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Abstract

Let θ be an irrational element in the field of formal series. Using a
modification of the 1997 technique due to Lagarias and Shallit in the real
numbers case, it is shown that if the continued fraction expansion of θ has
bounded partial quotients, so does its linear fractional transformation.

1. Introduction

Let α be an irrational real number whose simple continued fraction is [b0, b1, b2, ...].
We say that α has bounded partial quotients if supi≥1 bi < ∞. Lagarias and
Shallit in [4] proved, using the so-called Lagrange constant through a result of
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Cusick and Mendès France in [2], that if α has bounded partial quotients, so
does its linear fractional transformation. We show here that this is also the
case in the field of formal series.

Let F := F((x−1)) be the field of formal series over a field F, equipped with
the usual degree valuation |·|, so normalized that |P (x)| = 2deg P(x) (P ∈ F[x]\
{0}). It is well-known, see e.g. [1, Chapter 1], that every element ξ ∈ F \ {0}
can be uniquely written as

ξ :=
∞∑
n=r

wnx
−n,

where r ∈ Z, wn ∈ F (n ≥ r) and wr �= 0, so that |ξ| = 2−r. Define the head
part of ξ by

[ξ] =
{ ∑0

n=r wnx
−n if r ≤ 0,

0 otherwise,

and the distance to the head part as

‖ξ‖ := |ξ − [ξ]| .
In F, there is a continued fraction algorithm similar to the case of real numbers
which we briefly recall now; for details, see [6]. Each element ξ ∈ F \ {0} can
be uniquely represented as a continued fraction of the form

ξ = b0 +
1
b1+

1
b2+

. . . := [b0, b1, b2, . . .],

where b0 ∈ F[x] and bi ∈ F[x] \ F (i ≥ 1) are called partial quotients. Such
continued fraction of ξ is finite if and only if ξ ∈ F(x).

Let θ be an irrational in F whose infinite continued fraction expansion is

θ = [a0, a1, a2, . . .].

Define the nth complete quotient and the nth convergent, respectively, of the
continued fraction of θ as

θn = [an, an+1, an+2, . . .],
An
Bn

= [a0, a1, a2, . . . , an].

The partial numerators, An, and partial denominators, Bn, satisfy the recur-
sions

A−1 = 1, A0 = a0, An+1 = an+1An + An−1 (n ≥ 0)

and
B−1 = 0, B0 = 1, Bn+1 = an+1Bn +Bn−1 (n ≥ 0).

Define
K(θ) := sup

i≥1
|ai|, K∞(θ) := lim sup

i≥1
|ai|.
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We say that θ has bounded partial quotients if K(θ) is finite. Clearly,
K∞(θ) ≤ K(θ) and K(θ) is finite if and only if K∞(θ) is finite.

Our main result reads:

Theorem 1 Let M =
(
a b
c d

)
∈ GL2(F[x]), the group of all invertible 2 ×

2 matrices with entries from F[x]. If the continued fraction of an irrational
element θ ∈ F has bounded partial quotients, then

1
| det M | K∞(θ) ≤ K∞

(
aθ + b

cθ + d

)
≤ | detM |K∞(θ), (1)

K

(
aθ+ b

cθ + d

)
≤ max{| detM |K(θ), |c(cθ+ d)|} . (2)

2. Auxiliary results

The first lemma collects basic properties of continued fractions whose straight-
forward proof is omitted.

Lemma 2 Let θ = [a0, a1, a2, . . .] be an irrational element in F, An/Bn its
nth convergent and θn its nth complete quotient. Let ζ ∈ F\ {0}. We have, for
n ≥ 0,

(i) |Bn+1| = |an+1Bn| > |Bn| , |θn| = |an|;
(ii) AnBn−1 −An−1Bn = (−1)n−1, so that gcd(An, Bn) = 1;

(iii) θ − An

Bn
= (−1)n

Bn(θn+1Bn+Bn−1)
;

(iv) ζAn+An−1
ζBn+Bn−1

= [a0, a1, a2, . . . , an, ζ];

(v) An is the head part of Bnθ.

From Lemma 2 (v), we have ‖Bnθ‖ = |Bnθ−An|, and so Lemma 2 (i) and
(iii) together yield

|Bn| ‖Bnθ‖ =
1

|θn+1 +Bn−1/Bn| =
1

|an+1| . (3)

The result in the next lemma is known as the best approximation property,
cf. Theorem 7.13 in [5] for the real case.

Lemma 3 Let θ be an irrational element in F and An/Bn its nth convergent.
If u, v(�= 0) ∈ F[x] satisfy, for some n ≥ 0,

|vθ − u| < |Bnθ − An|, (4)

then |v| ≥ |Bn+1|.
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Proof. Suppose that
|v| < |Bn+1|. (5)

Consider the system of linear equations (in y, z)

yBn + zBn+1 = v (6)

yAn + zAn+1 = u. (7)

By Lemma 2 (ii), det
(
Bn Bn+1

An An+1

)
= (−1)n, and so

(
y
z

)
=

(
(−1)nAn+1 (−1)n+1Bn+1

(−1)n+1An (−1)nBn

) (
v
u

)
,

implying that y and z are in F[x].
We claim that neither y nor z is zero. If y = 0, then 0 �= v = zBn+1, and

so |v| ≥ |Bn+1|, which contradicts (5). Assume then that y �= 0. If z = 0, then
u = yAn and v = yBn . Since |y| ≥ 1, we have |vθ − u| = |y(Bnθ − An)| ≥
|Bnθ −An|, contradicting (4).

Next we show that

|y(Bnθ − An)| �= |z(Bn+1θ − An+1)|. (8)

Suppose |y(Bnθ − An)| = |z(Bn+1θ − An+1)|. By Lemma 2 (i) and (iii), we
have

|Biθ −Ai| =
1

|θi+1Bi +Bi−1| =
1

|Bi+1| (i ≥ 0),

and so |yBn+2| = |zBn+1|. Since |yBn| < |yBn+2|, the ultrametric inequality
and (6) yield |zBn+1| = |v| implying that |Bn+1| ≤ |v|, contradicting (5). Thus,
(8) holds.

Finally, consider |vθ − u| = |y(Bnθ − An) + z(Bn+1θ − An+1)|. Using (8),
the ultrametric inequality and y ∈ F[x] \ {0}, we have

|vθ−u| = max{|y(Bnθ−An)|, |z(Bn+1θ−An+1)|} ≥ |y(Bnθ−An)| ≥ |Bnθ−An |,

which contradicts (4), and the lemma follows. �

For irrational θ ∈ F, define its type and its Lagrange constant,
respectively, by

L(θ) = sup
|B|≥1

(|B| ‖Bθ‖)−1
, L∞(θ) = lim sup

|B|≥1
(|B| ‖Bθ‖)−1

.

To determine the type and Lagrange constant, it suffices to use the partial
denominators as we show now.
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Lemma 4 We have

L(θ) = sup
i≥0

(|Bi| ‖Biθ‖)−1, L∞(θ) = lim sup
i≥0

(|Bi| ‖Biθ‖)−1
. (9)

Proof. Let B ∈ F[x] \ {0}. Since the continued fraction of any irrational is
infinite, there exists m ∈ N0 := N∪{0} such that |Bm| ≤ |B| < |Bm+1|. By
Lemma 3,

1
|B| ‖Bθ‖ ≤ 1

|B| ‖Bmθ‖ ≤ 1
|Bm| ‖Bmθ‖ ,

and the result follows. �

Corollary 5 A) For irrational θ ∈ F, we have

K(θ) = L(θ), K∞(θ) = L∞(θ). (10)

B) Let φ = [d0, d1, d2, . . .], γ = [e0, e1, e2, . . .] be two irrational elements in F.
If there exist s1, s2 ∈ N0 such that |ds1+i| = |es2+i| (i ≥ 0), then

K∞(φ) = K∞(γ), L∞(φ) = L∞(γ).

Proof. Part A) follows immediately from the definition of K(θ), K∞(θ), (3)
and Lemma 4. Part B) follows from at once the definition of K∞, Lemma 4
and (10). �

The next lemma is proved by modifying the proofs of Theorems 172 and
175 of [3] in the real to the formal series case.

Lemma 6 Let θ = [a0, a1, a2, . . .] be an irrational element in F with |θ| > 1,
and let ψ = aθ+b

cθ+d
, where a, b, c, d ∈ F[x] are such that |ad− bc| = 1.

1) If |c| > |d| > 0, then b/d and a/c are two consecutive convergents of the
continued fraction of ψ.

2) If b/d and a/c are the (n − 1)th and nth convergents of the continued
fraction of ψ, respectively, then the (n + 1)th complete quotient is of the
form δθ for some δ ∈ F

∗ := F\{0}.
3) If the continued fraction of ψ is [c0, c1, c2, . . .], then there exist k, n ∈ N0

such that
|ak+i| = |cn+i| (i ≥ 0).

Proof. We first prove parts 1) and 2) simultaneously. Denote the finite contin-
ued fraction expansion of a/c by [c0, c1, . . . , cn] and let An/Bn be its nth (last)
convergent. Since |ad− bc| = 1, we have gcd(a, c) = 1 = gcd(An, Bn). Thus,

|And−Bnb| = |ad− bc| = 1 = |AnBn−1 −An−1Bn|,
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yielding And−Bnb = δ′(AnBn−1 −An−1Bn) for some δ′ ∈ F
∗, and so

An(d− δ′Bn−1) = Bn(b− δ′An−1). (11)

Since gcd(An, Bn) = 1, the relation (11) gives

Bn|(d− δ′Bn−1). (12)

From |Bn| = |c| > |d| > 0, and |Bn| > |Bn−1| ≥ 0, we get |d − δ′Bn−1| <
|Bn|, which is consistent with (12) only when d − δ′Bn−1 = 0, i.e., when
d = δ′Bn−1, b = δ′An−1. Consequently, ψ = Anδθ+An−1

Bnδθ+Bn−1
for some δ ∈ F

∗, and
so by Lemma 2 (iv),

ψ = [c0, c1, . . . , cn, δθ].

If we develop δθ as a continued fraction, we obtain δθ = [cn+1, cn+2, . . .], with
|cn+1| > 1. Hence, ψ = [c0, c1, . . . , cn, cn+1, cn+2, . . .].

To prove part 3), from Lemma 2 (iv), we have

θ = [a0, a1, . . . , ak−1, θk] =
Ak−1θk +Ak−2

Bk−1θk +Bk−2
,

which implies

ψ =
Pθk + R

Qθk + S
,

where

P = aAk−1+bBk−1, R = aAk−2+bBk−2, Q = cAk−1+dBk−1, S = cAk−2+dBk−2

are in F[x] with |PS −QR| = |(ad − bc)(Ak−1Bk−2 − Ak−2Bk−1)| = 1. From
Lemma 2 (iii), we have |θ− Ai

Bi
| = 1

|Bi(θi+1Bi+Bi−1)| <
1

|B2
i | (i ≥ 0), and so

Ak−1 = θBk−1 +
β1

Bk−1
, Ak−2 = θBk−2 +

β2

Bk−2
,

where |β1| < 1, |β2| < 1. Thus,

Q = (cθ + d)Bk−1 +
cβ1

Bk−1
, S = (cθ + d)Bk−2 +

cβ2

Bk−2
.

Since cθ + d �= 0, |Bk−1| > |Bk−2| → ∞ (k → ∞), we have |Q| > |S| > 0 for
all large k. For such k, part 1) and part 2) ensure that there exists δ ∈ F

∗ such
that δθk = ψn for some n, i.e., |ak+i| = |cn+i| (i ≥ 0). �

Lemma 6 and Corollary 5 B) immediately yield:

Lemma 7 Let θ be an irrational element in F, M =
(
a b
c d

)
∈ GL2(F[x]),

and M(θ) := aθ+b
cθ+d . If | detM | = 1, then

L∞(M(θ)) = L∞(θ).
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For transformation with non-unit determinant, we have weaker results.

Lemma 8 Let θ be an irrational in F ; h, d1, d3 ∈ F[x] \ {0} and d2 ∈ F[x].
Then

L∞(hθ) ≤ |h|L∞(θ) (13)

L∞

(
d1θ + d2

d3

)
≤ |d1d3| L∞(θ). (14)

Proof. If θ has unbounded partial quotients, i.e., L∞(θ) = ∞, both inequalities
are trivial. Now assume θ has bounded partial quotients. For h ∈ F[x]\{0}, k ∈
N0, clearly,

sup
degB≥k

(|Bh| ‖Bhθ‖)−1 ≤ sup
degB≥k

(|B| ‖Bθ‖)−1

and
lim sup
|B|≥1

(|Bh| ‖Bhθ‖)−1 ≤ lim sup
|B|≥1

(|B| ‖Bθ‖)−1
.

Consequently,

L∞(hθ) = lim sup
|B|≥1

(|B| ‖Bhθ‖)−1 = |h| lim sup
|B|≥1

(|Bh| ‖Bhθ‖)−1

≤ |h| lim sup
|B|≥1

(|B| ‖Bθ‖)−1 = |h|L∞(θ),

which verifies (13).
To verify (14), from Corollary 5 B) and (13), we have

L∞

(
d1θ + d2

d3

)
= L∞

(
d3

d1θ + d2

)
≤ |d3|L∞

(
1

d1θ + d2

)

= |d3|L∞(d1θ + d2) ≤ |d1||d3|L∞(θ). �

3. Proof of Theorem 1

By Corollary 5, it suffices to prove the two results for L∞, L in place of K∞, K,
respectively. Let ψ := aθ+b

cθ+d
= M(θ).

We start by showing that there exists M2 ∈ GL2(F[x]) such that

| detM2| = 1, M2M =
(
α β
0 γ

)
∈ GL2(F[x]), |αγ| = |detM |.

Write M2 =
(
E F
G H

)
. To fulfil the matrix equality, it is required that

Ga+Hc = 0.
If a = 0, then c �= 0 and so we must take H = 0. Now choose F ∈ F

∗, G =
1/F and arbitrary E ∈ F[x] to fulfil all requirements.
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If c = 0, then a �= 0 and we must take G = 0. Now choose E ∈ F
∗, H = 1/E

and arbitrary F ∈ F[x] to fulfil all requirements.
If both a �= 0 and c �= 0, then take G = lcm(a, c)/a and H = −lcm(a, c)/c.

Since gcd(G,H) = 1, there are μ, ν ∈ F[x] such that μG + νH = 1. Taking
E = ν and F = −μ, all the requirements are fulfilled.

Having obtained such M2, we apply Lemma 7 to get

L∞(ψ) = L∞(M2(ψ)) = L∞(M2M(θ)) = L∞

(
αθ + β

γ

)
,

and the second inequality of (1) now follows from the inequality (14) of Lemma
8.

To prove the first inequality of (1), we consider the adjoint matrix

M ′ := adj (M) =
(

d −b
−c a

)
,

which has M ′M = (det M)I2, and so

M ′(ψ) = M ′(M(θ)) = M ′M(θ) = θ.

Applying the second inequality of (1) to ψ, we have

L∞(θ) = L∞(M ′(ψ)) ≤ | det M ′|L∞(ψ) = | det M |L∞(ψ),

and the result follows.
We turn now to the second assertion of Theorem 1. For each B ∈ F[x]\{0},

let

xB = |B| ‖Bψ‖ = |B|
∣∣∣∣B

(
aθ + b

cθ + d

)
−A

∣∣∣∣
(
A =

[
B

(
aθ + b

cθ + d

)])
.

If c = 0, then | detM | = |ad| �= 0 and so

|ad| xB = |aB| |aBθ− (dA− bB)| ≥ |aB| ‖aBθ‖ ≥ 1/L(θ),

yielding
L(ψ) = sup

|B|≥1

(|B| ‖Bψ‖)−1 ≤ |ad|L(θ),

which is the first term in the right hand expression of (2).
If c �= 0, then

|cθ + d| xB = |B| |(Ba− Ac)θ − (Ad−Bb)|. (15)

Since θ has bounded partial quotients, both K(θ) and K∞(θ) are finite. The
result of the first part shows then thatK∞(ψ) is finite and so isK(ψ). Corollary
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5 in turn shows that L(ψ) is finite. Thus, there is an infinite sequence of non-
zero approximations

xB(i) = |B(i)|
∥∥∥B(i)ψ

∥∥∥
such that

L(ψ) − 1
2i

≤ 1
xB(i)

≤ L(ψ) (i ≥ 0). (16)

By taking a suitable subsequence, we may reduce to the case where either all of
the approximations have B(i)a−A(i)c = 0 or all of them have B(i)a−A(i)c �= 0.

We first treat the subcase B(i)a − A(i)c = 0 for all i ≥ 0. Since ad− bc =
detM �= 0, we have A(i)d−B(i)b ∈ F[x] \ {0} and so (15) gives

|cθ + d| xB(i) = |B(i)| |A(i)d−B(i)b| ≥ 1.

Consequently,

L(ψ) − 1
2i

≤ 1
xB(i)

≤ |cθ+ d| ≤ |c(cθ + d)| (i ≥ 0).

Letting i→ ∞, we get the second term in the right hand expression of (2).
Finally, consider the subcase that B(i)a−A(i)c �= 0 for all i ≥ 0. From (15),

we have

|cθ + d|
∣∣∣B(i)a−A(i)c

B(i)

∣∣∣xB(i) = |B(i)a−A(i)c||(B(i)a−A(i)c)θ − (A(i)d−B(i)b)|

≥ |B(i)a −A(i)c|
∥∥∥(B(i)a− A(i)c)θ

∥∥∥ ≥ 1
L(θ)

. (17)

Using the first inequality in (16) and the inequality (17), we get

L(ψ) − 1
2i

≤ 1
xB(i)

≤ |cθ+ d|
∣∣∣∣B

(i)a− A(i)c

B(i)

∣∣∣∣L(θ)

= |cθ+ d| |c|
|B(i)|

∣∣∣∣B
(i)a−A(i)c

c

∣∣∣∣L(θ). (18)

Using the strong triangle inequality, we have

∣∣∣B(i)
(a
c

)
− A(i)

∣∣∣ ≤ max
{∣∣∣∣B(i)

(
aθ + b

cθ + d

)
−B(i)

(a
c

)∣∣∣∣ ,
∣∣∣∣B(i)

(
aθ + b

cθ + d

)
− A(i)

∣∣∣∣
}

= max
{ |B(i)|| det (M)|

|c(cθ + d)| ,
xB(i)

|B(i)|
}
. (19)

Combining (18) and (19) gives

L(ψ) − 1
2i

≤ L(θ)max
{
| detM |, |c(cθ+ d)| xB(i)

|(B(i))|2
}
.
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Using the first inequality in (16), i.e., xB(i) ≤ 1
L(ψ)−1/2i , we deduce that

L(ψ) − 1
2i

≤ max
{
| detM |L(θ),

|c(cθ + d)|
|(B(i))|2 · L(θ)

L(ψ) − 1/2i

}
. (20)

If L(θ) ≥ L(ψ), then the inequality (2) holds trivially, using the first term in
the right hand expression. If L(θ) < L(ψ), then letting i → ∞ in (20), the
ratio L(θ)

L(ψ)−1/2i becomes ≤ 1 in the limit, and (2) follows. �
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