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Abstract

We say that a module M is H-supplemented if for every submodule
A there is a direct summand B such that A + X = M holds if and only
if B +X = M . This paper investigates the structure of H-supplemented
modules over commutative noetherian rings. After reducing this ques-
tion to the case of local rings and describing H-supplemented modules
with small radical, it is shown that if every direct summand of M is
H-supplemented, then M is a direct sum of hollow modules.

In the second part of this paper it is studied some rings whose modules
are H-supplemented.

1 Introduction

In this paper all rings are associative with identity elements and all modules
are unital right modules. A submodule L of a module M is said small in M,
written L � M , provided M �= L + X for any proper submodule X of M .
If every proper submodule of M is small in M , we call M a hollow module.
The module M will be called a local module if Rad(M) is a small maximal
submodule of M . Let N be a submodule of a module M . A submodule K of
M is called a supplement of N in M provided M = N + K and M �= N + L
for any proper submodule L of K. It is well known that K is a supplement
of N in M if and only if M = N + K and N ∩ K is small in K. M is
called supplemented if every submodule of M has a supplement. We say that
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212 H-supplemented modules with small radical

a module M is ⊕-supplemented if every submodule has a supplement that is a
direct summand of M . The module M is called H-supplemented if for every
submodule A there exists a direct summand B such that A + X = M holds
if and only if B + X = M . It is clear that if M = B ⊕ C, then C is a
supplement of A in M . So every H-supplemented module is ⊕-supplemented.
The module M is called completely H-supplemented (⊕-supplemented) if every
direct summand of M is H-supplemented (⊕-supplemented). The structure of
finitely generated H-supplemented modules over commutative local rings is
given in [20, Satz 3.2]. In Section 2, we will be concerned with the structure
of H-supplemented modules over commutative noetherian rings. It is shown
that in studying of H-supplemented or completely H-supplemented, one may
restrict to the case of modules over local rings. Our main result (Theorem 2.9)
describes the structure of H-supplemented and completely H-supplemented
modules with small radical over commutative local noetherian rings: Let R
be a commutative noetherian local ring with maximal ideal m. Let M be an
R-module with RadM � M . The following are equivalent:

(i) M is H-supplemented;
(ii) M is completely H-supplemented;
(iii) M ∼= ⊕k∈K

R
Ik

where Ik (k ∈ K) are ideals of R such that:
(a) there exists e ≥ 1 such that the set {k ∈ K | me � Ik} is finite, and
(b) the ideals Ik (k ∈ K) are linearly ordered by inclusion.
It is proved also that every completely H-supplemented module over com-

mutative noetherian rings is a direct sum of hollow modules.
We conclude this paper by studying some rings whose modules are H-

supplemented. Among other characterizations, it is proved that for a commu-
tative ring R, every R-module is H-supplemented if and only if the ring R is
artinian principal.

2 H-supplemented modules over commutative
noetherian rings

Definition 2.1. A family of modules {Mα : α ∈ Λ} is called locally-semi-
transfinitely-nilpotent (lsTn) if for any subfamily Mαi(i ∈ N) with distinct αi

and any family of non-isomorphisms fi : Mαi → Mαi+1 , and for every x ∈ Mα1 ,
there exists n ∈ N (depending on x) such that fn · · ·f2f1(x) = 0.

Lemma 2.2. Let R be a commutative noetherian local ring with maximal ideal
m. Let M = ⊕k∈KRxk such that Rad(M) � M . Then the family (Rxk)k∈K

is lsTn.

Proof. It is clear that Rxk (k ∈ K) are local modules since R is a local ring.
By [8, Theorem 8], every proper submodule of M is contained in some maximal
submodule. Therefore there is e ≥ 1 such that meM is finitely generated by
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[18, Satz 2.4]. Let (Ik = Ann(xk))k∈K . Hence the set {k ∈ K | me �⊆ Ik}
is finite. Let f : Rxi −→ Rxj be a non-isomorphism and a ∈ R such that
f(xi) = axj. Then aIi ⊆ Ij . If a �∈ m, then a is invertible. Thus Ii ⊆ Ij .
Hence Ii ⊂ Ij or Ii = Ij . But if Ii = Ij , then f will be an isomorphism.
Therefore Ii ⊂ Ij .

Let Rxαi(i ∈ N) be a subfamily of Rxk(k ∈ K) with distinct αi and fi :
Rxαi −→ Rxαi+1 a family of non-isomorphisms. Let ai ∈ R such that fi(xαi) =
aixαi+1 . Thus for every n ∈ N, we have fn · · ·f2f1(xα1) = an · · ·a2a1xαn+1 .
Since R is noetherian and {k ∈ K | me �⊆ Ik} is finite, there exists l ∈ N such
that fl · · · f2f1(xα1) = 0. Therefore {Rxk : k ∈ K} is lsTn. �

Lemma 2.3. Let R be a commutative local ring with maximal ideal m. Let
H1 = Rx1 and H2 = Rx2 be two cyclic R-modules with Ii = Ann(Hi) (i = 1, 2).
Suppose that I1 ⊆ I2 or I2 ⊆ I1. Then for every isomorphism f : H1/mH1 →
H2/mH2, there exists an epimorphism g of either H1 onto H2 or H2 onto H1

such that g = f or g = f−1.

Proof. Let f : H1/mH1 → H2/mH2 be an isomorphism. So there exists a ∈
R−m such that f(x1) = ax2. If I1 ⊆ I2, then the homomorphism g : H1 → H2

defined by g(x1) = ax2 is well defined. It is clear that g is an epimorphism
and g = f . If I2 ⊆ I1, then the homomorphism h : H2 → H1 defined by
h(x2) = a−1x1, where a−1 is the inverse of a, is well defined. It is clear that h
is an epimorphism and h = f−1. �

Note that from [2, Theorem 4.1] it follows that every local module over a
commutative ring has local endomorphism ring.

If for each simple direct summand A of M/Rad(M), there exists a local
direct summand K of M such that (K + Rad(M))/Rad(M) = A, then we say
that M has the lifting property of simple modules. More generally, if for any
direct summand B of M/Rad(M), there exists a direct summand N of M such
that (N + Rad(M))/Rad(M) = B, we say that M has the lifting property of
direct summands.

Proposition 2.4. Let R be a commutative noetherian local ring with maximal
ideal m. Let M = ⊕k∈KHk such that (Hk)k∈K are local submodules of M and
RadM � M . Let Ik = Ann(Hk) (k ∈ K). Suppose that the set of ideals
(Ik)k∈K is totally ordered with respect to set inclusion. Then M is completely
H-supplemented.

Proof. By [9, Proposition A.3], it suffices to prove that for every direct sum-
mand N of M , N has the lifting property of direct summands. By [13, Theorem
1], we need only to show that each direct summand of M/RadM lifts to a direct
summand of M . By Lemma 2.3 and [3, Theorem 2], M has the lifting property
of simple modules. Since the family (Hk)k∈K is lsTn by Lemma 2.2, M has
the lifting property of direct summands by [4, Theorem 1]. This proves the
result. �
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Proposition 2.5. Let a module M = ⊕i∈IMi be a direct sum of submodules
Mi(i ∈ I). If for every submodule N of M , we have N = ⊕i∈I(N ∩ Mi), then
M is (completely) H-supplemented if and only if all Mi(i ∈ I) are (completely)
H-supplemented.

Proof. Clear. �

Let R denote a commutative ring. Let Ω be the set of all maximal ideal of R.
If m ∈ Ω, M an R-module, we denote as in [19, p. 53] by Km(M) = {x ∈ M |
x = 0 or the only maximal ideal over AnnR(x) is m} as the m-local component
of M . We call M m-local if Km(M) = M . In this case M is an Rm-module
by the following operation: ( r

s
)x = rx′ with x = sx′ (r ∈ R, s ∈ R − m). The

submodules of M over R and over Rm are identical.
For K(M) = {x ∈ M | Rx is supplemented} it is easily seen that K(M) =

{x ∈ M | R
AnnR(x) is semiperfect}, and we always have the decomposition

K(M) = ⊕m∈ΩKm(M) (see [19, Satz 2.3]). Moreover, if the ring R is noethe-
rian, then for every supplemented R-module M , we have M = K(M) by [19,
Satz 2.3 and Satz 2.5].

The next result shows that we can reduce our investigations about H-
supplemented and completely H-supplemented modules with M = K(M) over
commutative rings to the case of local rings.

Corollary 2.6. Let M be an R-module over the commutative ring R. The
following are equivalent:

(i) K(M) is H-supplemented (completely H-supplemented);
(ii) Km(M) is H-supplemented (completely H-supplemented) for all m ∈ Ω.

Proof. It is an immediate consequence of Proposition 2.5 since for every sub-
module N of K(M) we have N = ⊕m∈ΩN ∩ Km(M). �

Proposition 2.7. Let R be a commutative noetherian ring. Let M be a module
with RadM � M . If M is H-supplemented, then M = ⊕k∈KHk with Hk

(k ∈ K) are local submodules of M .

Proof. By [9, Proposition A.3], M/Rad(M) is semisimple and M has the lifting
property of direct summands. By [4, Theorem 4], M = [⊕k∈KHk] + Rad(M)
where Hk(k ∈ K) are local submodules of M . But RadM � M . Then
M = ⊕k∈KHk. �

Corollary 2.8. Let R be a commutative noetherian ring. The following are
equivalent for an R-module M with Rad(M) � M :

(i) M is H-supplemented;
(ii) M = ⊕k∈KHk is a direct sum of local submodules Hk(k ∈ K) and M

has the lifting property of simple modules.

Proof. (i) ⇒ (ii) By [9, Proposition A.3] and Proposition 2.7.
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(ii) ⇒ (i) It is clear that M/Rad(M) is semisimple. By Lemma 2.2, the
family {Hk | k ∈ K} is lsTn. The result follows from [4, Theorem 1] and [9,
Proposition A.3]. �

Theorem 2.9. Let R be a commutative noetherian local ring with maximal
ideal m. Let M be an R-module with RadM � M . The following are equiva-
lent:

(i) M is H-supplemented;
(ii) M is completely H-supplemented;
(iii) M ∼= ⊕k∈K

R
Ik

where Ik (k ∈ K) are ideals of R such that:
(a) there exists e ≥ 1 such that the set {k ∈ K | me � Ik} is finite, and
(b) the ideals Ik (k ∈ K) are linearly ordered by inclusion.

Proof. (i) ⇒ (iii) By Proposition 2.7, M ∼= ⊕k∈K
R
Ik

where Ik (k ∈ K) are
ideals of R. By [8, Theorem 8], every proper submodule of M is contained in
some maximal submodule. Thus there exists e ≥ 1 such that meM is finitely
generated by [18, Satz 2.4]. Hence the set {k ∈ K | me � Ik} is finite. By
Lemma 2.2, the family R

Ik
(k ∈ K) is lsTn. Since M has the lifting property

of direct summands by [9, Proposition A.3], for every pair (k1, k2) ∈ K × K,
R/Ik1 ⊕ R/Ik2 has the lifting property of direct summands by [4, Theorem 1].
So the module R/Ik1 ⊕ R/Ik2 is H-supplemented by Corollary 2.8. From [20,
Satz 3.2], it follows that Ik1 ⊆ Ik2 or Ik2 ⊆ Ik1 .

(iii) ⇒ (ii) It is clear that meM is finitely generated. From [18, Satz 2.4]
we deduce that every proper submodule of M is contained in some maximal
submodule. So Rad(M) � M . The result follows from Proposition 2.4.

(ii) ⇒ (i) It is clear. �

The following result may be proved in much the same way as [20, Lemma
1.1 (a)].

Proposition 2.10. Let M0 be a direct summand of a module M such that for
every decomposition M = N ⊕ K of M , there exist submodules N ′ ≤ N and
K′ ≤ K such that M = M0 ⊕ N ′ ⊕ K′. If M is H-supplemented, then M/M0

is H-supplemented.

Let M be an R-module. By P (M) we denote the sum of all radical submod-
ules of M . It is easily seen that if M = N ⊕ K, then P (M) = P (N) ⊕ P (K).

Corollary 2.11. Let M be an H-supplemented module. If P (M) is a direct
summand of M , then P (M) and M/P (M) are H-supplemented.

Proof. Let L be a submodule of M such that M = P (M) ⊕ L. Let M =
N ⊕ K. Since P (M) is a direct summand of M and P (M) = P (N) ⊕ P (K),
there exist submodules N ′ ≤ N and K′ ≤ K such that N = P (N) ⊕ N ′

and K = P (K) ⊕ K′. Thus M = P (M) ⊕ N ′ ⊕ K′. On the other hand,
we have M = P (N) ⊕ P (K) ⊕ L. Therefore M/P (M) and M/L are both
H-supplemented by Proposition 2.10. �
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A module M is called coatomic if every proper submodule of M is contained
in some maximal submodule.

Proposition 2.12. Let M be an H-supplemented module over a commutative
noetherian ring R. Then M = P (M) ⊕ K such that K is coatomic and P (M)
and K are both H-supplemented.

Proof. Since M is H-supplemented, it is ⊕-supplemented. Then M = P (M)⊕
K where K is a coatomic submodule of M by [5, Theorem 2.1]. By Corollary
2.11, P (M) and K are H-supplemented. �

Corollary 2.13. Let M be a completely H-supplemented module over a com-
mutative noetherian local ring R. Then M is a direct sum of hollow submodules.

Proof. By Proposition 2.12, M = P (M) ⊕ K such that K is coatomic and
P (M) and K are H-supplemented. By Theorem 2.9, K is a direct sum of local
submodules. Moreover, since P (M) is completely ⊕-supplemented, P (M) is a
direct sum of hollow submodules by [5, Proposition 2.2]. This proves the result.
�

Corollary 2.14. Let M be an injective H-supplemented module over a commu-
tative noetherian local ring R. Then M is a direct sum of hollow submodules.

Proof. By Proposition 2.12, M = P (M) ⊕ K such that K is coatomic and
P (M) and K are H-supplemented. Since M is injective ⊕-supplemented, M
is completely ⊕-supplemented by [6, Proposition 13]. Thus P (M) is a direct
sum of hollow submodules by [5, Proposition 2.2]. Furthermore, K is a direct
sum of local submodules by Theorem 2.9. �

A module M is called discrete if it satisfies the following conditions (D1)
and (D2):

(D1) For every submodule A of M , there is a decomposition M = M1 ⊕M2

such that M1 ≤ A and A ∩ M2 � M ;
(D2) If A ≤ M such that M/A is isomorphic to a direct summand of M ,

then A is a direct summand of M .

Proposition 2.15. Let M be a socle-free module over a commutative noethe-
rian local ring R. If M is H-supplemented, then M is a finite direct sum of
hollow submodules.

Proof. From Proposition 2.12, we obtain M = P (M) ⊕ K such that K is
coatomic and P (M) and K are H-supplemented. By [11, Theorem 2.4 and
Corollary 2.5], P (M) is a sum of finitely many hollow submodules. By [6,
Lemma 3], P (M) has a hollow direct summand L. It follows that L is a
hollow discrete non-local module by [11, Theorem 1.3] and [10, Proposition 3].
Applying [9, Corollary 5.5], L has local endomorphism ring. By [13, Proposition
1] and Proposition 2.10, P (M)/L is H-supplemented. By repeating the same
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reasoning, we conclude that P (M) is a finite direct sum of hollow submodules
(see [5, Remark 2.1]). On the other hand, K is completely H-supplemented by
Theorem 2.9. Thus K is completely ⊕-supplemented. Applying [5, Proposition
2.4], K is a finite direct sum of local submodules. This completes the proof. �

Notation Let m be a maximal ideal of R and n1, . . . , nk non-negative integers.
We will denote by Bm(n1, . . . , nk) the direct sum of arbitrarily many copies of

R
mn1 , . . . , R

mnk
.

Proposition 2.16. Let R be a local principal ideal ring (not necessarily a
domain) with maximal ideal m. If M is an R-module with Rad(M) � M ,
then the following are equivalent:

(i) M is H-supplemented;
(ii) M is completely H-supplemented;
(iii) M ∼= R(a) ⊕ Bm(n1, . . . , nk) for some non-negative integers n1, . . . , nk

and a.

Proof. By Theorem 2.9 and [12, Lemma 6.3]. �

Remark 2.17. Let R be a commutative ring and M an R-module. Let m be
a maximal ideal of R, x ∈ Km(M) and k a positive integer.

(i) If AnnRm(x) = (mRm)k, then AnnR(x) = mk;
(ii) If Rm is a domain and AnnRm(x) = 0, then p = AnnR(x) is a prime

ideal of R such that p ∈ AssR(Km(M)) and m is the only maximal ideal over
p.

By combining the last remark with Proposition 2.16, Corollary 2.6 and [16,
Ch. IV, §15, Theorem 33], we get the following result which describes the
structure of H-supplemented and completely H-supplemented modules over
principal ideal rings.

Proposition 2.18. Let R be a principal ideal ring (not necessarily a domain)
and M an R-module with Rad(M) � M . The following are equivalent:

(i) M is H-supplemented;
(ii) M is completely H-supplemented;
(iii) M ∼= [⊕i∈IBmi (ni1 , . . . , nikmi

)] ⊕ [⊕j∈J( R
pj

)(aj)] with:
(1) the mi(i ∈ I) are maximal ideals of R, the pj(j ∈ J) are non-maximal

prime ideals of R and {ni1 , . . . , nikmi
, aj}(i,j)∈I×J is a family of positive inte-

gers, and
(2) the ring R

pj
is local for all j ∈ J .

Example 2.19. Let M be a Z-module with Rad(M) � M . By Proposition
2.18, M is H-supplemented if and only if M ∼= ⊕i∈IBpiZ(ni1 , . . . , nikmi

), where
the ni1 , . . . , nikmi

(i ∈ I) are positive integers and the pi(i ∈ I) are prime
integers.
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3 Rings whose modules are H-supplemented

Throughout this section, R is a commutative ring.

Proposition 3.1. Let R be a commutative ring. The following are equivalent:
(i) R is artinian principal;
(ii) Every R-module is ⊕-supplemented;
(iii) Every R-module is H-supplemented.

Proof. (i) ⇔ (ii) By [5, Theorem 1.1].
(i) ⇒ (iii) Since R is artinian, M = K(M). Let m be a maximal ideal

of R. By [12, Theorem 6.9], we have Km(M) ∼= ⊕i∈IR/mni where ni(i ∈ I)
are positive integers. Since R is artinian, there is a non-negative integer k for
which mk = mk+1. Therefore Km(M) is H-supplemented by Theorem 2.9.
Consequently, M is H-supplemented by Corollary 2.6.

(iii) ⇒ (ii) Clear. �

A family of sets is said to have the finite intersection property, abbreviated
f.i.p., if the intersection of every finite subfamily is non-empty. Let M be an
R-module. M is linearly compact if whenever {xα + Mα}α∈X is a family of
cosets of submodules of M (xα ∈ M and Mα is a submodule of M) with the
f.i.p., then ∩α∈Xxα + Mα �= ∅. One can translate this into a condition about
solving congruences. With the above notation x ∈ xα + Mα if and only if
x ≡ xα modMα. Thus an R -module M is linearly compact if given any family
of congruences {x ≡ xαmodMα}α∈X of M , being able to find a solution for
any finite subset of these congruences implies one can find a solution for all
the congruences. R is said to be a maximal ring if R is linearly compact as
R-module. R is called almost maximal if R

I is a linearly compact R-module for
all non-zero ideals I of R.

A commutative ring R is a valuation ring if it satisfies one of the following
three equivalent conditions:
(i) For any two elements a and b, either a divides b or b divides a;
(ii) The ideals of R are linearly ordered by inclusion;
(iii) R is a local ring and every finitely generated ideal is principal.

Proposition 3.2. The following conditions on a commutative ring R are equiv-
alent:

(i) Every finitely generated R-module is H-supplemented;
(ii) Every finitely generated R-module is ⊕-supplemented;
(iii) R is a finite product of almost maximal valuation rings.

Proof. (i) ⇒ (ii) Clear.
(ii) ⇒ (iii) By [5, Proposition 1.4].
(iii) ⇒ (i) Suppose that R = R1 ⊕ R2 ⊕ · · · ⊕ Rn, where Ri is an almost

maximal valuation ring. We can write 1R = e1 + e2 + · · ·+ en, where ei is the
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identity element of the ring Ri and 1R is the identity element of the ring R.
Let M be a finitely generated R-module. Then M = e1M ⊕ e2M ⊕ · · ·⊕ enM .
Let 1 ≤ i ≤ n. Note that eiM can be regarded as an Ri-module as well as an
R-module, and its submodules are the same in both cases, because (r1 + r2 +
· · · + rn)eix = rieix, where rj ∈ Rj for 1 ≤ j ≤ n and x ∈ M . Since Ri is
an almost maximal valuation ring, then Ri(eiM) is a finite direct sum of cyclic
submodules by [1, Theorem 4.5]. Thus Ri(eiM) is a finite direct sum of local
submodules. Since Ri is a valuation ring, Ri(eiM) is H-supplemented by [20,
Satz 3.2]. It follows that RM is H-supplemented by Proposition 2.5. �

According to [20, Satz 3.2] and Corollary 2.6, every finitely generated H-
supplemented module over a commutative ring is a finite direct sum of local
submodules. From [7, Corollary 6], it follows that every finitely generated
H-supplemented module is completely ⊕-supplemented. In general a finitely
generated completely ⊕-supplemented module need not be H-supplemented
(see e.g. [9, Lemma A.4] and [7, Corollary 6]).

It was shown in [7, Proposition 6] that a direct sum of two hollow modules
is always completely ⊕-supplemented.

A module M is called finitely presented if M ∼= F
K for some finitely generated

free module F and finitely generated submodule K of F .

Proposition 3.3. The following conditions are equivalent on a commutative
local ring R:

(i) Every finitely generated completely ⊕-supplemented module is H-supplemented;
(ii) Every finitely presented module is ⊕-supplemented;
(iii) Every finitely presented module is H-supplemented;
(iv) R is a valuation ring.

Proof. (i) ⇒ (iv) Let I and J be two ideals of R. By [7, Proposition 6], the
module M = R/I ⊕ R/J is completely ⊕-supplemented. By hypothesis, M is
H-supplemented. This gives I ⊆ J or J ⊆ I by [20, Satz 3.2]. Therefore R is
a valuation ring.

(iv) ⇒ (i) Let M be a finitely generated completely ⊕-supplemented mod-
ule. By [7, Proposition 11], M = ⊕k

i=1Hi is a direct sum of local submodules
Hi (1 ≤ i ≤ k). Since R is a valuation ring, the ideals AnnR(Hi) (1 ≤ i ≤ k)
are linearly ordered by inclusion. Thus M is H-supplemented by [20, Satz 3.2].

(iv) ⇒ (iii) Let M be a finitely presented R-module. By [14, Theorem 1],
M is a finite direct sum of cyclic submodules. Since R is a valuation ring, M
is H-supplemented by [20, Satz 3.2].

(iii) ⇒ (ii) Clear.
(ii) ⇒ (iv) By [5, Proposition 1.5]. �

As in [9, p. 93], we call an ideal m-isolated if it is contained in at most one
maximal ideal, m.

Proposition 3.4. The following conditions are equivalent on a commutative
ring R:
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(i) Every finitely generated completely ⊕-supplemented module is H-supplemented;
(ii) For every maximal ideal m of R, the collection of m-isolated ideals of

R is linearly ordered by inclusion.

Proof. (i) ⇒ (ii) Let m be a maximal ideal of R. Let I1 and I2 be two m-isolated
ideals. Then the module M = R/I1 ⊕ R/I2 is completely ⊕-supplemented by
[7, Proposition 6]. By assumption, M is H-supplemented. Therefore I1 ⊆ I2

or I2 ⊆ I1 by [20, Satz 3.2].
(ii) ⇒ (i) Let M be a finitely generated completely ⊕-supplemented module.

By [7, Proposition 11], M = ⊕k
i=1R/Ii is a direct sum of local modules R/Ii

(1 ≤ i ≤ k). It is clear that for every i (1 ≤ i ≤ k), there exists a maximal
ideal mi such that the ideal Ii is mi-isolated. By Corollary 2.6 and [20, Satz
3.2], M is H-supplemented. �
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