H-SUPPLEMENTED MODULES WITH SMALL RADICAL

Rachid Tribak

Département de Mathématiques, Faculté des Sciences de Tétouan Université Abdelmalek Essaâdi, B.P.21.21 Tétouan, MOROCCO e-mail:tribak12@yahoo.com

Abstract

We say that a module M is H-supplemented if for every submodule A there is a direct summand B such that A + X = M holds if and only if B + X = M. This paper investigates the structure of H-supplemented modules over commutative noetherian rings. After reducing this question to the case of local rings and describing H-supplemented modules with small radical, it is shown that if every direct summand of M is H-supplemented, then M is a direct sum of hollow modules.

In the second part of this paper it is studied some rings whose modules are *H*-supplemented.

1 Introduction

In this paper all rings are associative with identity elements and all modules are unital right modules. A submodule L of a module M is said *small* in M, written $L \ll M$, provided $M \neq L + X$ for any proper submodule X of M. If every proper submodule of M is small in M, we call M a *hollow* module. The module M will be called a *local* module if Rad(M) is a small maximal submodule of M. Let N be a submodule of a module M. A submodule K of M is called a *supplement* of N in M provided M = N + K and $M \neq N + L$ for any proper submodule L of K. It is well known that K is a supplement of N in M if and only if M = N + K and $N \cap K$ is small in K. M is called *supplemented* if every submodule of M has a supplement. We say that

Key words: H-supplemented module, completely H-supplemented module, hollow module, local module.

²⁰⁰⁰ AMS Mathematics Subject Classification: 16D10, 16D25, 16D99.

a module M is \oplus -supplemented if every submodule has a supplement that is a direct summand of M. The module M is called *H*-supplemented if for every submodule A there exists a direct summand B such that A + X = M holds if and only if B + X = M. It is clear that if $M = B \oplus C$, then C is a supplement of A in M. So every H-supplemented module is \oplus -supplemented. The module M is called completely H-supplemented (\oplus -supplemented) if every direct summand of M is H-supplemented (\oplus -supplemented). The structure of finitely generated *H*-supplemented modules over commutative local rings is given in [20, Satz 3.2]. In Section 2, we will be concerned with the structure of H-supplemented modules over commutative noetherian rings. It is shown that in studying of H-supplemented or completely H-supplemented, one may restrict to the case of modules over local rings. Our main result (Theorem 2.9) describes the structure of H-supplemented and completely H-supplemented modules with small radical over commutative local noetherian rings: Let Rbe a commutative noetherian local ring with maximal ideal m. Let M be an *R*-module with $RadM \ll M$. The following are equivalent:

(i) M is H-supplemented;

- (ii) M is completely H-supplemented;
- (iii) $M \cong \bigoplus_{k \in K} \frac{R}{I_k}$ where I_k $(k \in K)$ are ideals of R such that:
- (a) there exists $e \ge 1$ such that the set $\{k \in K \mid m^e \nsubseteq I_k\}$ is finite, and
- (b) the ideals I_k ($k \in K$) are linearly ordered by inclusion.

It is proved also that every completely H-supplemented module over commutative noetherian rings is a direct sum of hollow modules.

We conclude this paper by studying some rings whose modules are H-supplemented. Among other characterizations, it is proved that for a commutative ring R, every R-module is H-supplemented if and only if the ring R is artinian principal.

2 *H*-supplemented modules over commutative noetherian rings

Definition 2.1. A family of modules $\{M_{\alpha} : \alpha \in \Lambda\}$ is called locally-semitransfinitely-nilpotent (lsTn) if for any subfamily $M_{\alpha_i}(i \in \mathbb{N})$ with distinct α_i and any family of non-isomorphisms $f_i : M_{\alpha_i} \to M_{\alpha_{i+1}}$, and for every $x \in M_{\alpha_1}$, there exists $n \in \mathbb{N}$ (depending on x) such that $f_n \cdots f_2 f_1(x) = 0$.

Lemma 2.2. Let R be a commutative noetherian local ring with maximal ideal m. Let $M = \bigoplus_{k \in K} Rx_k$ such that $Rad(M) \ll M$. Then the family $(Rx_k)_{k \in K}$ is lsTn.

Proof. It is clear that Rx_k $(k \in K)$ are local modules since R is a local ring. By [8, Theorem 8], every proper submodule of M is contained in some maximal submodule. Therefore there is $e \geq 1$ such that $m^e M$ is finitely generated by

[18, Satz 2.4]. Let $(I_k = Ann(x_k))_{k \in K}$. Hence the set $\{k \in K \mid m^e \not\subseteq I_k\}$ is finite. Let $f : Rx_i \longrightarrow Rx_j$ be a non-isomorphism and $a \in R$ such that $f(x_i) = ax_j$. Then $aI_i \subseteq I_j$. If $a \notin m$, then a is invertible. Thus $I_i \subseteq I_j$. Hence $I_i \subset I_j$ or $I_i = I_j$. But if $I_i = I_j$, then f will be an isomorphism. Therefore $I_i \subset I_j$.

Let $Rx_{\alpha_i}(i \in \mathbb{N})$ be a subfamily of $Rx_k(k \in K)$ with distinct α_i and $f_i : Rx_{\alpha_i} \longrightarrow Rx_{\alpha_{i+1}}$ a family of non-isomorphisms. Let $a_i \in R$ such that $f_i(x_{\alpha_i}) = a_i x_{\alpha_{i+1}}$. Thus for every $n \in \mathbb{N}$, we have $f_n \cdots f_2 f_1(x_{\alpha_1}) = a_n \cdots a_2 a_1 x_{\alpha_{n+1}}$. Since R is noetherian and $\{k \in K \mid m^e \not\subseteq I_k\}$ is finite, there exists $l \in \mathbb{N}$ such that $f_l \cdots f_2 f_1(x_{\alpha_1}) = 0$. Therefore $\{Rx_k : k \in K\}$ is lsTn.

Lemma 2.3. Let R be a commutative local ring with maximal ideal m. Let $H_1 = Rx_1$ and $H_2 = Rx_2$ be two cyclic R-modules with $I_i = Ann(H_i)$ (i = 1, 2). Suppose that $I_1 \subseteq I_2$ or $I_2 \subseteq I_1$. Then for every isomorphism $f : H_1/mH_1 \rightarrow H_2/mH_2$, there exists an epimorphism g of either H_1 onto H_2 or H_2 onto H_1 such that $\overline{g} = f$ or $\overline{g} = f^{-1}$.

Proof. Let $f: H_1/mH_1 \to H_2/mH_2$ be an isomorphism. So there exists $a \in R-m$ such that $f(\overline{x_1}) = a\overline{x_2}$. If $I_1 \subseteq I_2$, then the homomorphism $g: H_1 \to H_2$ defined by $g(x_1) = ax_2$ is well defined. It is clear that g is an epimorphism and $\overline{g} = f$. If $I_2 \subseteq I_1$, then the homomorphism $h: H_2 \to H_1$ defined by $h(x_2) = a^{-1}x_1$, where a^{-1} is the inverse of a, is well defined. It is clear that h is an epimorphism and $\overline{h} = f^{-1}$.

Note that from [2, Theorem 4.1] it follows that every local module over a commutative ring has local endomorphism ring.

If for each simple direct summand A of M/Rad(M), there exists a local direct summand K of M such that (K + Rad(M))/Rad(M) = A, then we say that M has the lifting property of simple modules. More generally, if for any direct summand B of M/Rad(M), there exists a direct summand N of M such that (N + Rad(M))/Rad(M) = B, we say that M has the lifting property of direct summands.

Proposition 2.4. Let R be a commutative noetherian local ring with maximal ideal m. Let $M = \bigoplus_{k \in K} H_k$ such that $(H_k)_{k \in K}$ are local submodules of M and $RadM \ll M$. Let $I_k = Ann(H_k)$ $(k \in K)$. Suppose that the set of ideals $(I_k)_{k \in K}$ is totally ordered with respect to set inclusion. Then M is completely H-supplemented.

Proof. By [9, Proposition A.3], it suffices to prove that for every direct summand N of M, N has the lifting property of direct summands. By [13, Theorem 1], we need only to show that each direct summand of M/RadM lifts to a direct summand of M. By Lemma 2.3 and [3, Theorem 2], M has the lifting property of simple modules. Since the family $(H_k)_{k \in K}$ is lsTn by Lemma 2.2, M has the lifting property of direct summands by [4, Theorem 1]. This proves the result.

Proposition 2.5. Let a module $M = \bigoplus_{i \in I} M_i$ be a direct sum of submodules $M_i(i \in I)$. If for every submodule N of M, we have $N = \bigoplus_{i \in I} (N \cap M_i)$, then M is (completely) H-supplemented if and only if all $M_i(i \in I)$ are (completely) H-supplemented.

Proof. Clear.

Let R denote a commutative ring. Let Ω be the set of all maximal ideal of R. If $m \in \Omega$, M an R-module, we denote as in [19, p. 53] by $K_m(M) = \{x \in M \mid x = 0 \text{ or the only maximal ideal over } Ann_R(x) \text{ is } m\}$ as the *m*-local component of M. We call M *m*-local if $K_m(M) = M$. In this case M is an R_m -module by the following operation: $(\frac{r}{s})x = rx'$ with x = sx' ($r \in R, s \in R - m$). The submodules of M over R and over R_m are identical.

For $K(M) = \{x \in M \mid Rx \text{ is supplemented}\}$ it is easily seen that $K(M) = \{x \in M \mid \frac{R}{Ann_R(x)} \text{ is semiperfect}\}$, and we always have the decomposition $K(M) = \bigoplus_{m \in \Omega} K_m(M)$ (see [19, Satz 2.3]). Moreover, if the ring R is noetherian, then for every supplemented R-module M, we have M = K(M) by [19, Satz 2.3 and Satz 2.5].

The next result shows that we can reduce our investigations about H-supplemented and completely H-supplemented modules with M = K(M) over commutative rings to the case of local rings.

Corollary 2.6. Let M be an R-module over the commutative ring R. The following are equivalent:

(i) K(M) is H-supplemented (completely H-supplemented);

(ii) $K_m(M)$ is H-supplemented (completely H-supplemented) for all $m \in \Omega$.

Proof. It is an immediate consequence of Proposition 2.5 since for every submodule N of K(M) we have $N = \bigoplus_{m \in \Omega} N \cap K_m(M)$.

Proposition 2.7. Let R be a commutative noetherian ring. Let M be a module with Rad $M \ll M$. If M is H-supplemented, then $M = \bigoplus_{k \in K} H_k$ with H_k $(k \in K)$ are local submodules of M.

Proof. By [9, Proposition A.3], M/Rad(M) is semisimple and M has the lifting property of direct summands. By [4, Theorem 4], $M = [\bigoplus_{k \in K} H_k] + Rad(M)$ where $H_k(k \in K)$ are local submodules of M. But $RadM \ll M$. Then $M = \bigoplus_{k \in K} H_k$.

Corollary 2.8. Let R be a commutative noetherian ring. The following are equivalent for an R-module M with $Rad(M) \ll M$:

(i) M is H-supplemented;

(ii) $M = \bigoplus_{k \in K} H_k$ is a direct sum of local submodules $H_k(k \in K)$ and M has the lifting property of simple modules.

Proof. (i) \Rightarrow (ii) By [9, Proposition A.3] and Proposition 2.7.

(ii) \Rightarrow (i) It is clear that M/Rad(M) is semisimple. By Lemma 2.2, the family $\{H_k \mid k \in K\}$ is lsTn. The result follows from [4, Theorem 1] and [9, Proposition A.3].

Theorem 2.9. Let R be a commutative noetherian local ring with maximal ideal m. Let M be an R-module with $RadM \ll M$. The following are equivalent:

- (i) M is H-supplemented;
- (ii) M is completely H-supplemented;
- (iii) $M \cong \bigoplus_{k \in K} \frac{R}{I_k}$ where I_k $(k \in K)$ are ideals of R such that:

(a) there exists $e \ge 1$ such that the set $\{k \in K \mid m^e \nsubseteq I_k\}$ is finite, and

(b) the ideals I_k $(k \in K)$ are linearly ordered by inclusion.

Proof. (i) ⇒ (iii) By Proposition 2.7, $M \cong \bigoplus_{k \in K} \frac{R}{I_k}$ where I_k ($k \in K$) are ideals of R. By [8, Theorem 8], every proper submodule of M is contained in some maximal submodule. Thus there exists $e \ge 1$ such that $m^e M$ is finitely generated by [18, Satz 2.4]. Hence the set { $k \in K \mid m^e \nsubseteq I_k$ } is finite. By Lemma 2.2, the family $\frac{R}{I_k}$ ($k \in K$) is lsTn. Since M has the lifting property of direct summands by [9, Proposition A.3], for every pair (k_1, k_2) $\in K \times K$, $R/I_{k_1} \oplus R/I_{k_2}$ has the lifting property of direct summands by [4, Theorem 1]. So the module $R/I_{k_1} \oplus R/I_{k_2}$ is H-supplemented by Corollary 2.8. From [20, Satz 3.2], it follows that $I_{k_1} \subseteq I_{k_2}$ or $I_{k_2} \subseteq I_{k_1}$.

(iii) \Rightarrow (ii) It is clear that $m^e M$ is finitely generated. From [18, Satz 2.4] we deduce that every proper submodule of M is contained in some maximal submodule. So $Rad(M) \ll M$. The result follows from Proposition 2.4.

(ii) \Rightarrow (i) It is clear.

The following result may be proved in much the same way as [20, Lemma 1.1 (a)].

Proposition 2.10. Let M_0 be a direct summand of a module M such that for every decomposition $M = N \oplus K$ of M, there exist submodules $N' \leq N$ and $K' \leq K$ such that $M = M_0 \oplus N' \oplus K'$. If M is H-supplemented, then M/M_0 is H-supplemented.

Let *M* be an *R*-module. By P(M) we denote the sum of all radical submodules of *M*. It is easily seen that if $M = N \oplus K$, then $P(M) = P(N) \oplus P(K)$.

Corollary 2.11. Let M be an H-supplemented module. If P(M) is a direct summand of M, then P(M) and M/P(M) are H-supplemented.

Proof. Let L be a submodule of M such that $M = P(M) \oplus L$. Let $M = N \oplus K$. Since P(M) is a direct summand of M and $P(M) = P(N) \oplus P(K)$, there exist submodules $N' \leq N$ and $K' \leq K$ such that $N = P(N) \oplus N'$ and $K = P(K) \oplus K'$. Thus $M = P(M) \oplus N' \oplus K'$. On the other hand, we have $M = P(N) \oplus P(K) \oplus L$. Therefore M/P(M) and M/L are both H-supplemented by Proposition 2.10.

A module M is called *coatomic* if every proper submodule of M is contained in some maximal submodule.

Proposition 2.12. Let M be an H-supplemented module over a commutative noetherian ring R. Then $M = P(M) \oplus K$ such that K is coatomic and P(M) and K are both H-supplemented.

Proof. Since M is H-supplemented, it is \oplus -supplemented. Then $M = P(M) \oplus K$ where K is a coatomic submodule of M by [5, Theorem 2.1]. By Corollary 2.11, P(M) and K are H-supplemented. \Box

Corollary 2.13. Let M be a completely H-supplemented module over a commutative noetherian local ring R. Then M is a direct sum of hollow submodules.

Proof. By Proposition 2.12, $M = P(M) \oplus K$ such that K is coatomic and P(M) and K are H-supplemented. By Theorem 2.9, K is a direct sum of local submodules. Moreover, since P(M) is completely \oplus -supplemented, P(M) is a direct sum of hollow submodules by [5, Proposition 2.2]. This proves the result. \Box

Corollary 2.14. Let M be an injective H-supplemented module over a commutative noetherian local ring R. Then M is a direct sum of hollow submodules.

Proof. By Proposition 2.12, $M = P(M) \oplus K$ such that K is coatomic and P(M) and K are H-supplemented. Since M is injective \oplus -supplemented, M is completely \oplus -supplemented by [6, Proposition 13]. Thus P(M) is a direct sum of hollow submodules by [5, Proposition 2.2]. Furthermore, K is a direct sum of local submodules by Theorem 2.9.

A module M is called *discrete* if it satisfies the following conditions (D_1) and (D_2) :

 (D_1) For every submodule A of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq A$ and $A \cap M_2 \ll M$;

 (D_2) If $A \leq M$ such that M/A is isomorphic to a direct summand of M, then A is a direct summand of M.

Proposition 2.15. Let M be a socle-free module over a commutative noetherian local ring R. If M is H-supplemented, then M is a finite direct sum of hollow submodules.

Proof. From Proposition 2.12, we obtain $M = P(M) \oplus K$ such that K is coatomic and P(M) and K are H-supplemented. By [11, Theorem 2.4 and Corollary 2.5], P(M) is a sum of finitely many hollow submodules. By [6, Lemma 3], P(M) has a hollow direct summand L. It follows that L is a hollow discrete non-local module by [11, Theorem 1.3] and [10, Proposition 3]. Applying [9, Corollary 5.5], L has local endomorphism ring. By [13, Proposition 1] and Proposition 2.10, P(M)/L is H-supplemented. By repeating the same

reasoning, we conclude that P(M) is a finite direct sum of hollow submodules (see [5, Remark 2.1]). On the other hand, K is completely H-supplemented by Theorem 2.9. Thus K is completely \oplus -supplemented. Applying [5, Proposition 2.4], K is a finite direct sum of local submodules. This completes the proof. \Box **Notation** Let m be a maximal ideal of R and n_1, \ldots, n_k non-negative integers. We will denote by $B_m(n_1, \ldots, n_k)$ the direct sum of arbitrarily many copies of $\frac{R}{m^{n_1}},\ldots,\frac{R}{m^{n_k}}.$

Proposition 2.16. Let R be a local principal ideal ring (not necessarily a domain) with maximal ideal m. If M is an R-module with $Rad(M) \ll M$, then the following are equivalent:

(i) M is H-supplemented;

(ii) M is completely H-supplemented;

(iii) $M \cong R^{(a)} \oplus B_m(n_1, \ldots, n_k)$ for some non-negative integers n_1, \ldots, n_k and a.

Proof. By Theorem 2.9 and [12, Lemma 6.3].

Remark 2.17. Let R be a commutative ring and M an R-module. Let m be a maximal ideal of $R, x \in K_m(M)$ and k a positive integer.

(i) If $Ann_{R_m}(x) = (mR_m)^k$, then $Ann_R(x) = m^k$;

(ii) If R_m is a domain and $Ann_{R_m}(x) = 0$, then $p = Ann_R(x)$ is a prime ideal of R such that $p \in Ass_R(K_m(M))$ and m is the only maximal ideal over p.

By combining the last remark with Proposition 2.16, Corollary 2.6 and [16, Ch. IV, $\S15$, Theorem 33, we get the following result which describes the structure of H-supplemented and completely H-supplemented modules over principal ideal rings.

Proposition 2.18. Let R be a principal ideal ring (not necessarily a domain) and M an R-module with $Rad(M) \ll M$. The following are equivalent:

(i) M is H-supplemented;

(ii) M is completely H-supplemented; (iii) $M \cong [\bigoplus_{i \in I} B_{m_i}(n_{i_1}, \ldots, n_{i_{k_{m_i}}})] \oplus [\bigoplus_{j \in J} (\frac{R}{p_j})^{(a_j)}]$ with: (1) the $m_i(i \in I)$ are maximal ideals of R, the $p_j(j \in J)$ are non-maximal prime ideals of R and $\{n_{i_1}, \ldots, n_{i_{k_{m-1}}}, a_j\}_{(i,j) \in I \times J}$ is a family of positive integers, and

(2) the ring $\frac{R}{n_i}$ is local for all $j \in J$.

Example 2.19. Let M be a \mathbb{Z} -module with $Rad(M) \ll M$. By Proposition 2.18, M is H-supplemented if and only if $M \cong \bigoplus_{i \in I} B_{p_i \mathbb{Z}}(n_{i_1}, \ldots, n_{i_{k_{m_i}}})$, where the $n_{i_1}, \ldots, n_{i_{k_{m_i}}}$ $(i \in I)$ are positive integers and the $p_i(i \in I)$ are prime integers.

3 Rings whose modules are *H*-supplemented

Throughout this section, R is a commutative ring.

Proposition 3.1. Let R be a commutative ring. The following are equivalent:

(i) R is artinian principal;

(ii) Every R-module is \oplus -supplemented;

(iii) Every R-module is H-supplemented.

Proof. (i) \Leftrightarrow (ii) By [5, Theorem 1.1].

(i) \Rightarrow (iii) Since R is artinian, M = K(M). Let m be a maximal ideal of R. By [12, Theorem 6.9], we have $K_m(M) \cong \bigoplus_{i \in I} R/m^{n_i}$ where $n_i (i \in I)$ are positive integers. Since R is artinian, there is a non-negative integer k for which $m^k = m^{k+1}$. Therefore $K_m(M)$ is H-supplemented by Theorem 2.9. Consequently, M is H-supplemented by Corollary 2.6.

(iii) \Rightarrow (ii) Clear.

A family of sets is said to have the finite intersection property, abbreviated f.i.p., if the intersection of every finite subfamily is non-empty. Let M be an R-module. M is linearly compact if whenever $\{x_{\alpha} + M_{\alpha}\}_{\alpha \in X}$ is a family of cosets of submodules of M ($x_{\alpha} \in M$ and M_{α} is a submodule of M) with the f.i.p., then $\cap_{\alpha \in X} x_{\alpha} + M_{\alpha} \neq \emptyset$. One can translate this into a condition about solving congruences. With the above notation $x \in x_{\alpha} + M_{\alpha}$ if and only if $x \equiv x_{\alpha} \mod M_{\alpha}$. Thus an R-module M is linearly compact if given any family of congruences $\{x \equiv x_{\alpha} \mod M_{\alpha}\}_{\alpha \in X}$ of M, being able to find a solution for any finite subset of these congruences implies one can find a solution for all the congruences. R is said to be a maximal ring if R is linearly compact as R-module. R is called almost maximal if $\frac{R}{I}$ is a linearly compact R-module for all non-zero ideals I of R.

A commutative ring R is a valuation ring if it satisfies one of the following three equivalent conditions:

(i) For any two elements a and b, either a divides b or b divides a;

(ii) The ideals of R are linearly ordered by inclusion;

(iii) R is a local ring and every finitely generated ideal is principal.

Proposition 3.2. *The following conditions on a commutative ring R are equivalent:*

(i) Every finitely generated R-module is H-supplemented;

(ii) Every finitely generated R-module is \oplus -supplemented;

(iii) R is a finite product of almost maximal valuation rings.

Proof. (i) \Rightarrow (ii) Clear.

(ii) \Rightarrow (iii) By [5, Proposition 1.4].

(iii) \Rightarrow (i) Suppose that $R = R_1 \oplus R_2 \oplus \cdots \oplus R_n$, where R_i is an almost maximal valuation ring. We can write $1_R = e_1 + e_2 + \cdots + e_n$, where e_i is the

identity element of the ring R_i and 1_R is the identity element of the ring R. Let M be a finitely generated R-module. Then $M = e_1 M \oplus e_2 M \oplus \cdots \oplus e_n M$. Let $1 \leq i \leq n$. Note that $e_i M$ can be regarded as an R_i -module as well as an R-module, and its submodules are the same in both cases, because $(r_1 + r_2 + \cdots + r_n)e_i x = r_i e_i x$, where $r_j \in R_j$ for $1 \leq j \leq n$ and $x \in M$. Since R_i is an almost maximal valuation ring, then $R_i(e_i M)$ is a finite direct sum of cyclic submodules. Since R_i is a valuation ring, $R_i(e_i M)$ is a finite direct sum of local submodules. Since R_i is a valuation ring, $R_i(e_i M)$ is H-supplemented by [20, Satz 3.2]. It follows that RM is H-supplemented by Proposition 2.5.

According to [20, Satz 3.2] and Corollary 2.6, every finitely generated H-supplemented module over a commutative ring is a finite direct sum of local submodules. From [7, Corollary 6], it follows that every finitely generated H-supplemented module is completely \oplus -supplemented. In general a finitely generated completely \oplus -supplemented module need not be H-supplemented (see e.g. [9, Lemma A.4] and [7, Corollary 6]).

It was shown in [7, Proposition 6] that a direct sum of two hollow modules is always completely \oplus -supplemented.

A module M is called finitely presented if $M \cong \frac{F}{K}$ for some finitely generated free module F and finitely generated submodule K of F.

Proposition 3.3. The following conditions are equivalent on a commutative local ring R:

(i) Every finitely generated completely \oplus -supplemented module is H-supplemented;

(ii) Every finitely presented module is \oplus -supplemented;

(iii) Every finitely presented module is H-supplemented;

(iv) R is a valuation ring.

Proof. (i) \Rightarrow (iv) Let I and J be two ideals of R. By [7, Proposition 6], the module $M = R/I \oplus R/J$ is completely \oplus -supplemented. By hypothesis, M is H-supplemented. This gives $I \subseteq J$ or $J \subseteq I$ by [20, Satz 3.2]. Therefore R is a valuation ring.

(iv) \Rightarrow (i) Let M be a finitely generated completely \oplus -supplemented module. By [7, Proposition 11], $M = \bigoplus_{i=1}^{k} H_i$ is a direct sum of local submodules H_i ($1 \le i \le k$). Since R is a valuation ring, the ideals $Ann_R(H_i)$ ($1 \le i \le k$) are linearly ordered by inclusion. Thus M is H-supplemented by [20, Satz 3.2].

(iv) \Rightarrow (iii) Let M be a finitely presented R-module. By [14, Theorem 1], M is a finite direct sum of cyclic submodules. Since R is a valuation ring, M is H-supplemented by [20, Satz 3.2].

 $(iii) \Rightarrow (ii)$ Clear.

(ii) \Rightarrow (iv) By [5, Proposition 1.5].

As in [9, p. 93], we call an ideal m-isolated if it is contained in at most one maximal ideal, m.

Proposition 3.4. The following conditions are equivalent on a commutative ring R:

(i) Every finitely generated completely \oplus -supplemented module is H-supplemented;

(ii) For every maximal ideal m of R, the collection of m-isolated ideals of R is linearly ordered by inclusion.

Proof. (i) \Rightarrow (ii) Let *m* be a maximal ideal of *R*. Let I_1 and I_2 be two *m*-isolated ideals. Then the module $M = R/I_1 \oplus R/I_2$ is completely \oplus -supplemented by [7, Proposition 6]. By assumption, *M* is *H*-supplemented. Therefore $I_1 \subseteq I_2$ or $I_2 \subseteq I_1$ by [20, Satz 3.2].

(ii) \Rightarrow (i) Let M be a finitely generated completely \oplus -supplemented module. By [7, Proposition 11], $M = \bigoplus_{i=1}^{k} R/I_i$ is a direct sum of local modules R/I_i $(1 \leq i \leq k)$. It is clear that for every i $(1 \leq i \leq k)$, there exists a maximal ideal m_i such that the ideal I_i is m_i -isolated. By Corollary 2.6 and [20, Satz 3.2], M is H-supplemented. \Box

References

- W. Brandal, Commutative rings whose finitely generated modules decompose, Lecture Notes in Mathematics Series 723 (Berlin, Heidelberg, New-York, Springer-Verlag, 1979).
- [2] P. Fleury, Hollow modules and local endomorphism rings, *Pacific J. Math.* 53 (2) (1974) 379-385.
- [3] M. Harada, On lifting property on direct sums of hollow modules, Osaka J. Math. 17 (1980) 783-791.
- [4] M. Harada, On modules with lifting property, Osaka J. Math. 19 (1982) 189-201.
- [5] A. Idelhadj and R. Tribak, Modules for which every submodule has a supplement that is a direct summand, Arab. J. Sci. Eng. Sect. C Theme Issues 25 (2) (2000) 179-189.
- [6] A. Idelhadj and R. Tribak, On injective

 —supplemented modules, Proceedings of the first Moroccan-Andalusian meeting on algebras and their applications, Tétouan, Morocco, September 2001. Morocco: Université Abdelmalek Essaadi, Faculté des Sciences de Tétouan, Dépt. de Mathématiques et Informatique, UFR-Algèbre et Geométrie Differentielle (2003) 166-180.
- [7] A. Idelhadj and R. Tribak, A dual notion of CS-modules generalization, Algebra and Number Theory (Fez) (M. Boulagouaz and J.-P. Tignol, eds.), *Lecture Notes in Pure and Appl. Math.* Vol. 208 Marcel Dekker, New York, (2000) 149-155.
- [8] T. Inoue, Sum of hollow modules, Osaka J. Math. 20 (1983) 331-336.
- [9] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series, Vol. 147 (Cambridge Univ. Press, 1990).

- [10] S. H. Mohamed and B. J. Müller, Dual continuous modules over commutative Noetherian rings, *Comm. Algebra* **16** (6) (1988) 1191-1207.
- [11] P. Rudlof, On the structure of couniform and complemented modules, J. Pure Appl. Algebra 74 (1991) 281-305.
- [12] D. W. Sharpe and P. Vamos, *Injective Modules*, Lecture in Pure Mathematics (University of Sheffield, 1972).
- [13] R. B. Warfield Jr., A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969) 460-465.
- [14] R. B. Warfield Jr., Decomposability of finitely presented modules, Proc. Amer. Math. Soc. 25 (1970) 167-172.
- [15] R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach Science Publishers, Philadelphia, 1991).
- [16] O. Zarisky and P. Samuel, *Commutative Algebra*, Vol. 1 (New-York, Heidelberg, Berlin, Springer-Verlag, 1975).
- [17] H. Zöschinger, Komplementierte Moduln uber Dedekindringen, J. Algebra 29 (1974) 42-56.
- [18] H. Zöschinger, Koatomare moduln, Math. Z. 170 (1980) 221-232.
- [19] H. Zöschinger, Gelfandringe und koabgeschlossene Untermoduln, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 3 (1982) 43-70.
- [20] H. Zöschinger, Komplemente als direkte Summanden II, Arch. Math. 38 (1982) 324-334.