INVERTIBLE MATRICES OVER SEMIFIELDS

R.I. Sararnrakskul*, S. Sombatboriboon and P. Lertwichitsilp[†]

Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand e-mail: *ruangvarin@gmail.com and \dipatch2@hotmail.com

Abstract

A semifield is a commutative semiring $(S, +, \cdot)$ with zero 0 and identity 1 such that $(S \setminus \{0\}, \cdot)$ is a group. Then every field is a semifield. It is known that a square matrix A over a field F is an invertible matrix over F if and only if $\det A \neq 0$. In this paper, invertible matrices over a semifield which is not a field are characterized. It is shown that if S is a semifield which is not a field, then a square matrix A over S is an invertible matrix over S if and only if every row and every column of A contains exactly one nonzero element.

1 Introduction

A semiring is a triple $(S,+,\cdot)$ such that (S,+) and (S,\cdot) are semigroups and for all $x,y,z\in S,\ x\cdot(y+z)=x\cdot y+x\cdot z$ and $(y+z)\cdot x=y\cdot x+z\cdot x$. A semiring $(S,+,\cdot)$ is called additively [multiplicatively] commutative if x+y=y+x $[x\cdot y=y\cdot x]$ for all $x,y\in S$. We call $(S,+,\cdot)$ commutative if it is both additively and multiplicatively commutative. An element $0\in S$ is called a zero of a semiring $(S,+,\cdot)$ if x+0=0+x=x and $x\cdot 0=0\cdot x=0$ for all $x\in S$ and by an identity of $(S,+,\cdot)$ we mean an element $1\in S$ such that $x\cdot 1=1\cdot x=x$ for all $x\in S$. Note that a zero and an identity of a semiring are unique.

If a semiring $(S, +, \cdot)$ has a zero 0 [an identity 1], we say that an element $x \in S$ is additively [multiplicatively] invertible over S if there exists an element

Key words: Semifield, invertible matrix 2000 AMS Mathematics Subject Classification: 16Y60, 15A09

 $y \in S$ such that x+y=y+x=0 $[x\cdot y=y\cdot x=1]$. Note that such a y is unique and may be written as -x $[x^{-1}]$. Observe that if x is additively invertible, then for all $a \in S$, ax+a(-x)=a(x-x)=a0=0, a(-x)+ax=a(-x+x)=a0=0, a(-x)+ax=a(-x+x)=a0=0, a(-x)+ax=a(-x+x)=a0=0. Thus -ax=a(-x) and -xa=(-x)a. Since \cdot is distributive over + in a semiring $(S,+,\cdot)$, the following fact holds.

Proposition 1.1. Let S be a additively commutative semiring with zero 0.

If
$$x_1, \ldots, x_k$$
 are additively invertible over S , then $\sum_{i=1}^k a_i x_i$ and $\sum_{i=1}^k x_i a_i$ are

additively invertible over S for all $a_1, \ldots, a_k \in S$. Moreover, $-\sum_{i=1}^k a_i x_i =$

$$\sum_{i=1}^{k} a_i(-x_i) \text{ and } -\sum_{i=1}^{k} x_i a_i = \sum_{i=1}^{k} (-x_i) a_i.$$

Proof Let $x_1, ..., x_k$ be additively invertible in S and $a_1, ..., a_k \in S$. Then $\sum_{i=1}^k a_i(-x_i), \sum_{i=1}^k (-x_i)a_i \in S$. Since S is additively commutative, $\sum_{i=1}^k a_i x_i + \sum_{i=1}^k a_i (-x_i) = \sum_{i=1}^k (a_i x_i + a_i (-x_i)) = \sum_{i=1}^k a_i (x_i - x_i) = \sum_{i=1}^k a_i 0 = 0$ and $\sum_{i=1}^k x_i a_i + \sum_{i=1}^k (-x_i)a_i = \sum_{i=1}^k (x_i a_i + (-x_i)a_i) = \sum_{i=1}^k (x_i - x_i)a_i = \sum_{i=1}^k 0a_i = 0$, proving our Lemma.

A commutative semiring $(S, +, \cdot)$ with zero 0 and identity 1 is called a *semifield* if $(S \setminus \{0\}, \cdot)$ is a group. Then every field is a semifield. It is clearly seen that the following fact holds in any semifield.

Proposition 1.2. If S is a semifield, then for all $x, y \in S$, xy = 0 implies x = 0 or y = 0.

Let \mathbb{R} be the set of real numbers, \mathbb{Q} the set of rational numbers, $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$, $\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}$, $\mathbb{Q}^+ = \{x \in \mathbb{Q} \mid x > 0\}$ and $\mathbb{Q}_0^+ = \mathbb{Q}^+ \cup \{0\}$. Then $(\mathbb{R}_0^+, +, \cdot)$ and $(\mathbb{Q}_0^+, +, \cdot)$ are semifields which are not fields.

For an $n \times n$ matrix A over a semiring S and $i, j \in \{1, \ldots, n\}$, let A_{ij} be the entry of A in the $i^{\underline{th}}$ row and $j^{\underline{th}}$ column. Let A^t denote the transpose of A, that is, $A_{ij}^t = A_{ji}$ for all $i, j \in \{1, \ldots, n\}$. Then $(A^t)^t = A$ and $(A + B)^t = A^t + B^t$ for all $n \times n$ matrices A, B over S. We have that for all $n \times n$ matrices A, B over a commutative semiring S, $(AB)^t = B^t A^t$.

Let $S = (S, +, \cdot)$ be a commutative semiring with zero 0 and identity 1. An $n \times n$ matrix A over S is called *invertible* over S if there is an $n \times n$ matrix B over S such that $AB = BA = I_n$ where I_n is the identity $n \times n$ matrix over S. Note that such a B is unique.

It is well-known that a square matrix A over a field F is invertible if and only if $\det A \neq 0$. A generalization of this result can be found in [1, page 160] as follows: A square matrix A over a commutative ring R with identity 1 is invertible over R if and only if $\det A$ is a multiplicatively invertible in R, that is, there exists an element $r \in R$ such that $(\det A)r = r(\det A) = 1$. Characterizations of invertible matrices over some kinds of semirings can be found in [2] and [4].

The above examples of semifields which are not fields have the property that 0 is the only additively invertible element, that is, for $x, y \in S, x + y = 0$ implies x = y = 0. In fact, this property is generally true.

Proposition 1.3. ([5]) If S is a semifield which is not a field, then 0 is the only additively invertible element of S.

The purpose of this paper is to show that a square matrix A over a semi-field S which is not a field is invertible over S if and only if every row and every column of A contains exactly one nonzero element.

2 Main Result

First, we give some necessary conditions for a square matrix over a commutative semiring S with zero and identity to be invertible over S.

Proposition 2.1. Let S be a commutative semiring with zero 0 and identity 1 and A an $n \times n$ matrix over S. If A is invertible over S, then for all $i, j, k \in \{1, \ldots, n\}, j \neq k, A_{ij}A_{ik}$ and $A_{ji}A_{ki}$ are additively invertible.

Proof Let B be an $n \times n$ matrix over S such that $AB = BA = I_n$. Then for all distinct $p, q \in \{1, ..., n\}$, $(AB)_{pq} = 0 = (BA)_{pq}$, so

$$\sum_{l=1}^{n} A_{pl} B_{lq} = \sum_{l=1}^{n} B_{pl} A_{lq} = 0.$$

This shows that for all $l, p, q \in \{1, ...n\}$ with $p \neq q, A_{pl}B_{lq}$ and $B_{pl}A_{lq}$ are additively invertible in S.

Next, let $i, j, k \in \{1, \dots, n\}$ be such that $j \neq k$. Then

$$A_{ij}A_{ik} = (A_{ij}A_{ik})(AB)_{ii} = A_{ij}A_{ik}(\sum_{l=1}^{n} A_{il}B_{li}) = A_{ij}A_{ik}A_{ik}B_{ki} + \sum_{\substack{l=1\\l\neq k}}^{n} A_{ij}A_{ik}A_{il}B_{li} =$$

$$A_{ik}^{2}(B_{ki}A_{ij}) + \sum_{\substack{l=1\\l\neq k}}^{n} A_{ij}A_{il}(B_{li}A_{ik})$$

$$A_{ji}A_{ki} = (BA)_{ii}A_{ji}A_{ki}$$

$$= (\sum_{l=1}^{n} B_{il}A_{li})A_{ji}A_{ki}$$

$$= \sum_{\substack{l=1\\l\neq j}}^{n} B_{il}A_{li}A_{ji}A_{ki} + B_{ij}A_{ji}A_{ji}A_{ki}$$

$$= \sum_{\substack{l=1\\l\neq j}}^{n} A_{ki}A_{li}(A_{ji}B_{il}) + A_{ji}^{2}(A_{ki}B_{ij}).$$
(3)

From (1), (2), (3) and Proposition 1.1, we deduce that $A_{ij}A_{ik}$ and $A_{ji}A_{ki}$ are both additively invertible in S.

Example 1. Define \oplus on [0,1] by

$$x \oplus y = \max\{x, y\} \text{ for all } x, y \in [0, 1].$$

Then $([0,1], \oplus, \cdot)$ is clearly a commutative semiring with zero 0 and identity 1. Moreover, 0 is the only additively invertible element of $([0,1], \oplus, \cdot)$. Let A be an $n \times n$ matrix whose entries are in [0,1]. Assume that A is invertible over $([0,1], \oplus, \cdot)$. Then $AB = BA = I_n$ for some $n \times n$ matrix B over [0,1]. Thus A and B contain neither a zero row nor a zero column. Since 0 is the only additively invertible in $([0,1], \oplus, \cdot)$, by Proposition 2.1, every row and every column of A and B contain exactly one nonzero element. Since for $x, y \in [0,1], xy = 1$ implies x = y = 1, we deduce that a nonzero element of A and B in each row and each column must be 1.

If A is an $n \times n$ matrix over [0,1] of this form, then A is invertible over $([0,1], \oplus, \cdot)$. In fact, this is true for such an A in any commutative semiring with zero 0 and identity 1 that $AA^t = A^tA = I_n$. Since for $i, j \in \{1, ..., n\}$,

$$(AA^t)_{ij} = \sum_{l=1}^n A_{il} A_{lj}^t = \sum_{l=1}^n A_{il} A_{jl} = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j, \end{cases}$$

$$(A^t A)_{ij} = \sum_{l=1}^n A_{il}^t A_{lj} = \sum_{l=1}^n A_{li} A_{lj} = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j, \end{cases}$$

it follows that $AA^t = A^tA = I_n$.

Theorem 2.2. Let S be a semifield which is not a field and A an $n \times n$ matrix over S. Then A is invertible over S if and only if every row and every column of A contains exactly one nonzero element.

Proof [**Proof.**] It is evident if n=1. Assume that n>1 and A is invertible over S. Let B be an $n\times n$ matrix over S such that $AB=BA=I_n$. Note that every row and every column must contain at least one nonzero element. To show that every row of A has exactly one nonzero element, suppose on the contrary that there are $p,q,q'\in\{1,\ldots,n\}$ such that $q\neq q',\ A_{pq}\neq 0$ and $A_{pq'}\neq 0$. Let $j\in\{1,\ldots,n\}$ be such that $j\neq p$. Then

$$0 = (I_n)_{pj} = (AB)_{pj} = \sum_{l=1}^{n} A_{pl} B_{lj}.$$

By Proposition 1.3, $A_{pl}B_{lj}=0$ for all $l \in \{1,\ldots,n\}$. In particular, $A_{pq}B_{qj}=0$. Since $A_{pq} \neq 0$, by Proposition 1.2, $B_{qj}=0$. This shows that

$$B_{qj} = 0 \text{ for all } j \in \{1, \dots, n\} \text{ with } j \neq p.$$
 (1)

Also, we have

$$1 = (I_n)_{qq} = (BA)_{qq} = \sum_{l=1}^{n} B_{ql} A_{lq}$$
 (2)

and

$$0 = (I_n)_{qq'} = (BA)_{qq'} = \sum_{l=1}^n B_{ql} A_{lq'}.$$
 (3)

Then (1) and (2) yield $B_{qp}A_{pq} = 1$. Also, from Proposition 1.3 and (3), we have $B_{qp}A_{pq'} = 0$. Hence

$$A_{pq'} = 1A_{pq'} = (B_{qp}A_{pq})A_{pq'} = A_{pq}(B_{qp}A_{pq'}) = A_{pq}0 = 0$$

which is a contradiction. Hence every row contains exactly one nonzero element. Since $A^tB^t = (BA)^t = (AB)^t = B^tA^t = (I_n)^t = I_n$, from the above proof, we have that every row of A^t contains exactly one nonzero element. Hence every column of A contains exactly one nonzero element.

Conversely, assume that every row and every column contains exactly one nonzero element of S. Then

for each
$$i \in \{1, ..., n\}$$
, there is a unique $k_i \in \{1, ..., n\}$
such that $A_{ik_i} \neq 0$ (4)

and

for all distinct
$$i, j$$
 in $\{1, \dots, n\}, k_i \neq k_j$. (5)

Define an $n \times n$ matrix B over S by

$$B_{ij} = \begin{cases} A_{ji}^{-1} & \text{if } A_{ji} \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$
 (6)

Let $i, j \in \{1, ..., n\}$ be given. Then

$$(AB)_{ij} = \sum_{l=1}^{n} A_{il} B_{lj}$$

$$= A_{ik_i} B_{k_i j} \qquad \text{from (4)}$$

$$= \begin{cases} A_{ik_i} A_{jk_i}^{-1} & \text{if } A_{jk_i} \neq 0, \\ 0 & \text{if } A_{jk_i} = 0, \end{cases} \qquad \text{from (6)}$$

$$= \begin{cases} A_{ik_i} A_{ik_i}^{-1} & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases} \qquad \text{from (4)}$$

$$= \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

$$= (I_n)_{ij}.$$

From (4) and (5), we have $\{k_1, \ldots, k_n\} = \{1, \ldots, n\}$. It follows that $i = k_s$ and $j = k_t$ for some $s, t \in \{1, \ldots, n\}$, so

$$(BA)_{ij} = (BA)_{k_s k_t}$$

$$= \sum_{l=1}^{n} B_{k_s l} A_{l k_t}$$

$$= B_{k_s t} A_{t k_t} \qquad \text{from (4)}$$

$$= \begin{cases} A_{t k_s}^{-1} A_{t k_t} & \text{if } A_{t k_s} \neq 0, \\ 0 & \text{if } A_{t k_s} = 0, \end{cases}$$

$$= \begin{cases} A_{t k_t}^{-1} A_{t k_t} & \text{if } k_s = k_t, \\ 0 & \text{if } k_s \neq k_t, \end{cases}$$

$$= \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

$$= (I_n)_{ij}.$$

This shows that $AB = BA = I_n$. Hence A is invertible over S. Therefore the theorem is proved.

We note here that Reutenauer and Straubing [3] have shown that if A and B are $n \times n$ matrices over any commutative semiring with zero and identity, then $AB = I_n$ implies $BA = I_n$. However, it given proof is quite complicated.

Example 2. Let n > 1 and

$$A = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Since det A = 1, A is invertible over the field $\mathbb{R}[\mathbb{Q}]$. However, by Theorem 2.2, A is not invertible over the semifield $(\mathbb{R}_0^+, +, \cdot)[(\mathbb{Q}_0^+, +, \cdot)]$. If

$$B = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & n \\ n-1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & n-2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & n-3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix},$$

then B is invertible over the semifield $(\mathbb{R}_0^+, +, \cdot)$ $[(\mathbb{Q}_0^+, +, \cdot)]$, so B is invertible over the field $(\mathbb{R}, +, \cdot)$ $[(\mathbb{Q}, +, \cdot)]$.

References

- [1] K. Hoffman and R. Kunze, *Linear Algebra*, Prentice–Hall, New Jersey, $2^{\underline{nd}}$ ed. (1971).
- [2] J. B. Kim, Inverses of Boolean matrices, Bull. Institute Math. Acad. Sinica, 12(2) (1984), 125-128.
- [3] C. Reutenauer and H. Straubing, *Inversion of matrices over a commutative semiring*, J. Algebra, **88** (1984), 350-360.
- [4] D. E. Rutherford, Inverses of Boolean matrices, Proc. Glasgow Math. Assoc., 6(2) (1963), 49-53.
- [5] P. Sinutoke, "On the Theory of Semifields", Master Thesis, Chulalongkorn University (1980).