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Abstract

Regular Ann-functor classification problem has been solved with Shukla
cohomology. In this paper, we would like to present a solution to the
above problem in the general case and in the case of strong Ann-functors
with, respectively, Mac Lane cohomology and Hochschild cohomology.

1 Introduction

The definition of Ann-categories was presented by N.T.Quang [7] in 1988, which
is regarded as a categorization of the ring structure. Each Ann-category A is
Ann-equivalent to its reduced Ann-category. This Ann-category is of the type
(R,M, h), where R is a ring of congruence classes of objects of A, M = Aut(0)
is the R-bimodule and h is a 3-cocycle in Z3

MaL(R,M) (due to Mac Lane [6]).
Then, there exists a bijection between the set of congruence classes of Ann-
categories of the type (R,M) and the cohomology group H3

MaL(R,M) (see
[11]). For regular Ann-categories (whose the commutativity constraint satisfies
cX,X = id), in the above bijection, the group H3

MaL(R,M) is replaced with the
Shukla cohomology group H3

Sh(R,M) [12].
In [4], M.Jibladze and T. Pirashvili presented the definition of categorical

rings as a slightly modified version of the definition of Ann-categories and
classified them by Mac Lane ring cohomology. However, in [9] authors have
showed that, the fact that has not been proved the R-bimodule structure on
M can be deduced from the axiomatics of categorical rings.

Key words: Ann-category, Ann-functor, classification, Mac Lane ring cohomology,
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196 Cohomological classification of Ann-functors

The Ann-functor classification problem has been solved for regular Ann-
categories with Shukla cohomology [1,8]. In this paper, we present a solution
for this problem in the general case via low-dimensioned cohomology groups of
Mac Lane ring cohomology. In particular, Hochschild algebra cohomology has
been used to classify strong Ann-functors.

In this paper, for convenience, sometimes we denote by XY the tensor
product of the two objects X and Y , instead of X ⊗ Y .

2 Preliminaries

2.1 The basic concepts

The definition of Ann-categories was presented in [7, 9, 11]. We always suppose
that A is an Ann-category with a collection of constraints:

(a+, c, (O, g, d), a, (I, l, r),L,R).

Definition 1. Let A and A′ be Ann-categories. An Ann-functor from A to
A′ is a triple (F, F̆ , F̃ ), where (F, F̆ ) is a symmetric monoidal functor respect
to the operation ⊕, (F, F̃ ) is a monoidal functor respect to the operation ⊗,
satisfies the two following commutative diagrams:

F (X(Y ⊕ Z)) FX.F (Y ⊕ Z) FX(FY ⊕ FZ)

F (XY ⊕ XZ) F (XY ) ⊕ F (XZ) FX.FY ⊕ FX.FZ

�

F(L)

� F̃ �id⊗F̆

�

L′

� F̆ �F̃⊕F̃

F ((X ⊕ Y )Z) F (X ⊕ Y ).FZ (FX ⊕ FY ).FZ

F (XZ ⊕ Y Z) F (XZ) ⊕ F (Y Z) FX.FZ ⊕ FY.FZ

�

F (R)

� F̃ �F̆⊗id

�
R′

� F̆ �F̃⊕F̃

The commutation of the above diagrams is called the compatibility of the
functor F with the distributivity constraints of the two Ann-categories A,A′.

We call ϕ : F → G an Ann-morphism between two Ann-functors (F, F̆ , F̃ )
and (G, Ğ, G̃) if it is an ⊕-morphism as well as an ⊗-morphism.

An Ann-functor (F, F̆ , F̃ ) : A → A′ is called an Ann-equivalence if
there exists an Ann-functor (F ′, F̆ ′, F̃ ′) : A′ → A and natural isomorphisms
α : F ◦ F ′ ∼= idA′ , α′ : F ′ ◦ F ∼= idA.

An Ann-functor (F, F̆ , F̃ ) : A → A′ is an Ann-equivalence iff F is a cate-
gorical equivalence.
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We have the following note: in the Definition 1, it is only required that
(F, F̆ ) is an AC-functor (i.e. an ⊕-functor which is compatible with the as-
sociativity and commutativity constraints). Indeed, since (A,⊕), (A′,⊕) are
Gr−categories, each A-functor is compatible with the unitivity constraints.

2.2 The third Mac Lane ring cohomology group H3
MaL(R, M)

Let R be a ring and M be an R-bimodule. From the definition of Mac Lane
ring cohomology [6], we may obtain the description of the elements of the
cohomology group H3

MaL(R,M).
The group Z3

MaL(R,M) of 3-cochains of the ring R, with coefficients in the
R-bimodules M , consisting of quadruples (σ, α, λ, ρ), the functions:

α, λ, ρ : R3 →M

and σ : R4 →M satisfy the following relations:

M1. xα(y, z, t) − α(xy, z, t) + α(x, yz, t) − α(x, y, zt) + α(x, y, z)t = 0
M2. α(x, z, t)+α(y, z, t)−α(x+y, z, t)+ρ(xz, yz, t)−ρ(x, y, zt)+ρ(x, y, z)t = 0
M3. −α(x, y, t) − α(x, z, t) + α(x, y+ z, t) + xρ(y, z, t) − ρ(xy, xz, t)

− λ(x, yt, zt) + λ(x, y, z)t = 0
M4. α(x, y, z)+α(x, y, t)−α(x, y, z+t)+xλ(y, z, t)−λ(xy, z, t)+λ(x, yz, yt) = 0
M5. λ(x, z, t) + λ(y, z, t) − λ(x + y, z, t) + ρ(x, y, z) + ρ(x, y, t) − ρ(x, y, z + t)

+ σ(xz, xt, yz, yt) = 0
M6. λ(x, a, b) + λ(x, c, d)− λ(x, a+ c, b+ d) − λ(x, a, c)− λ(x, b, d)

+ λ(x, a+ b, c+ d) − xσ(a, b, c, d)+ σ(xa, xb, xc, xd) = 0
M7. ρ(a, b, x) + ρ(c, d, x)− ρ(a + c, b+ d, x)− ρ(a, c, x)− ρ(b, d, x)

+ ρ(a + b, c+ d, x)− σ(ax, bx, cx, dx)+ σ(a, b, c, d)x = 0
M8. σ(a, b, c, d)+σ(x, y, z, t)−σ(a+x, b+y, c+z, d+t)+σ(a, b, x, y)+σ(c, d, z, t)
−σ(a+c, b+d, x+z, y+t)+σ(a, c, x, z)+σ(b, d, y, t)−σ(a+b, c+d, x+y, z+t) = 0
M9. α(0, y, z) = α(x, 0, z) = α(x, y, 0) = 0
M10. σ(0, 0, z, t) = σ(x, y, 0, 0) = σ(0, y, 0, t) = σ(x, 0, z, 0) = σ(x, 0, 0, t) = 0.

The subgroup B3
MaL(R,M) ⊂ Z3

MaL(R,M) of 3-coboundaries consists of
the quadruples (σ, α, λ, ρ) such that there exist the maps μ, ν : R2 →M satis-
fying:

M11. σ(x, y, z, t) = −μ(x, y) − μ(z, t) + μ(x+ z, y + t) + μ(x, z) + μ(y, t)
−μ(x+ y, z + t)

M12. α(x, y, z) = xν(y, z) − ν(xy, z) + ν(x, yz) − ν(x, y)z
M13. λ(x, y, z) = ν(x, y) + ν(x, z)− ν(x, y+ z) + xμ(y, z) − μ(xy, xz)
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M14. ρ(x, y, z) = −ν(x, z)− ν(y, z) + ν(x+ y, z) + μ(xz, yz) − μ(x, y)z.

Finally, H3
MaL(R,M) = Z3

MaL(R,M)/B3
MaL(R,M).

Each Ann-category I of the type (R,M) has the structure f is a collection
f = (ξ, η, α, λ, ρ), where ξ, α, λ, ρ : R3 → M and η : R2 → M are functions
satisfying 17 the equations (see Proposition 5.8 [11]). Now, we define a function
σ : R4 →M , given by:

σ(x, y, z, t) = ξ(x+ y, z, t) − ξ(x, y, z) + η(y, z) + ξ(x, z, y) − ξ(x+ z, y, t).

This function is respect to the associativity-commutativity constraint v in the
Ann-category A, where

v = vX,Y,Z,T : (X ⊕ Y ) ⊕ (Z ⊕ T ) −→ (X ⊕ Z) ⊕ (Y ⊕ T )

is given by the following commutative diagram:

(X ⊕ Y ) ⊕ (Z ⊕ T ) ((X ⊕ Y ) ⊕ Z) ⊕ T (X ⊕ (Y ⊕ Z)) ⊕ T

(X ⊕ Z) ⊕ (Y ⊕ T ) ((X ⊕ Z) ⊕ Y ) ⊕ T (X ⊕ (Z ⊕ Y )) ⊕ T

�

v

�a+

�

(X⊕c)⊕T

�a+⊕T

�a+ �a+⊕T

The quadruple h = (σ, α, λ, ρ) is a 3-cocycle of the ring R with coefficients in
the R-bimodule M due to Mac Lane (Theorem 7.2 [11]) and therefore each
reduced Ann-category is of the form (R,M, h).

3 An equivalence criterion of an Ann-functor

Firstly, we will show a characterized property of Ann-functors, which is related
to the associativity-commutativity constraint v.

Definition 2. Let A, A′ be symmetric monoidal ⊕-categories. Then, the ⊕-
functor (F, F̆ ) : A → A′ is called compatible with the constraints v, v

′
if the

following diagram commutes for all X, Y, Z, T ∈ A

F ((X ⊕ Y ) ⊕ (Z ⊕ T )) F (X ⊕ Y ) ⊕ F (Z ⊕ T ) (FX ⊕ FY ) ⊕ (FZ ⊕ FT )

F ((X ⊕ Z) ⊕ (Y ⊕ T )) F (X ⊕ Z) ⊕ F (Y ⊕ T ) (FX ⊕ FZ) ⊕ (FY ⊕ FT )
�

F (v)

� F̆ �F̆+F̆

�

v′

� F̆ �F̆+F̆

(1)
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Then

Lemma 3.1. Let ⊕−functor (F, F̆ ) : A → A′ be compatible with the unitiv-
ity constraints. Then (F, F̆ ) is an AC−functor iff it is compatible with the
constraints v, v

′
.

Proof. The nescessary condition was presented by D. B. A. Epstein (Lemma
1.5 [2]).

Now, assume that the diagram (1) commutes. To prove that the pair (F, F̆ )
is compatible with the commutativity constraints, we consider the following
Diagram 1.

In the Diagram 1, the region (I) commutes thanks to the naturality of the
morphism v, the regions (II) and (IV) commute since (F, F̆ ) is compatible
with the unitivity constraints, the regions (III) and (VII) commute by the
coherence theorem in a symmetric monoidal category, the regions (VI) and
(VIII) commute thanks to the naturality of F̆ , the outside region commutes
by the diagram (1). Hence, the region (V) commutes. So (F, F̆ ) is compatible
with the commutativity constraints.

(FO ⊕ FX) ⊕ (FY ⊕ FO) (FO ⊕ FY ) ⊕ (FX ⊕ FO)

(O ⊕ FX) ⊕ (FY ⊕ O) (O ⊕ FY ) ⊕ (FX ⊕ O)

FX ⊕ FY FY ⊕ FX

F (X ⊕ Y ) F (Y ⊕ X)

F (O ⊕ X) ⊕ F (Y ⊕ O) F (O ⊕ Y ) ⊕ F (X ⊕ O)

F ((O ⊕ X) ⊕ (Y ⊕ O)) F ((O ⊕ Y ) ⊕ (X ⊕ O))

�v′�
�

��
(F̂ ⊕ id) ⊕ (id ⊕ F̂ )

�
�

��
(F̂ ⊕ id) ⊕ (id ⊕ F̂ )

�v′

	
g′ ⊕ d′

�
�

��


F (g) ⊕ F (d)

�
�

�

F (g ⊕ d)

�
�

��
F (g) ⊕ F (d)

�
�

��
F (g ⊕ d)

	

F̆

	
g′ ⊕ d′

	

F̆

�c′

�
F (c)

	

F̆ ⊕ F̆

	

F̆

	

F̆ ⊕ F̆

	

F̆

�F (v)

(I)

(III)

(V)

(VII)

(II)

(VI)

(IV)

(VIII)

Diagram 1

Next, we consider the following Diagram 2.
In the Diagram 2, the region (I) commutes thanks to the naturality of the

morphism v; the first component of the region (II) commutes since (F, F̆ ) is



200 Cohomological classification of Ann-functors

compatible with the unitivity constraints, the second one commutes thanks to
the composition of morphisms, so the region (II) commutes; the regions (III)
and (X) commute thanks to the coherence theorem in a symmetric monoidal
category; the first component of the region (IV) commutes thanks to the compo-
sition of morphisms, the second one commutes since (F, F̆ ) is compatible with
the unitivity constraints, so the region (IV) commutes; the region (V) and (VII)
commute thanks to the composition of morphisms; the regions (VIII) and (IX)
commute thanks to the naturality of F̆ ; the outside region commutes thanks
to the diagram (1). Therefore, the region (V) commutes, i.e., the pair (F, F̆ )
is compatible with the associtivity constraints.

(FX ⊕ FO) ⊕ (FY ⊕ FZ) (FX ⊕ FY ) ⊕ (FO ⊕ FZ)

(FX ⊕ O) ⊕ (FY ⊕ FZ) (FX ⊕ FY ) ⊕ (O ⊕ FZ)

FX ⊕ (FY ⊕ FZ) (FX ⊕ FY ) ⊕ FZ

F (X ⊕ O) ⊕ F (Y ⊕ Z) F (X ⊕ Y ) ⊕ F (O ⊕ Z)

FX ⊕ F (Y ⊕ Z) F (X ⊕ Y ) ⊕ FZ

F (X ⊕ (Y ⊕ Z)) F ((X ⊕ Y ) ⊕ Z)

F ((X ⊕ O) ⊕ (Y ⊕ Z)) F ((X ⊕ Y ) ⊕ (O ⊕ Z))

�v′�
�

���
(id ⊕ F̂ ) ⊕ id

�
�

���
id ⊕ (F̂ ⊕ id)

�v′

	
g′ ⊕ id

	
id ⊕ d′

�a+�
�

��
F (g−1) ⊕ F̆

�
�

���̆
F ⊕ F (d−1)

	

id ⊕ F̆

	
F̆ ⊕ id

�
�

��
F (g) ⊕ id

�
�

��
id ⊕ F (d)

	
F̆

	
F̆

�F (a+)

�
�

���
F (id ⊕ d)

�
�

��

F (g ⊕ id)

�F (v)

	

F̆ ⊕ F̆

	

F̆

	

F̆ ⊕ F̆

	

F̆

(I)

(III)

(V) (VI) (VII)

(VIII) (IX)

(X)

(II) (IV)

Diagram 2

�

Proposition 3.2. In the definition of Ann-functors, the condition that (F, F̆ )
is a symmetric monoidal ⊕-functor is equivalent to the two following conditions:

(a) (F, F̆ ) is compatible with the unitivity constraints respect to the operation
⊕,

(b) (F, F̆ ) is compatible with the constraints v, v
′
.

Proof. Directly deduced from Lemma 3.1. �
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4 Ann-functors and the low-dimensioned coho-

mology groups of rings due to Mac Lane

4.1 Ann-functors of the type (p, q)

Now, we will show that each Ann-functor (F, F̆ , F̃ ) : A → A′
induces an Ann-

functor F on their reduced Ann-categories, and this correspondence is 1-1.
Firstly, we have

Theorem 4.1 (Theorem 4.6 [11]). Let A and A′ be Ann-categories. Then,
each Ann-functor (F, F̆ , F̃ ) : A → A′ induces the ring homomorphism:

F0 : Π0(A) → Π0(A′)
clsX 	→ clsFX

and the group homomorphism

F1 : Π1(A) → Π1(A′)
u 	→ γ−1

F0 (Fu)

satisfying
F1(su) = F0(s)F1(u); F1(us) = F1(u)F0(s).

Furthermore, F is a equivalence iff F0, F1 are isomorphisms.

The pair (F0, F1) is called the pair of induced homomorphisms of the Ann−functor
(F, F̆ , F̃ ). If S,S′ are, respectively, the reduced Ann−categories of A,A′, then
the functor F : S → S′ given by

F (s) = F0(s), F (s, u) = (F0s, F1u)

is called the reduced functor of (F, F̆ , F̃ ) on reduced Ann−categories.

Proposition 4.2. Let F be the induced functor of the Ann−functor (F, F̆ , F̃ ) :
A → A′. Then the diagram

A A′

S S′

�F

�
G′	

H

�F

commutes, whereH,G′ are canonical Ann-equivalences (see Proposition 5.4[11]),
and therefore F induces an Ann-functor.

Proof. This Proposition is naturally extended from Proposition 2 [10]. �
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Definition 3. Let S = (R,M, h), S′ = (R′,M ′, h′) be Ann−categories. A
functor F : S → S′ is called a functor of the type (p, q) if

F (x) = p(x), F (x, a) = (p(x), q(a)),

where p : R → R′ is a ring homomorphism and q : M → M ′ is a group
homomorphism satisfying

q(xa) = p(x)q(a), q(ax) = q(a)p(x),

for x ∈ R, a ∈M.

Proposition 4.3. Let A = (R,M, h), A′ = (R′,M ′, h′) be Ann-categories and
(F, F̆ , F̃ ) is an Ann-functor from A to A′. Then, (F, F̆ , F̃ ) is a functor of the
type (p, q).

Proof. For x, y ∈ R,

F̆x,y : F (x) ⊕ F (y) → F (x⊕ y), F̃x,y : F (x) ⊗ F (y) → F (x⊗ y)

are morphisms in the Ann-category A′. Hence, F (x) + F (y) = F (x + y) and
F (x).F (y) = F (xy), so the map p : R → R′ given by p(x) = F (x) is a ring
homomorphism.

Assume that F (x, a) = (p(x), qx(a)). Since (F, F̆ ) is a Gr-functor, according
to Theorem 5 [10], qx = q for all x ∈ R. Moreover, q is a group homomorphism:

q(a + b) = q(a) + q(b) (2)

for all a, b ∈ M .
Since (F, F̃ ) is an ⊗-functor, the following diagram

Fx⊗ Fy
F̃−−−−→ F (x⊗ y)

F ((x,a))⊗F ((y,b))

⏐⏐�
⏐⏐�F ((x,a)⊗(y,b))

Fx⊗ Fy
F̃−−−−→ F (x⊗ y)

commutes, for all morphisms (x, a), (y, b). So, we have:

F ((x, a)⊗ (y, b)) = F (x, a)⊗ F (y, b)
⇔ qxy(ay + xb) = qx(a)F (y) + F (x)qy(b) (3)

Applying qx = qy = qxy = q to the relation (3), we have:

q(ay + xb) = q(a)F (y) + F (x)q(b) (4)
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Applying x = 1 to (4), we have:

q(ay) = q(a)F (y) = q(a)p(y) (5)

Applying y = 1 to (4), we have:

q(xb) = F (x)q(b) = p(x)q(b) (6)

If R′-bimodule M ′ is regarded as an R-bimodule thanks to the actions
xa′ = p(x).a′, a′x = a′p(x), from the equations (2), (5), (6) we may show that
q : M →M ′ is a homomorphism between R-bimodules. �

4.2 Classification of Ann-functors

The existence problem of Ann-functors between Ann-categories has been solved
for the regular Ann-categories (Theorem 5.1 [8], Theorem 4.2 [1]) thanks to
Shukla cohomology. In this section, we will solve that problem in the general
case.

Definition 4. If F : (R,M, h) → (R′,M ′, h′) is a functor of the type (p, q),
then F induces 3-cocycles h∗ = q∗h = q(h), h′∗ = p∗h′ = h′p, for example

σ′∗(x, y, z, t) = σ′(p(x), p(y), p(z), p(t))
σ∗(x, y, z, t) = q(σ(x, y, z, t)).

The function k = p∗h′ − q∗h is called an obstruction of the functor of the type
(p, q).

Then we have

Theorem 4.4. The functor F : (R,M, h) → (R′,M ′, h′) of the type (p, q) is
an Ann−functor iff the obstruction k = 0 in H3

MaL(R,M ′).

Proof. Let (F, F̆ , F̃ ) : (R,M, h) → (R′,M ′, h′) be an Ann−functor of the type
(p, q). Since F̆x,y = (•, μ(x, y)), F̃x,y = (•, ν(x, y)) where μ, ν : R2 → M ′,
we may identify F̆ , F̃ with μ, ν and call μ, ν the pair of associated functions
with F̆ , F̃ . According to Lemma 3.1, (F, F̆ , F̃) is compatible with the pair of
constraints (v, v′), i.e., the diagram (1) commutes, so we have:

7. σ′∗(x, y, z, t) − σ∗(x, y, z, t) = μ(x, y) + μ(z, t) − μ(x+ z, y+ t) − μ(x, z)
− μ(y, t) + μ(x+ y, z + t)

Since F is compatible with the associativity constraint of multiplication, the
distributivity constraints of the Ann-categories A and A′, we have:

8. α′∗(x, y, z) − α∗(x, y, z) = xν(y, z) − ν(xy, z) + ν(x, yz)− ν(x, y)z
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9. λ′∗(x, y, z)−λ∗(x, y, z) = ν(x, y+z)−ν(x, y)−ν(x, z)+xμ(y, z)−μ(xy, xz)

10. ρ′∗(x, y, z)−ρ∗(x, y, z) = ν(x+y, z)−ν(x, z)−ν(y, z)+μ(x, y)z−μ(xz, yz)

From the equations (7) − (10), we have:

h′∗ − h∗ = δg (11)

where g = (−μ, ν). Hence the obstruction of the functor F vanishes in the
cohomology group H3

MaL(R,M).

Conversely, assume that the obstruction of the functor F vanishes in the
cohomology group H3

MaL(R,M ′). Then there exists a 2-cochain g = (μ, ν)
such that h′∗ − h∗ = δg. Take F̆ , F̃ be functor morphisms associated with the
functions −μ, ν , we can verify that (F, F̆ , F̃ ) is an Ann-functor. �

Theorem 4.5. If there exists an Ann-functor (F, F̆ , F̃ ) : A → A′, of the type
(p, q) then:

(a) There exists a bijection between the set of congruence classes of Ann-
functors of the type (p, q) and the cohomology group H2

MaL(R,M ′) of the
ring R with coefficients in R-bimodule M ′.

(b) There exists a bijection

Aut(F ) → Z1
MaL(R,M ′)

between the group of automorphisms of the Ann-functor F and the group
Z1

MaL(R,M ′).

Proof. (a) Suppose that there exists (F, F̆ , F̃ ) : A → A′, which is an Ann-
functor of the type (p, q). According to Theorem 4.4, we have

h′∗ − h∗ = 0.

Hence, there exists a 2-cochain k such that

h′∗ − h∗ = δk.

Let the 2-cochain k be fixed. Now, we assume that

(G, Ğ, G̃) : (R,M, h) → (R′,M ′, h′)

is an Ann-functor of the type (p, q). Then, from the proof of the Theorem 4.4,
we have

h′∗ − h∗ = δg.
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Hence, k − g is a 2-cocycle. Consider the correspondence:

Φ : class(G) 	→ class(k − g)

from the set of the congruence classes of Ann-functors of the type (p, q) to the
group H2

MaL(R,M ′).
Firstly, we prove that the above correspondence is a map. Indeed, suppose

that
(G′, Ğ′, G̃′) : (R,M, h) → (R′,M ′, h′)

is also an Ann-functor of the type (p, q) and u : G → G′ is an Ann-morphism.
Since u is an ⊕-morphism as well as an ⊗-morphism, we have:

g′ = g − δ(u) (12)

So
k − g′ = k − g + δ(u).

Thus k − g = k − g′ ∈ H2
MaL(R,M ′).

Now, we prove that Φ is an injection. Assume that

(G, Ğ, G̃), (G′, Ğ′, G̃′) : (R,M, h) → (R′,M ′, h′)

are Ann-functors of the type (p, q) and satisfying

k − g = k − g′ ∈ H2
MaL(R,M ′).

Then, there exists an 1-cochain u such that

k − g = k − g′ − δ(u)

That means
g′ = g − δ(u).

Hence, the following diagrams:

G(x) ⊕G(y) G(x⊕ y) G(x) ⊗G(y) G(x⊗ y)

G′(x) ⊕G′(y) G′(x⊕ y) G′(x) ⊗G′(y) G′(x ⊗ y)

�Ğ

�

ux⊕uy

�

ux⊕y

�G̃

�

ux⊗uy

�

ux⊗y

�Ğ′
�G̃′

commute, it means that u : G→ G′ is an Ann-morphism. Therefore,

class(G) = class(G′).
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Finally, we must prove that the correspondence Φ is a surjection. Indeed,
assume that g is an arbitrary 2-cocycle. We have:

δ(k − g) = δk − δg = δk = h′∗ − h∗.

Then, according to Theorem 4.4, there exists an Ann-functor

(G, Ğ, G̃) : (R,M, h) → (R′,M ′, h′)

of the type (p, q), and the pair of isomorphisms Ğ, G̃ associated with the 2-
cochain k − g.

Clearly, Φ(G) = g. So Φ is a surjection.

(b) Assume that F = (F, F̆ , F̃ ) : (R,M, h) → (R′,M ′, h′) is an Ann-functor
of the type (p, q) and u ∈ Aut(F ). Then, from the equation (12) with g′ = g,
we have δ(u) = 0, i.e., u ∈ Z1

MaL(R,M ′). �

5 Ann-functors and Hochschild cohomology

In this section, we will consider special Ann-functors which are related to the
low-dimensioned Hochschild groups [3].

Following, we will find a condition for the existence of Ann-functors

F = (F, id, F̃) : (R,M, h) → (R′,M ′, h′)

of the type (p, 0), where p : R→ R′ is a ring homomorphism.
Suppose that there exists an Ann-functor

F = (F, id, F̃ = ν) : (R,M, h) → (R′,M ′, h′)

of the type (p, 0). Then, the equations (7) - (10) turn into:

13. σ′∗(x, y, z, t) = 0

14. α′∗(x, y, z) = xν(y, z) − ν(xy, z) + ν(x, yz) − ν(x, y)z

15. λ′∗(x, y, z) = ν(x, y+ z) − ν(x, y) − ν(x, z)

16. ρ′∗(x, y, z) = ν(x+ y, z) − ν(x, z)− ν(y, z)

and the Theorem 4.4 turns into

Corollary 5.1. Let p : R → R′ be a ring homomorphism. There exists an
Ann-functor (F, id, F̃) from (R,M, h) to (R′,M ′, h′) of the type (p, 0) iff h′∗ =
0 ∈ H3

MaL(R,M ′).
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Each cocycle of Z-algebras due to Hochschild is a multi-linear function.
This suggests us the following definition:

Definition 5. An Ann-functor

(F, id, F̃) : (R,M, h) → (R′,M ′, h′)

of the type (p, 0) is called a strong Ann-functor if the function ν : R2 → M ′

corresponding to F̃ is bi-additive.

If ν is a normal bi-additive function, then ν is a 2-cocycle of the Z-algebra R
with coefficients in R-bimodule M ′ due to Hochschild. Then, in the equations
(13)-(16), α′∗ is a normal multi-linear function and other functions are equal
to 0. So, we have

h′∗ ≡ α′∗ = δ(ν),

in which δ(ν) is a 3-coboundary of the ring R with coefficients in R-bimodule
M ′ due to Hochschild. Then, we have the following proposition, as a direct
corollary of Theorem 4.4.

Proposition 5.2. Let F : (R,M, h) → (R′,M ′, h′) be a functor of the type
(p, 0). There exists a strong Ann-functor (F, id, F̃ ) iff its cohomology class
h′∗ = 0 in the cohomology group H3

Hochs(R,M
′).

Theorem 5.3. If there exists a strong Ann-functor (F, id, F̃ ) : (R,M, h) →
(R′,M ′, h′) of the type (p, 0), then:

(a) There exists a bijection between the set of congruence classes of strong
Ann-functors of the type (p, 0) and the cohomology group H2

Hochs(R,M
′)

of the ring R with coefficients in the R-bimodule M ′.

(b) There exists a bijection

Aut(F ) → Z1
Hochs(R,M

′)

between the group of automorphisms of the Ann-functor F and the group
Z1

Hochs(R,M
′).

Proof. (a) The restriction ΦH of the map Φ, referred in Theorem 4.5, on the
set of congruence classes of strong Ann-functors gives us an injection to the
group H2

Hochs(R,M
′). Moreover, it is easy to see that ΦH is also a surjection.

(b) Assume that F = (F, id, F̃) : (R,M, h) → (R′,M ′, h′) is a strong
Ann−functor of the type (p, 0) and u ∈ Aut(F ). Then u is bi-linear respect to
the ⊕. So u ∈ Z1

Hochs(R,M
′). The converse also holds. �
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6 Application

In this section, as an application, we show the relation between the ring exten-
sion problem and the obstruction theory of Ann-functors.

We have known that, for a ring A (not necessary to have the unit ) deter-
mined a ring of bimultiplication MA. A bimultiplication σ of the ring A is a
pair of maps a→ σa, a→ aσ from A to A, which satisfy:

σ(a+ b) = σa+ σb ; (a + b)σ = aσ + bσ
σ(ab) = (σa)b ; (ab)σ = a(bσ) ; a(σb) = (aσ)b

for all a, b ∈ A. The sum and the product of two bimultiplication are, respectly,
the addition and the composition of maps .

Each element c ∈ A induces a bimultiplication μc determined by

μca = ca; aμc = ac, ∀a ∈ A

and it is called an inner bimultiplication of A. The map: μ : A→MA is a ring
homomorphism and if A has the unit 1 then μ(1) = 1. Since:

σμc = μσc; μcσ = μcσ

the image μA of this homomorphism is a two-sided ideal of MA. Let us denote
PA = MA/μ(A).

Let R be a ring with the unit 1 = 0. Each ring extension of A by R induces
a regular ring homomorphism

θ : R→ PA

i.e., θ(1) = 1 and any two elements of θR are permutable [ The bimultiplications
σ and τ are called permutable if ϕ(aψ) = (ϕa)ψ and ψ(aϕ) = (ψa)ϕ for all
a ∈ A].

Inversely, according to [5], each regular ring homomorphism θ : R → PA

induces a R-bimodule structure on the bicenter CA = {c ∈ A|ca = ac = 0, ∀a ∈
A}, with the operators

xc = (ϕx)c, cx = c(ϕx); c ∈ CA, x ∈ A, ϕx ∈ θx.

The obstruction h ∈ H3
MacL(R,CA) of the homomorphism θ is defined as lol-

lows. For each x ∈ R, let us choose ϕ(x) ∈ θ(x). Then there exists the factor
set f, g : R2 → A satisfying:

μf(x,y) = σ(x + y) − σ(x) − σ(y)
μg(x,y) = σ(xy) − σ(x)σ(y),
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for x, y ∈ R.
From the association, commutation, distribution on properties of the ring

A the collection of functions whose values belong to CA has the formal type
h = (ξ, η, α, λ, ρ) = δ(f, g). The collection h is an element in Z3

MacL(R,CA),
and its cohomology class is called the obstruction of the homomorphism θ.

Now, we present the ring extension problem by the language of Ann-functors.
Consider the category MA whose objects are elements of the ring MA, and if
ϕ, λ are bimultiplications of A, then let us denote:

Hom(ϕ, λ) = {c ∈ A | λ = μc + ϕ}.
The composition of two arrows is the operation + in A. The operations ⊕ and
⊗ are given by:

ϕ⊕ λ = ϕ + λ, ϕ, λ ∈ MA

c⊕ d = c+ d, c, d ∈ A
ϕ⊗ λ = ϕ ◦ λ, (the composition of two maps)
c⊗ d = cd+ cλ + ϕd, where c : ϕ→ ϕ′, d : λ→ λ′

With these two operations, MA becomes an Ann-category with the constraints
naturally determined to be strict.

We regard the ring R as an Ann-category of the type (R, 0, id). We call S
the reduced Ann-category of MA. The regular homomorphism θ : R → PA

determines a functor

(θ, 0) : (R, 0, id) → S = (Π0,Π1, k)

The obstruction of this functor is the element

k∗ ∈ H3
MacL(R,Π1), k∗ = θ∗(k).

Now we have the following Proposition:

Proposition 6.1. Let S = (Π0,Π1, k) be the reduced Ann-category of the strict
Ann-category MA. Then:

(a) Π0 = PA = MA/μA , Π1 = CA,

(b) k∗ = θ∗(k) belongs to the same cohomology class of h of the homomor-
phism θ.

Proof. (a) Obviously.
(b) The proof is completely similar to the proof of Proposition 8 [10] with
appropriate supplement. We have the normal Ann-equivalence (H, H̆, H̃) from
the reduced Ann-category S to the Ann-category MA. Since the obstructions
h of θ are independent of the choice of the function ϕ, we will choose ϕ =
H ◦ θ : R→ MA. Then we can take

f(x, y) = H̆θx,θy , g(x, y) = H̃θx,θy

From the compatibility of (H, H̆, H̃) with the constraints, k∗ = h. �
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