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Abstract

We say that a module M is H-supplemented if for every submodule
A there is a direct summand B such that A + X = M holds if and only
if B4 X = M. This paper investigates the structure of H-supplemented
modules over commutative noetherian rings. After reducing this ques-
tion to the case of local rings and describing H-supplemented modules
with small radical, it is shown that if every direct summand of M is
H-supplemented, then M is a direct sum of hollow modules.

In the second part of this paper it is studied some rings whose modules
are H-supplemented.

1 Introduction

In this paper all rings are associative with identity elements and all modules
are unital right modules. A submodule L of a module M is said small in M,
written L <« M, provided M # L + X for any proper submodule X of M.
If every proper submodule of M is small in M, we call M a hollow module.
The module M will be called a local module if Rad(M) is a small maximal
submodule of M. Let N be a submodule of a module M. A submodule K of
M is called a supplement of N in M provided M = N+ K and M # N + L
for any proper submodule L of K. It is well known that K is a supplement
of N in M if and only if M = N + K and N N K is small in K. M is
called supplemented if every submodule of M has a supplement. We say that
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212 H-supplemented modules with small radical

a module M is @®-supplemented if every submodule has a supplement that is a
direct summand of M. The module M is called H -supplemented if for every
submodule A there exists a direct summand B such that A + X = M holds
if and only if B4+ X = M. It is clear that if M = B & C, then C is a
supplement of A in M. So every H-supplemented module is ®-supplemented.
The module M is called completely H-supplemented (é-supplemented) if every
direct summand of M is H-supplemented (®-supplemented). The structure of
finitely generated H-supplemented modules over commutative local rings is
given in [20, Satz 3.2]. In Section 2, we will be concerned with the structure
of H-supplemented modules over commutative noetherian rings. It is shown
that in studying of H-supplemented or completely H-supplemented, one may
restrict to the case of modules over local rings. Our main result (Theorem 2.9)
describes the structure of H-supplemented and completely H-supplemented
modules with small radical over commutative local noetherian rings: Let R
be a commutative noetherian local ring with maximal ideal m. Let M be an
R-module with RadM < M. The following are equivalent:

(i) M is H-supplemented;

(ii) M is completely H-supplemented;

(i) M = @pex 7+ where Iy (k € K) are ideals of R such that:

(a) there exists e > 1 such that the set {k € K | m® ¢ I;;} is finite, and

(b) the ideals I (k € K) are linearly ordered by inclusion.

It is proved also that every completely H-supplemented module over com-
mutative noetherian rings is a direct sum of hollow modules.

We conclude this paper by studying some rings whose modules are H-
supplemented. Among other characterizations, it is proved that for a commu-
tative ring R, every R-module is H-supplemented if and only if the ring R is
artinian principal.

2 H-supplemented modules over commutative
noetherian rings

Definition 2.1. A family of modules {M, : « € A} is called locally-semi-
transfinitely-nilpotent (IsTn) if for any subfamily M,, (i € N) with distinct «;
and any family of non-isomorphisms f; : Mo, — Ma,,,, and for everyx € M,,,
there exists n € N (depending on x) such that fy, --- faf1(x) = 0.

Lemma 2.2. Let R be a commutative noetherian local ring with mazimal ideal
m. Let M = @yei Rxy, such that Rad(M) < M. Then the family (Rxg)rex
is IsTn.

Proof. Tt is clear that Rz (k € K) are local modules since R is a local ring.
By [8, Theorem 8], every proper submodule of M is contained in some maximal
submodule. Therefore there is e > 1 such that m©M is finitely generated by
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[18, Satz 2.4]. Let (I = Ann(xy))kex. Hence the set {k € K | m® € I}
is finite. Let f : Rz; — Rx; be a non-isomorphism and a € R such that
f(z;) = axj. Then al; C I;. If a ¢ m, then a is invertible. Thus I; C I;.
Hence I; C I; or I; = I;. But if I; = I;, then f will be an isomorphism.
Therefore I; C I;.

Let Rz, (i € N) be a subfamily of Rxy(k € K) with distinct «; and f; :
Rxo, — Rxq,,, afamily of non-isomorphisms. Let a; € R such that f;(zq,) =
4iTq,,,- Thus for every n € N, we have f,--- fofi(2a,) = an---a2017q, .
Since R is noetherian and {k € K | m® € I} is finite, there exists | € N such
that fi--- fofi(za,) = 0. Therefore {Rzxy : k € K} is lsTn. O

Lemma 2.3. Let R be a commutative local ring with mazximal ideal m. Let
H;, = Rxzy and Hy = Rxo be two cyclic R-modules with I; = Ann(H;) (i = 1,2).
Suppose that Iy C Iy or Iy C I;. Then for every isomorphism f : Hy/mH; —
Hy/mHs, there exists an epimorphism g of either Hy onto Hy or Hy onto Hy
such thatG=f org= f~".

Proof. Let f : Hy/mH; — Hs/mHs be an isomorphism. So there exists a €
R —m such that f(z1) = aZ3. If I C I, then the homomorphism g : H; — Hs
defined by g(x1) = axs is well defined. It is clear that g is an epimorphism
and g = f. If Iy C Iy, then the homomorphism h : Hy — H; defined by
h(x2) = a=lxy, where a! is the inverse of a, is well defined. It is clear that h
is an epimorphism and h = f~1. |

Note that from [2, Theorem 4.1] it follows that every local module over a
commutative ring has local endomorphism ring.

If for each simple direct summand A of M/Rad(M), there exists a local
direct summand K of M such that (K + Rad(M))/Rad(M) = A, then we say
that M has the lifting property of simple modules. More generally, if for any
direct summand B of M/Rad(M), there exists a direct summand N of M such
that (N + Rad(M))/Rad(M) = B, we say that M has the lifting property of
direct summands.

Proposition 2.4. Let R be a commutative noetherian local ring with mazimal
ideal m. Let M = @®pex Hy such that (Hy)rex are local submodules of M and
RadM < M. Let I, = Ann(Hy) (k € K). Suppose that the set of ideals
(Ix)kek is totally ordered with respect to set inclusion. Then M is completely
H -supplemented.

Proof. By [9, Proposition A.3], it suffices to prove that for every direct sum-
mand N of M, N has the lifting property of direct summands. By [13, Theorem
1], we need only to show that each direct summand of M/RadM lifts to a direct
summand of M. By Lemma 2.3 and [3, Theorem 2], M has the lifting property
of simple modules. Since the family (Hg)kex is IsTn by Lemma 2.2, M has
the lifting property of direct summands by [4, Theorem 1]. This proves the
result. O



214 H-supplemented modules with small radical

Proposition 2.5. Let a module M = ®;c;M; be a direct sum of submodules
M;(i € I). If for every submodule N of M, we have N = @®;c;(N N M;), then
M is (completely) H-supplemented if and only if all M;(i € I) are (completely)
H -supplemented.

Proof. Clear. O

Let R denote a commutative ring. Let {2 be the set of all maximal ideal of R.
If m € Q, M an R-module, we denote as in [19, p. 53] by K,,(M) = {x € M |
x = 0 or the only maximal ideal over Anng(x) is m} as the m-local component
of M. We call M m-local if K,,(M) = M. In this case M is an R,,-module
by the following operation: (%)x = ra’ with x = sz’ (r € R,s € R —m). The
submodules of M over R and over R,, are identical.

For K(M) = {x € M | Rx is supplemented} it is easily seen that K (M) =
{r € M | ﬁ;(m) is semiperfect}, and we always have the decomposition
K(M) = ®meaKm(M) (see [19, Satz 2.3]). Moreover, if the ring R is noethe-
rian, then for every supplemented R-module M, we have M = K (M) by [19,
Satz 2.3 and Satz 2.5].

The next result shows that we can reduce our investigations about H-
supplemented and completely H-supplemented modules with M = K (M) over
commutative rings to the case of local rings.

Corollary 2.6. Let M be an R-module over the commutative ring R. The
following are equivalent:

(i) K(M) is H-supplemented (completely H -supplemented);

(i) K., (M) is H-supplemented (completely H-supplemented) for allm € Q.

Proof. Tt is an immediate consequence of Proposition 2.5 since for every sub-
module N of K (M) we have N = @peaN N Ky (M). O

Proposition 2.7. Let R be a commutative noetherian ring. Let M be a module
with RadM < M. If M is H-supplemented, then M = @rex Hy with Hy
(k € K) are local submodules of M.

Proof. By [9, Proposition A.3], M/Rad(M) is semisimple and M has the lifting
property of direct summands. By [4, Theorem 4], M = [®rex Hi| + Rad(M)
where Hi(k € K) are local submodules of M. But RadM < M. Then
M = Drecx Hg. O

Corollary 2.8. Let R be a commutative noetherian ring. The following are
equivalent for an R-module M with Rad(M) < M :

(i) M is H-supplemented;

(i) M = ®rex Hy is a direct sum of local submodules Hi(k € K) and M
has the lifting property of simple modules.

Proof. (i) = (ii) By [9, Proposition A.3] and Proposition 2.7.
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(ii) = (i) It is clear that M/Rad(M) is semisimple. By Lemma 2.2, the
family {Hy | k € K} is IsTn. The result follows from [4, Theorem 1] and [9,
Proposition A.3]. O

Theorem 2.9. Let R be a commutative noetherian local ring with mazimal
ideal m. Let M be an R-module with RadM < M. The following are equiva-
lent:

(i) M is H-supplemented;

(i) M is completely H-supplemented;

(iii) M = @keK% where I, (k € K) are ideals of R such that:

(a) there exists e > 1 such that the set {k € K | m® ¢ I} is finite, and

(b) the ideals Iy, (k € K) are linearly ordered by inclusion.

Proof. (i) = (iii) By Proposition 2.7, M & @yex 1 where I, (k € K) are
ideals of R. By [8, Theorem 8], every proper submodule of M is contained in
some maximal submodule. Thus there exists e > 1 such that m®M is finitely
generated by [18, Satz 2.4]. Hence the set {k € K | m® ¢ I} is finite. By
Lemma 2.2, the family % (k € K) is IsTn. Since M has the lifting property
of direct summands by [9, Proposition A.3], for every pair (k1,k2) € K x K,
R/I;, ® R/I, has the lifting property of direct summands by [4, Theorem 1].
So the module R/I, ® R/I}, is H-supplemented by Corollary 2.8. From [20,
Satz 3.2], it follows that Iy, C Iy, or Iy, C Ij,.

(iii) = (ii) It is clear that m®M is finitely generated. From [18, Satz 2.4]
we deduce that every proper submodule of M is contained in some maximal
submodule. So Rad(M) <« M. The result follows from Proposition 2.4.

(ii) = (i) It is clear. O

The following result may be proved in much the same way as [20, Lemma

1.1 (a)].

Proposition 2.10. Let My be a direct summand of a module M such that for
every decomposition M = N & K of M, there exist submodules N' < N and
K' < K such that M = My ® N’ & K'. If M is H-supplemented, then M /M
is H-supplemented.

Let M be an R-module. By P(M) we denote the sum of all radical submod-
ules of M. It is easily seen that if M = N @ K, then P(M) = P(N) @ P(K).

Corollary 2.11. Let M be an H-supplemented module. If P(M) is a direct
summand of M, then P(M) and M/P(M) are H-supplemented.

Proof. Let L be a submodule of M such that M = P(M)® L. Let M =
N @ K. Since P(M) is a direct summand of M and P(M) = P(N) ® P(K),
there exist submodules N < N and K’ < K such that N = P(N)® N’
and K = P(K) @ K'. Thus M = P(M) ® N’ @ K’. On the other hand,
we have M = P(N) @ P(K) @ L. Therefore M/P(M) and M/L are both
H-supplemented by Proposition 2.10. O
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A module M is called coatomic if every proper submodule of M is contained
in some maximal submodule.

Proposition 2.12. Let M be an H-supplemented module over a commutative
noetherian ring R. Then M = P(M) & K such that K is coatomic and P(M)
and K are both H -supplemented.

Proof. Since M is H-supplemented, it is @-supplemented. Then M = P(M) ®
K where K is a coatomic submodule of M by [5, Theorem 2.1]. By Corollary
2.11, P(M) and K are H-supplemented. O

Corollary 2.13. Let M be a completely H-supplemented module over a com-
mutative noetherian local ring R. Then M is a direct sum of hollow submodules.

Proof. By Proposition 2.12, M = P(M) @& K such that K is coatomic and
P(M) and K are H-supplemented. By Theorem 2.9, K is a direct sum of local
submodules. Moreover, since P(M) is completely @-supplemented, P(M) is a
direct sum of hollow submodules by [5, Proposition 2.2]. This proves the result.
O

Corollary 2.14. Let M be an injective H -supplemented module over a commu-
tative noetherian local ring R. Then M is a direct sum of hollow submodules.

Proof. By Proposition 2.12, M = P(M) @ K such that K is coatomic and
P(M) and K are H-supplemented. Since M is injective @-supplemented, M
is completely @-supplemented by [6, Proposition 13]. Thus P(M) is a direct
sum of hollow submodules by [5, Proposition 2.2]. Furthermore, K is a direct

sum of local submodules by Theorem 2.9. O
A module M is called discrete if it satisfies the following conditions (D;)
and (DQ)I

(D1) For every submodule A of M, there is a decomposition M = M; & My
such that M; < A and AN M, < M,

(D2) If A < M such that M/A is isomorphic to a direct summand of M,
then A is a direct summand of M.

Proposition 2.15. Let M be a socle-free module over a commutative noethe-
rian local ring R. If M is H-supplemented, then M is a finite direct sum of
hollow submodules.

Proof. From Proposition 2.12, we obtain M = P(M) ® K such that K is
coatomic and P(M) and K are H-supplemented. By [11, Theorem 2.4 and
Corollary 2.5], P(M) is a sum of finitely many hollow submodules. By [6,
Lemma 3], P(M) has a hollow direct summand L. It follows that L is a
hollow discrete non-local module by [11, Theorem 1.3] and [10, Proposition 3].
Applying [9, Corollary 5.5], L has local endomorphism ring. By [13, Proposition
1] and Proposition 2.10, P(M)/L is H-supplemented. By repeating the same
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reasoning, we conclude that P(M) is a finite direct sum of hollow submodules
(see [5, Remark 2.1]). On the other hand, K is completely H-supplemented by
Theorem 2.9. Thus K is completely @-supplemented. Applying [5, Proposition
2.4], K is a finite direct sum of local submodules. This completes the proof. O

Notation Let m be a maximal ideal of R and ng, ..., n; non-negative integers.

We will denote by B,,(n1, ..., nk) the direct sum of arbitrarily many copies of
R R

Ty T

Proposition 2.16. Let R be a local principal ideal ring (not necessarily a
domain) with maximal ideal m. If M is an R-module with Rad(M) < M,
then the following are equivalent:

(i) M is H-supplemented;

(i) M is completely H-supplemented;

(iii) M = R @ B,,(n1,...,n) for some non-negative integers ny, . .., ny
and a.
Proof. By Theorem 2.9 and [12, Lemma 6.3]. O

Remark 2.17. Let R be a commutative ring and M an R-module. Let m be
a mazimal ideal of R, x € K,,,(M) and k a positive integer.

(i) If Anng, () = (mR,)*, then Anng(z) = mF;

(i) If Ry, is a domain and Anng, (x) = 0, then p = Anng(x) is a prime
ideal of R such that p € Assp(Km(M)) and m is the only maximal ideal over
p.

By combining the last remark with Proposition 2.16, Corollary 2.6 and [16,
Ch. IV, §15, Theorem 33], we get the following result which describes the
structure of H-supplemented and completely H-supplemented modules over
principal ideal rings.

Proposition 2.18. Let R be a principal ideal ring (not necessarily a domain)
and M an R-module with Rad(M) < M. The following are equivalent:

(i) M is H-supplemented;

(ii) M is completely H -supplemented;

(i) M 2 [@icr B, (irs - -, M, )] @ [Bjes (50) ()] with:

pPj
(1) the m;(i € I) are mazimal ideals of R, the p;j(j € J) are non-mazimal
prime ideals of R and {n;,, ..., ,a;}ujyerxs is a family of positive inte-
gers, and

(2) the ring p—l‘:j is local for all j € J.

Example 2.19. Let M be a Z-module with Rad(M) < M. By Proposition
2.18, M is H-supplemented if and only if M = ®;c1Bp,z(Niys - - - Ny, ), where
the ng,,...,ni, (i € I) are positive integers and the p;(i € I) are prime
integers. '
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3 Rings whose modules are H-supplemented

Throughout this section, R is a commutative ring.

Proposition 3.1. Let R be a commutative ring. The following are equivalent:
(i) R is artinian principal;
(i) Every R-module is ®-supplemented;
(#ii) Every R-module is H-supplemented.

Proof. (i) < (ii) By [5, Theorem 1.1].

(i) = (iii) Since R is artinian, M = K(M). Let m be a maximal ideal
of R. By [12, Theorem 6.9], we have K, (M) = @;c;yR/m™ where n;(i € I)
are positive integers. Since R is artinian, there is a non-negative integer k for
which m* = m**1. Therefore K,,(M) is H-supplemented by Theorem 2.9.
Consequently, M is H-supplemented by Corollary 2.6.

(iii) = (i) Clear. O

A family of sets is said to have the finite intersection property, abbreviated
f.i.p., if the intersection of every finite subfamily is non-empty. Let M be an
R-module. M is linearly compact if whenever {z, + My }aex is a family of
cosets of submodules of M (xz, € M and M, is a submodule of M) with the
f.i.p., then Npex@o + M, # 0. One can translate this into a condition about
solving congruences. With the above notation = € z, + M, if and only if
T = x4 modM,. Thus an R -module M is linearly compact if given any family
of congruences {z = x,modM,}acx of M, being able to find a solution for
any finite subset of these congruences implies one can find a solution for all
the congruences. R is said to be a mazimal ring if R is linearly compact as
R-module. R is called almost maximal if % is a linearly compact R-module for
all non-zero ideals I of R.

A commutative ring R is a valuation ring if it satisfies one of the following
three equivalent conditions:
(i) For any two elements a and b, either a divides b or b divides a;
(ii) The ideals of R are linearly ordered by inclusion;
(iii) R is a local ring and every finitely generated ideal is principal.

Proposition 3.2. The following conditions on a commutative ring R are equiv-
alent:

(i) Every finitely generated R-module is H -supplemented;

(i) Every finitely generated R-module is ®-supplemented;

(#ii) R is a finite product of almost mazimal valuation rings.

Proof. (1) = (ii) Clear.

(i) = (iii) By [5, Proposition 1.4].

(iii) = (i) Suppose that R = Ry ® Ro & - -- ® R,,, where R; is an almost
maximal valuation ring. We can write 1p = e; +e2 + - - -+ €, where ¢; is the
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identity element of the ring R; and 1g is the identity element of the ring R.
Let M be a finitely generated R-module. Then M = et M ®esM & ---De, M.
Let 1 <7 < n. Note that e;M can be regarded as an R;-module as well as an
R-module, and its submodules are the same in both cases, because (r; + 79 +
<-4 rp)ex = Tie;x, where v, € R for 1 < j < n and x € M. Since R; is
an almost maximal valuation ring, then g, (e; M) is a finite direct sum of cyclic
submodules by [1, Theorem 4.5]. Thus g,(e; M) is a finite direct sum of local
submodules. Since R; is a valuation ring, g,(e; M) is H-supplemented by [20,
Satz 3.2]. It follows that rM is H-supplemented by Proposition 2.5. O

According to [20, Satz 3.2] and Corollary 2.6, every finitely generated H-
supplemented module over a commutative ring is a finite direct sum of local
submodules. From [7, Corollary 6], it follows that every finitely generated
H-supplemented module is completely @-supplemented. In general a finitely
generated completely @-supplemented module need not be H-supplemented
(see e.g. [9, Lemma A.4] and [7, Corollary 6]).

It was shown in [7, Proposition 6] that a direct sum of two hollow modules
is always completely @-supplemented.

A module M is called finitely presented if M = % for some finitely generated
free module F' and finitely generated submodule K of F'.

Proposition 3.3. The following conditions are equivalent on a commutative
local Ting R:
(i) Every finitely generated completely ®-supplemented module is H -supplemented;
(i) Every finitely presented module is ®-supplemented;
(#ii) Every finitely presented module is H-supplemented;
(iv) R is a valuation ring.

Proof. () = (iv) Let I and J be two ideals of R. By [7, Proposition 6], the
module M = R/I & R/J is completely @-supplemented. By hypothesis, M is
H-supplemented. This gives I C J or J C I by [20, Satz 3.2]. Therefore R is
a valuation ring.

(iv) = (i) Let M be a finitely generated completely ®-supplemented mod-
ule. By [7, Proposition 11], M = ®*_| H; is a direct sum of local submodules
H; (1 <i< k). Since R is a valuation ring, the ideals Anng(H;) (1 < i < k)
are linearly ordered by inclusion. Thus M is H-supplemented by [20, Satz 3.2].

(iv) = (iii) Let M be a finitely presented R-module. By [14, Theorem 1],
M is a finite direct sum of cyclic submodules. Since R is a valuation ring, M
is H-supplemented by [20, Satz 3.2].

(iii) = (i) Clear.

(ii) = (iv) By [5, Proposition 1.5]. O

Asin [9, p. 93], we call an ideal m-isolated if it is contained in at most one
maximal ideal, m.

Proposition 3.4. The following conditions are equivalent on a commutative
ring R:
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(i) Every finitely generated completely ®-supplemented module is H -supplemented;
(i) For every mazimal ideal m of R, the collection of m-isolated ideals of
R is linearly ordered by inclusion.

Proof. (i) = (ii) Let m be a maximal ideal of R. Let I; and I be two m-isolated
ideals. Then the module M = R/I; ® R/I; is completely @-supplemented by
[7, Proposition 6]. By assumption, M is H-supplemented. Therefore Iy C I
or I C I; by [20, Satz 3.2].

(ii) = (i) Let M be a finitely generated completely @-supplemented module.
By [7, Proposition 11], M = @&¥_| R/I; is a direct sum of local modules R/I;
(1 <i < k). It is clear that for every i (1 < i < k), there exists a maximal
ideal m; such that the ideal I; is m;-isolated. By Corollary 2.6 and [20, Satz
3.2], M is H-supplemented. a
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