Result

First, we give some necessary conditions for a square matrix over a commutative
semiring S with zero and identity to be invertible over S.

Proposition 2.1. Let S be a commutative semiring with zero 0 and identity 1
and A an n × n matrix over S. If A is invertible over S, then for all i, j, k ∈
{1, . . . , n}, j �= k, AijAik and AjiAki are additively invertible.

Proof Let B be an n × n matrix over S such that AB = BA = In. Then for
all distinct p, q ∈ {1, . . . , n}, (AB)pq = 0 = (BA)pq , so

n∑
l=1

AplBlq =
n∑

l=1

BplAlq = 0.

This shows that for all l, p, q ∈ {1, . . . n} with p �= q, AplBlq and BplAlq are
additively invertible in S.

Next, let i, j, k ∈ {1, . . . , n} be such that j �= k. Then

AijAik = (AijAik)(AB)ii = AijAik(
n∑

l=1

AilBli) = AijAikAikBki+
n∑

l=1
l�=k

AijAikAilBli =

A2
ik(BkiAij) +

n∑
l=1
l�=k

AijAil(BliAik)
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AjiAki = (BA)iiAjiAki

= (
n∑

l=1

BilAli)AjiAki

=
n∑

l=1
l�=j

BilAliAjiAki + BijAjiAjiAki

=
n∑

l=1
l�=j

AkiAli(AjiBil) + A2
ji(AkiBij). (3)

From (1), (2), (3) and Proposition 1.1, we deduce that AijAik and AjiAki are
both additively invertible in S. �

Example 1. Define ⊕ on [0, 1] by

x ⊕ y = max{x, y} for all x, y ∈ [0, 1].

Then ([0, 1],⊕, ·) is clearly a commutative semiring with zero 0 and identity 1.
Moreover, 0 is the only additively invertible element of ([0, 1],⊕, ·). Let A
be an n × n matrix whose entries are in [0, 1]. Assume that A is invertible
over ([0, 1],⊕, ·). Then AB = BA = In for some n × n matrix B over [0, 1].
Thus A and B contain neither a zero row nor a zero column. Since 0 is the
only additively invertible in ([0, 1],⊕, ·), by Proposition 2.1, every row and
every column of A and B contain exactly one nonzero element. Since for
x, y ∈ [0, 1], xy = 1 implies x = y = 1, we deduce that a nonzero element of A
and B in each row and each column must be 1.

If A is an n × n matrix over [0, 1] of this form, then A is invertible over
([0, 1],⊕, ·). In fact, this is true for such an A in any commutative semiring
with zero 0 and identity 1 that AAt = AtA = In. Since for i, j ∈ {1, . . . , n},

(AAt)ij =
n∑

l=1

AilA
t
lj =

n∑
l=1

AilAjl =

{
0 if i �= j,

1 if i = j,

(AtA)ij =
n∑

l=1

At
ilAlj =

n∑
l=1

AliAlj =

{
0 if i �= j,

1 if i = j,

it follows that AAt = AtA = In.
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Theorem 2.2. Let S be a semifield which is not a field and A an n×n matrix
over S. Then A is invertible over S if and only if every row and every column
of A contains exactly one nonzero element.

Proof [Proof.] It is evident if n = 1. Assume that n > 1 and A is invertible

over S. Let B be an n × n matrix over S such that AB = BA = In. Note
that every row and every column must contain at least one nonzero element.
To show that every row of A has exactly one nonzero element, suppose on the
contrary that there are p, q, q′ ∈ {1, . . . , n} such that q �= q′, Apq �= 0 and
Apq′ �= 0. Let j ∈ {1, . . . , n} be such that j �= p. Then

0 = (In)pj = (AB)pj =
n∑

l=1

AplBlj .

By Proposition 1.3, AplBlj = 0 for all l ∈ {1, . . . , n}. In particular, ApqBqj = 0.
Since Apq �= 0, by Proposition 1.2, Bqj = 0. This shows that

Bqj = 0 for all j ∈ {1, . . . , n} with j �= p. (1)

Also, we have

1 = (In)qq = (BA)qq =
n∑

l=1

BqlAlq (2)

and

0 = (In)qq′ = (BA)qq′ =
n∑

l=1

BqlAlq′ . (3)

Then (1) and (2) yield BqpApq = 1. Also, from Proposition 1.3 and (3), we
have BqpApq′ = 0. Hence

Apq′ = 1Apq′ = (BqpApq)Apq′ = Apq(BqpApq′) = Apq0 = 0

which is a contradiction. Hence every row contains exactly one nonzero element.
Since AtBt = (BA)t = (AB)t = BtAt = (In)t = In, from the above proof,

we have that every row of At contains exactly one nonzero element. Hence
every column of A contains exactly one nonzero element.

Conversely, assume that every row and every column contains exactly one
nonzero element of S. Then

for each i ∈ {1, . . . , n}, there is a unique ki ∈ {1, . . . , n}
such that Aiki �= 0 (4)

and

for all distinct i, j in {1, . . . , n}, ki �= kj. (5)
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Define an n × n matrix B over S by

Bij =

{
A−1

ji if Aji �= 0,

0 otherwise.
(6)

Let i, j ∈ {1, . . . , n} be given. Then

(AB)ij =
n∑

l=1

AilBlj

= AikiBkij from (4)

=

{
AikiA

−1
jki

if Ajki �= 0,
0 if Ajki = 0,

from (6)

=

{
AikiA

−1
iki

if i = j,
0 if i �= j,

from (4)

=

{
1 if i = j,
0 if i �= j,

= (In)ij.

From (4) and (5), we have {k1, . . . , kn} = {1, . . . , n}. It follows that i = ks and
j = kt for some s, t ∈ {1, . . . , n}, so

(BA)ij = (BA)kskt

=
n∑

l=1

BkslAlkt

= BkstAtkt from (4)

=

{
A−1

tks
Atkt if Atks �= 0,

0 if Atks = 0,
from (6)

=

{
A−1

tkt
Atkt if ks = kt,

0 if ks �= kt,
from (4)

=

{
1 if i = j,
0 if i �= j,

= (In)ij .

This shows that AB = BA = In. Hence A is invertible over S.
Therefore the theorem is proved. �

We note here that Reutenauer and Straubing [3] have shown that if A and
B are n × n matrices over any commutative semiring with zero and identity,
then AB = In implies BA = In. However, it given proof is quite complicated.
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Example 2. Let n > 1 and

A =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ .

Since detA = 1, A is invertible over the field R [Q]. However, by Theorem 2.2,
A is not invertible over the semifield (R+

0 , +, ·) [(Q+
0 , +, ·)]. If

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 n
n − 1 0 0 · · · 0 0

0 n − 2 0 · · · 0 0
0 0 n − 3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

then B is invertible over the semifield (R+
0 , +, ·) [(Q+

0 , +, ·)], so B is invertible
over the field (R, +, ·) [(Q, +, ·)].
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