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Abstract
Let 6 be an irrational element in the field of formal series. Using a
modification of the 1997 technique due to Lagarias and Shallit in the real
numbers case, it is shown that if the continued fraction expansion of 6 has
bounded partial quotients, so does its linear fractional transformation.

1. Introduction

Let a be an irrational real number whose simple continued fraction is [bg, b1, be, ...].
We say that a has bounded partial quotients if sup,, b; < oo. Lagarias and
Shallit in [4] proved, using the so-called Lagrange constant through a result of
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Cusick and Mendes France in [2], that if o has bounded partial quotients, so
does its linear fractional transformation. We show here that this is also the
case in the field of formal series.

Let F :=F((z~1)) be the field of formal series over a field F, equipped with
the usual degree valuation |-|, so normalized that |P(z)| = 29 P(®) (P € F[x]\
{0}). It is well-known, see e.g. [1, Chapter 1], that every element { € F \ {0}
can be uniquely written as

o0
&= Z wpx ",
n=r

where r € Z, w, € F (n > r) and w, # 0, so that || = 27". Define the head
part of £ by
€] = { Zgzr wpr™" i r <0,

10 otherwise,

and the distance to the head part as

€l =1 — []]-

In F, there is a continued fraction algorithm similar to the case of real numbers
which we briefly recall now; for details, see [6]. Each element ¢ € F \ {0} can
be uniquely represented as a continued fraction of the form

1 1

=b _—
¢ O+b1—|—b2+

= [bo, bl, bQ, .. .],
where by € Flx] and b; € F[z] \F (i > 1) are called partial quotients. Such
continued fraction of ¢ is finite if and only if £ € F(x).

Let 6 be an irrational in F whose infinite continued fraction expansion is

0= [CLQ, ai, az, .. ]

Define the n'" complete quotient and the n'" convergent, respectively, of the
continued fraction of 6 as
A,
Gn:[an, An+41, CLnJ,_Q,...], B—:[ao, ai, CLQ,...,CLn].
n
The partial numerators, A,,, and partial denominators, B,,, satisfy the recur-
sions
A1 =1, Ay =ag, Apy1 =anp1An + 4,1 (n2>0)

and
B_1 = O, BO = 1, Bn+1 = CLn+1Bn + Bn—l (TL Z O)

Define

K(0) :=suplai|, Ks(f) :=limsup|a,|.
i>1 i>1
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We say that 6 has bounded partial quotients if K () is finite. Clearly,
Ko (0) < K(0) and K(6) is finite if and only if K (6) is finite.
Our main result reads:

Theorem 1 Let M = ( a b
c d

2 matrices with entries from Flx]. If the continued fraction of an irrational
element 0 € F has bounded partial quotients, then

> € GLy(F[x]), the group of all invertible 2 x

1 ab +b
— = K. (0) < K. < M| K (9), 1
ot 2] (@) (ca+d> | det M] Koo (6) o
ab +b
< .
(09+d> < max {| det M| K(9), |c(ch + d)[} (2)

2. Auxiliary results

The first lemma collects basic properties of continued fractions whose straight-
forward proof is omitted.

Lemma 2 Let 6 = [ag, a1, ag,...| be an irrational element in F, A, /B, its
nt" convergent and 0, its n'" complete quotient. Let ¢ € F\ {0}. We have, for
n >0,

(Z) |Bn+1| = |an+1Bn| > |Bn|a |9n| = |an|;
(i) ApBpn_ 1 — A, 1B, = (=1)""! so that ged(A,, B,) = 1;

Ay (=n" .
(iii) 0 — 5= = Br(nt1BntBn 1)’

. An,+A, _
(iv) S2E8et = [ag, a1, az, ..., an, {];

(v) A, is the head part of B,0.

From Lemma 2 (v), we have || B, 0| = |B,0 — A,|, and so Lemma 2 (i) and
(i1) together yield
1 1

|Bn] || [ 031+ Bn_1/Bn|  |ans1]

3)

The result in the next lemma is known as the best approximation property,
cf. Theorem 7.13 in [5] for the real case.

Lemma 3 Let 0 be an irrational element in F and A, /By, its nth convergent.
If u,v(# 0) € Flx] satisfy, for some n > 0,

[v0 —u| < |Bn8 — Ay, (4)

then |v| > |Bp+1]-
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Proof. Suppose that
[v] < |Bnal- (5)

Consider the system of linear equations (in y, 2)
yBy +2Bp41 = v (6)
yA, + 2A,41 = u. (7)

By Lemma 2 (i7), det Bu Bavi ) _ (—1)™, and so
An An+1

( Y > _ ( (=1)"Apgr (_1)n+1Bn+1 > ( v >
z )\ (=14, (-1)" By, u )’
implying that y and z are in F[z].

We claim that neither y nor z is zero. If y = 0, then 0 # v = 2By, 41, and
so |v| > |Byn+1], which contradicts (5). Assume then that y # 0. If z =0, then
u = yA, and v = yB,. Since |y| > 1, we have |[v0 — u| = |y(Bn0 — A,)| >
| B0 — A,|, contradicting (4).

Next we show that

[y(Bnt — Ap)| # [2(Bnt16 — Api1)|. (8)

Suppose |y(Bnt — A,)| = |2(Bnt10 — Apt1)|- By Lemma 2 (i) and (4i), we
have

1 1
Bifl — A;| = - i >0),
| | |0iv1Bi + Bi1| | By ( )
and so |yBn12| = |2Bn+1]|. Since |yB,| < |yBn+2], the ultrametric inequality

and (6) yield |zBp+1| = |v| implying that |Bp+1| < |v|, contradicting (5). Thus,
(8) holds.

Finally, consider |[v0 — u| = |y(Bn0 — A,) + 2(Bn+10 — Apt1)]. Using (8),
the ultrametric inequality and y € F[z] \ {0}, we have

[v0—u| = max{|y(Bn0—An)|, [2(Bni10—Ans1)[} = [y(Brl—An)| = | Bnb—Anl,
which contradicts (4), and the lemma follows. O

For irrational § € F, define its type and its Lagrange constant,
respectively, by

L) = sup (IB| [|BO|)"", Loo(9) = limsup (|B | BY|)"" .
|BI>1 |B|=1

To determine the type and Lagrange constant, it suffices to use the partial
denominators as we show now.
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Lemma 4 We have

L(0) = sup (IBil |1B:ibI)™", Loo(6) = 1ilfrv1>soup(|1’3¢| 1B:o) " 9)

Proof. Let B € Flz]\ {0}. Since the continued fraction of any irrational is
infinite, there exists m € Ny := NU{0} such that |B,,| < |B| < |Bm+1]- By

Lemma 3,
1 1 1

< < ,
|B| [|BO|| — |B| [|Bnfl ~ [Bml | Bmd|
and the result follows. O

Corollary 5 A) For irrational € F, we have
K(0) = L(0), Kuo(0) = Loo(8). (10)

B) Let ¢ = [do,dy,da,...], v =|eo,e1,e2,...] be two irrational elements in F.
If there exist s1,s2 € Ny such that |ds,+i| = |esy,+i| (i > 0), then

Koo (¢) = Koo(7), Loo(®) = Loo(7)-

Proof. Part A) follows immediately from the definition of K(6), K (), (3)
and Lemma 4. Part B) follows from at once the definition of K, Lemma 4
and (10). d

The next lemma is proved by modifying the proofs of Theorems 172 and
175 of [3] in the real to the formal series case.

Lemma 6 Let 6 = [ag, a1, az,...] be an irrational element in F with |0] > 1,
and let ¢ = Zg_‘tg, where a,b, c,d € F[z] are such that |ad — be| = 1.

1) If || > |d| > 0, then b/d and a/c are two consecutive convergents of the
continued fraction of 1.

2) If b/d and a/c are the (n — 1)*" and n'* convergents of the continued
fraction of v, respectively, then the (n + 1) complete quotient is of the
form 60 for some 6 € F* :=F\{0}.

3) If the continued fraction of v is [co, c1, Ca, .. .], then there exist k,n € Ny
such that

|anvil = lenyil - (0 20).

Proof. We first prove parts 1) and 2) simultaneously. Denote the finite contin-
ued fraction expansion of a/c by [cg, c1,...,c,] and let A,,/B,, be its n'® (last)
convergent. Since |ad — be| = 1, we have ged(a, ¢) = 1 = ged(A,, By). Thus,

|And - Bnb| = |CLd— bC| =1= |Aan_1 - An_an|,
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yielding A,d — B,,b = §' (A, Bp—1 — Ap—1By,) for some §’ € F*, and so

Ap(d—6Bp_1) = Bp(b— 64, _1). (11)
Since ged(A,,, Bn) = 1, the relation (11) gives
Bp|(d — 8By _1). (12)

From |B,| = |¢| > |d| > 0, and |B,| > |Bp—1] > 0, we get |d — 0'B,_1| <
|B,|, which is consistent with (12) only when d — ¢’B,_; = 0, i.e.,, when
d=0B,_1, b=0"A,_1. Consequently, 1) = % for some § € IF* and
so by Lemma 2 (iv),

¥ = [co,C1, ..., Cn, 06)].

If we develop 06 as a continued fraction, we obtain §6 = [cp41, Cryo, .. .|, With
|en+1| > 1. Hence, ) = [co,C1, -+, Cny Crt1s Crt 2y -« - -
To prove part 3), from Lemma 2 (iv), we have
Ap—10k + Ap_2
[CLO, ai, s Af—1, k] Bk—lok i Bk—Q,

which implies

b= PO+ R

QO+ S’

where
P =aAr_1+bBr_1, R = aAg_o+bBr_o, Q = cAr_1+dBy_1, S = cAx_o+dBr_»
are in F[z] with |PS — QR| = |(ad — bc)(Ak 1Br_2 — Ak oBk—1)| = 1. From

Lemma 2 (i44), we have | — At 5= W—Jr&m < |BQ| (i > 0), and so
Ag—1=0Bk_1+ Bfl_l’ Ap—2=0B;_2+ Bf -
where |$1] < 1, |B2] < 1. Thus,
Q= (Ot d)Ber+ - S = (c0+d)B o+ -2
By’ Bj—2

Since ¢ +d # 0, |Bg_1| > |Br_2| — oo (k — o0), we have |Q| > |S| > 0 for
all large k. For such k, part 1) and part 2) ensure that there exists § € F* such
that 60y = v, for some n, i.e., |agyi| = |cnys] (8> 0). O

Lemma 6 and Corollary 5 B) immediately yield:

Lemma 7 Let 6 be an irrational element in F, M = ( CCL Z > € GLy(F[z]),
and M(0) := ZgIZ' If | det M| =1, then
Loo(M(0)) = Loo(6).
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For transformation with non-unit determinant, we have weaker results.

Lemma 8 Let 0 be an irrational in F; h, di, dg € F[z] \ {0} and da € F[z].

Then
Loo(h8) < |h|Loo(6) (13)
L (W) < |dids] Loo(6). (14)

Proof. Tf 6 has unbounded partial quotients, i.e., Lo (6) = 0o, both inequalities
are trivial. Now assume 6 has bounded partial quotients. For h € F[z]\{0}, k €
Ny, clearly,

sup (|Bh||[BRO|)™" < sup (|B|BO|)~"

deg B>k deg B>k
and
tim sup (| Bh| | BAO])) ™" < lim sup (|B| | B6]) .
|B|>1 |B|>1
Consequently,

Loo(h8) = limsup (|B| | Bh6||) ™" = |h|lim sup (|Bh| || BR6|) ™"
|B|>1 |B|>1
< [ limsup (|B| | B6|)) " = || Loo(6),
|B|>1

which verifies (13).
To verify (14), from Corollary 5 B) and (13), we have

d10 + ds ds 1
Lo (——) =L (-5 ) <lds|Loo | =+
( ds ) (d19+d2> da| (d19+d2>

3. Proof of Theorem 1

By Corollary 5, it suffices to prove the two results for Lo, L in place of K, K,

respectively. Let ¢ := 29+8 — M (0).

We start by showing that there exists My € GLo(F[z]) such that

|det My| =1, MM = ( g 5 > € GLy(Fx]), |avy| = |detM]|.
. E F
Write My = ( G H
Ga+ He=0.
If a = 0, then ¢ # 0 and so we must take H = 0. Now choose F' € F*, G =
1/F and arbitrary E € F[z] to fulfil all requirements.

>. To fulfil the matrix equality, it is required that
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If ¢ = 0, then a # 0 and we must take G = 0. Now choose F € F*, H =1/FE
and arbitrary F' € F[z] to fulfil all requirements.

If both a # 0 and ¢ # 0, then take G = lem(a, ¢)/a and H = —lem(a, ¢)/c.
Since ged(G, H) = 1, there are p,v € Flx] such that uG + vH = 1. Taking
E =v and F = —pu, all the requirements are fulfilled.

Having obtained such Ms, we apply Lemma 7 to get

Loo() = Loo(Ma (1)) = Lo (MyM(6)) = L (aoj 8 ) ,

and the second inequality of (1) now follows from the inequality (14) of Lemma
8.
To prove the first inequality of (1), we consider the adjoint matrix

M’ = adj (M):( d _b>,

- a
which has M'M = (det M)I5, and so
M'(¢p) = M'(M(9)) = M'M(0) = 0.
Applying the second inequality of (1) to 1, we have
Loo(0) = Loo(M'(¥)) < |det M'|Log(t)) = | det M|Loo(¥),

and the result follows.
We turn now to the second assertion of Theorem 1. For each B € F[x]\ {0},

let
af +b ab +b
xB_|B||Bw|_|B|’B (0‘9+d>_A’ (A_ [B (0‘9+d>]>.

If ¢ =0, then | det M| = |ad| # 0 and so

lad| 25 = |aB| |aBY — (dA— bB)| > |aB| [laBé| > 1/L(6),

yielding
L(y) = sup (|B||By|)~" < |ad|L(9),
|B|>1

which is the first term in the right hand expression of (2).
If ¢ # 0, then

|c0 +d| zp = |B| |(Ba — Ac)f — (Ad — Bb)|. (15)

Since 6 has bounded partial quotients, both K (#) and K (#) are finite. The
result of the first part shows then that K, (v) is finite and so is K (¢). Corollary
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5 in turn shows that L(v)) is finite. Thus, there is an infinite sequence of non-
zero approximations

zpw = |BY| HB@WH

such that ) )
L) — 5 <

5 S——<LW) (i20). (16)
12 0)

By taking a suitable subsequence, we may reduce to the case where either all of
the approximations have B®a— A®¢ = 0 or all of them have BWa— A®¢ £ 0.

We first treat the subcase B"Wa — A®¢ = 0 for all i > 0. Since ad — be =
det M # 0, we have A®)d — BWp € Flz] \ {0} and so (15) gives

|6 + d| 2 gy = |BD| |[ADd — B@p| > 1.

Consequently,

L(Y)— =< <|cB+d| <|e(cd+d)|  (i>0).
2t T g6
Letting ¢ — oo, we get the second term in the right hand expression of (2).
Finally, consider the subcase that B®a— A®¢ £ 0 for all i > 0. From (15),
we have

c6+d| | B4 [ ) = [BOa — ADe][(BOa — AD)g — (AOd — BOY)|

B()

) ) ) ) 1
Z|B“M~—A“%MMB“%V—A“%WHziz@ﬁ. (17)

Using the first inequality in (16) and the inequality (17), we get

1 BWa — AW
L) — =< <|cl+d| | ———| L(0
()= g < 5 < e |2 160
le| |BWa— AW¢
= , L(0). 18
0+ dl o | P ) (18)

Using the strong triangle inequality, we have

5 (2) - 40| < max{’Bu) (%) 0 (%)’ ’Bu) (%) e

BO||det (M)] w00
— i . 19
max{ @) B0 (19)

Combining (18) and (19) gives

|

L) — 7 < L(mmaX{'detM" 'C““d)'wgf%}'
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Using the first inequality in (16), i.e., x50 < W, we deduce that

L) — 2i < max{|det MI|L(®), |C|E;f(;§)?| . L(@L@uzi}' (20)

If L(0) > L(%), then the inequality (2) holds trivially, using the first term in
the right hand expression. If L(f) < L(v), then letting ¢« — oo in (20), the
ratio o becomes < 1 in the limit, and (2) follows. O
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