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Abstract

Let M be a left R-module. The set of all prime submodules of M
is called the spectrum of M and denoted by Spec(RM), and that of
all prime ideals of R is denoted by Spec(R). For each P ∈ Spec(R),
we define SpecP (RM) = {P ∈ Spec(RM) : Ann�(M/P ) = P}. If
SpecP (RM) �= ∅, then PP :=

⋂
P∈SpecP(RM) P is a prime submodule

of M and P ∈ SpecP (RM). A prime submodule Q of M is called a
lower prime submodule provided Q = PP for some P ∈ Spec(R). We
write �.Spec(RM) for the set of all lower prime submodules of M and
call it lower spectrum of M . In this article, we study the relationships
among various module-theoretic properties of M and the topological con-
ditions on �.Spec(RM) (with the Zariski topology). Also, we topologies
�.Spec(RM) with the patch topology, and show that for every Noetherian
left R-module M , �.Spec(RM) with the patch topology is a compact,
Hausdorff, totally disconnected space. Finally, by applying Hochster’s
characterization of a spectral space, we show that if M is a Noetherian
left R-module, then �.Spec(RM) with the Zariski topology is a spectral
space, i.e., �.Spec(RM) is homeomorphic to Spec(S) for some commuta-
tive ring S. Also, as an application we show that for any ring R with
ACC on ideals Spec(R) is a spectral space.

Key words: Prime submodule; Lower prime submodule; Prime spectrum; Zariski topology;
Patch topology; Spectral space.
2000 AMS Mathematics Subject Classification: Primary 16Y60, 06B30; Secondary 16D80;
16S90.

165



166 A Generalization of Zariski topology of arbitrary ring for modules

0. Introduction.

Throughout, all rings are associative rings with identity elements, and all mod-
ules are unital left modules. The symbol ⊆ denotes containment and ⊂ proper
containment for sets. If N is a submodule (respectively proper submodule) of
M we write N ≤ M (respectively N � M). We denote the left annihilator of
a factor module M/N of M by (N : M). We call M faithful if (0 : M) = 0.

Let Spec(R) denote the set of prime ideals of a ring R. The Zariski topol-
ogy for Spec(R) is defined by letting C ⊆Spec(R) be closed if and only if there
exists an ideal I of R such that C = {P ∈ Spec(R) | I ⊆ P} (see for example
[1], [6] and [9]). A topological space is called spectral if it is homeomorphic
to the prime spectrum of a commutative ring equipped with Zariski topology.
Hachster [10], has characterized spectral spaces as follows:
A space X is spectral if and only if the following axioms hold:

(i) X is a T0-space;
(ii) X is quasi-compact;
(iii) the quasi-compact open subsets of X are closed under finite intersection
and form an open base;
(iv) each nonempty irreducible closed subset F of X has a generic point (i.e.,
F is the closure of a unique point).

Let M be a left R-module. A proper submodule P of M is called prime
if aRm ⊆ P , for a ∈ R and m ∈ M , implies m ∈ P or a ∈ (P : M) (see for
example [7] and [20]). If M is a nonzero left R-module and (0 : M) = (N : M)
for all nonzero submodule N of M then M is called a prime module (see for
example [9] and [21]). If M is a prime module, then (0 : M) = P is a prime
ideal and it is called the affiliated prime of RM . P is a prime submodule of
M if and only if M/P is a prime module. Clearly, a two-sided ideal P of R
is a prime ideal of R if and only if P is a prime submodule of RR (for more
information about this and others related topics, see, for instance, [2], [3], [4],
[5], [11], [13] and [16]). We define Spec(RM) for the set of all prime submodules
of M and define SpecP (RM) = {P ∈ Spec(RM) : the affiliated prime ideal of
M/P is P}. Hence SpecP (RM) = {P ∈ Spec(RM) : (P : M) = P}. If
SpecP (RM) �= ∅, then PP :=

⋂
P∈SpecP (RM) P is a prime submodule of M

and P ∈ SpecP (RM) (see Proposition 1.10 in McCasland and Smith [20]). A
prime submodule Q of M is called a lower prime submodule provided Q = PP
for some P ∈ Spec(R). Clearly, a left ideal P of any ring R is a lower prime
submodule (left ideal) if and only if P is a prime two-sided ideal of R, and hence
this notion of lower prime submodule is a natural generalization of the notion
of prime two-sided ideal of rings to modules. We write �.Spec(RM) for the set
of all lower prime submodules of M and call it lower spectrum of M . Clearly, if
P , Q ∈ �.Spec(RM), then P = Q if and only if (P : M) = (Q : M) and for any
ring R we have �.Spec(RR) =Spec(R). A module M over a commutative ring
R is called a multiplication module if each submodule of M is of the form IM ,
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where I is an ideal of R (see EL-Bast and Smith [8], for more details). It is clear
that each prime submodule of a multiplication module M is of the form PM
for some prime ideal P of R, and hence �.Spec(RM) =Spec(RM). Also if R is
a commutative ring, then for each R-module M and each prime ideal P of R
such that PM �= M , M(P) := {m ∈ M | Am ⊆ PM for some ideal A � P}
is a submodule of M (see McCasland and Smith [20]). It is shown that for
any free left R-module M , �.Spec(M) = {PM : P ∈ Spec(R), PM �= M }
and for any finitely generated faithful module M over a commutative ring R,
�.Spec(M) = {M(P) : P ∈ Spec(R), PM �= M } (see Proposition 1.3).

For any submodule N of a module M , define

V�(N) = {PP ∈ �.Spec(M) | P ⊇ (N : M)}.

Then:

(i) V�(0) = �.Spec(RM) and V�(M) = ∅,
(ii)

⋂
i∈Λ

V�(Ni) = V�((Σi∈Λ(Ni : M))M) for any index set Λ

(iii) V�(N)
⋃
V�(L) = V�(N

⋂
L),

Also, for each submodule N of M we denote the complement of V�(N) in
�.Spec(RM) by U�(N) (i.e., U�(N) = {PP ∈ �.Spec(M) | P �⊇ (N : M)}).
From (i), (ii) and (iii) above, the family T�(M) = {U�(N)|N ≤ M} is closed
under finite intersections and arbitrary unions. Moreover, we have U�(M) =
�.Spec(RM) and U�(0) = ∅. Therefore, T�(M) is the family of open sets for
a topology on �.Spec(RM) and call it the lower Zariski topology of M . This
notion of lower Zariski topology of a module is analogous to that of the usual
Zariski topology of a ring. In fact, for any ring R, the lower Zariski topology
of RR and the usual Zariski topology of the ring R considered in [9], coincide.
Also, the lower Zariski topology and the Zariski topology considered in [11],
agree for multiplication modules (see also [11], [12], [17], [18] and [19]).

In this article, we study the relationships among various module-theoretic
properties of M and the topological conditions on �.Spec(RM) (with the lower
Zariski topology). Modules whose lower Zariski topology is T1 are studied in
Section 1. For example we show that for each R-module M , �.Spec(RM) is a
T1-space if and only if Cl.K.dim(M) ≤ 0 (see [2], for the definition of classical
Krull dimension of modules). This yields that if M is semisimple, R is a PI-
ring and M is an Artinian R-module, or R is a commutative ring and M is
co-semisimple, then �.Spec(RM) is a T1-space.

In Section 2, we topologies �.Spec(RM) with the patch topology, and show
that for every Noetherian left R-module M , �.Spec(RM) with the patch topol-
ogy is a compact, Hausdorff, totally disconnected space. In the final section,
comparing with Spec(R), R commutative, we investigate the lower Zariski
topology of modules form the point of view of spectral spaces. In fact, by
applying Hochster’s characterization of a spectral space (see Hochster [10]), we
show that ifM is a Noetherian leftR-module, then �.Spec(RM) with the Zariski
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topology is a spectral space, i.e., �.Spec(RM) is homeomorphic to Spec(S) for
some commutative ring S. As an application we conclude that for any ring
R with ACC on ideals Spec(R) with the usual Zariski topology is a spectral
space.

1. Some remarks about the lower Zariski topol-

ogy of modules

Let X be a topological space and let x and y be points in X. We say that x
and y can be separated if each lies in an open set which does not contain the
other point. X is a T1- space if any two distinct points in X can be separated.
A topological space X is a T1-space if and only if all points of X are closed
in X (i.e., given any x in X, the singleton set {x} is a closed set). (Note: for
other terminology on a topological space not defined here we refer to Mankres
[14].)

In the literature, there are two different generalizations of the classical Krull
dimension for modules via prime dimension. In fact, the notion of prime di-
mension of a module M over a commutative ring R [denoted by D(M) or
dim(M)], was introduced by Marcelo and Masqué [15], as the maximum length
of the chains of prime submodules of M (see [2] and [13]) for some known
results about the prime dimension of modules). Also, the classical Krull di-
mension of rings has been extended to modules RM in [2], as the maximum
length of the strong chains of prime submodules of M (allowing infinite ordi-
nal values) and denoted by Cl.K.dim(M) (see also [5] for another generaliza-
tion of the classical Krull dimension of rings to modules). (Note: the chain
N1 ⊂s N2 ⊂s N3 ⊂s · · · of submodules of M is called a strong ascending chain
if for each i ∈ N, Ni � Ni+1 and also (Ni : M) � (Ni+1 : M); (see [2], for
definition of the strong descending chain condition).

In the following result we give a characterization for the lower prime spec-
trum of finitely generated faithful modules over a commutative ring.

Theorem 1.1. Let M be a left R-module. Then the following statements are
equivalent:

(1) �.Spec(RM) with the lower Zariski topology is a T1-space.
(2)Cl.K.dim(M) ≤ 0.

Proof. (1) ⇒ (2). Assume that �.Spec(M) with lower Zariski topology is a
T1-space. If �.Spec(RM) = ∅, then Cl.K.dim(M) = −1. Let �.Spec(RM) �= ∅
and P1 ∈ �.Spec(RM). Then {P1} is a closed set in �.Spec(RM). We claim
that every prime submodule of M is a virtually maximal prime submodule, for
if not, we assume that P1 ⊂s P2, where P1, P2 are lower prime submodules
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of M . Since {P1} is a closed set, {P1} = V�(N), where N ≤ M and then
(N : M) ⊆ (P1 : M). Thus we conclude that P1 ∈ V�(N). Since P1 ⊂s P2,
(P1 : M) ⊂ (P2 : M). Therefore P2 ∈ V�(N). Thus P2 ∈ {P1}, a contradic-
tion. Thus every lower prime submodule of M is a virtually maximal prime
submodule and then Cl.K.dim(M) ≤ 0.

(2) ⇒ (1). Suppose that Cl.K.dim(M) ≤ 0. If Cl.K.dim(M) = −1, then
�.Spec(RM) = ∅, i.e., �.Spec(RM) is trivial space and so it is a T1-space. Now
let Cl.K.dim(M) = 0, i.e., �.Spec(RM) �= ∅ and every prime submodule of M is
a virtually maximal prime submodule. Thus for each lower prime submodule P
of M , V�(P ) = {P }, and so {P } is a closed set in �.Spec(RM) i.e., �.Spec(RM)
is a T1-space. �

The following corollary gives a wider class of modulesM for which �.Spec(RM)
with the lower Zariski topology is a T1-space.

Corollary 1.2. Let M be a left R-module. Then:

(a) If M is semisimple, then �.Spec(RM) with the lower Zariski topology is a
T1- space.
(b) If R is a PI-ring and M is Artinian, then �.Spec(RM) with the lower zariski

topology is a T1-space.
(c) If R is commutative and M is co-semisimple, then �.Spec(RM) with the
lower zariski topology is a T1- space.

Proof. (a). By [5, Theorem 1.7] and Theorem 1.1.
(b). By [2, Theorem 1.10] and Theorem 1.1.
(c). By [2, Proposition 1.11] and Theorem 1.1. �

In the next proposition we give a characterization for �.Spec(M) when M is
a free module or R is a commutative ring and M is a finitely generated faithful
R-module.

Proposition 1.3. Let M be a nonzero left R-module. Then:

(a) If M is a free R-module, then for each prime ideal P of R, PM is a prime
submodule of M such that (PM : M) = P. Moreover,

�.Spec(RM) = { PM | for each ideal P of R }.

(b) If R is commutative and M is a finitely generated faithful R-module, then

�.Spec(M) = {M(P) : P ∈ Spec(R), PM �= M }.

Proof. (a). Since M is free R-module, then M =
⊕
R(I), for index set I.

One can easily see that for each prime ideal P of R, PM =
⊕

P(I) is a prime
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submodule of M . On the other hand for each prime submodule P of M such
that (P : M) = P, PM ⊆ P . Therefore

PM ⊆
⋂

P∈SpecP (RM)

P,

and hence,
PM =

⋂
P∈SpecP (RM)

P.

(b). Let P be a prime ideal of R. By Lemma 2.1 in [5], (M(P) : M) = P. Since
PM ⊆ M(P), (PM : M) = P. Thus by Proposition 1.8 in [20], M(P) is a
prime submodule of M . Then by Lemma 1.6 in [20], for each prime submodule
K of M such that (K : M) = P, M(P) ⊆ K. Therefore

�.Spec(RM) = {M(P) : P ∈ Spec(R), PM �= M }. �

We need the following evident lemma.

Lemma 1.4. Let M be a left R-module. The for each submodule N of M ,
V�(N) = V�(IM), where I = (N : M). Consequently,

T�(M) = {U�(IM) | I is an ideal of R}.

Let M be a left R-module and R = R/Ann(M). From the definition of
the lower Zariski topology on �.Spec(RM), it is evident that the topological
space �.Spec(M) is closely related to Spec(R), particularly, under the corre-
spondence ψ : �.Spec(M) −→ Spec(R) defined by ψ(P ) = (P : M) for every
P ∈ �.Spec(M).

Proposition 1.5. For any left R-module M , the natural map ψ is continuous
map. More precisely, ψ−1(V (I)) = V�(IM) for every ideal I of R containing
Ann(M).

Proof. Suppose that P ∈ �.Spec(M) such that P ∈ V�(IM), then I ⊆ (P : M)
and so (P : M) ∈ V (I). Therefore ψ(P ) = (P : M) ∈ V (I). Thus P ∈
ψ−1(V (I)). Conversely, if P ∈ ψ−1(V (I)), then ψ(P ) = (P : M) ∈ V (I).
Therefore I ⊆ (P : M) and then P ∈ V�(IM). �

Lemma 1.6. For any left R-module M , the natural map ψ : �.Spec(M) −→
Spec(R) is injective.

Proof. Evident. �
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Lemma 1.7. Let M be a left R-module. If the natural map ψ is surjective,
then ψ is closed.

Proof. By Proposition 1.5, ψ is a continuous map and ψ−1(V (I)) = V�(IM),
for each ideal I ofR containingAnn(M). LetN ≤M . Then ψ−1(V ((N : M))) =
V�((N : M)M) = V�(N). It follows that ψ(V�(N)) = ψoψ−1(V ((N : M))) =
V ((N : M)) as ψ is bijective. �

Corollary 1.8. Let M be a left R-module. If the natural map ψ is surjective,
then ψ is homeomorphic.

Proof. By Proposition 1.5, Lemma 1.6 and Lemma 1.7. �

Corollary 1.9. Let M be a left R-module. Then the natural map ψ is home-
omorphic in each of the following cases:

(1) M is a finitely generated nonzero module over commutative ring R;
(2) M is a faithfully flat nonzero module over commutative ring R;
(3) M is a free nonzero module over any ring R.

Proof. (1) and (2) follow from [12, p. 3746, Theorem 2] and (3) follows from
Proposition 1.3(a). �

2. Patch topologies associated to the lower spectrum of a module

We need to recall the patch topology (see [9] and [10], for definition and
more details). Let X be a topological space. By the patch topology on X, we
mean the topology which has as a sub-basis for its closed sets the closed sets
and compact open sets of the original space. By a patch we mean a set closed
in the patch topology. The patch topology associated to a spectral space is
compact and Hausdorff (see Hachster [10]). Also, the patch topology associ-
ated to the Zariski topology of a ring R (not necessarily commutative) with
ACC on ideals is compact and Hausdorff (see [9, Proposition 16.1]).

Definition 2.1. Let M be a left R-module, and let V�(M) be the family of all
subsets of �.Spec(RM) of the form V�(N)

⋃
U�(K) where V�(N) is any lower

Zariski-closed subset of �.Spec(RM) and U�(K) is a lower Zariski-quasi-compact
subset of �.Spec(RM) . Clearly V�(M) is closed under finite unions and contains
�.Spec(RM) and the empty set, since �.Spec(RM) equals V�(0)

⋃
U�(0) and the

empty set equals V�(M)
⋃
U�(0). Therefore V�(M) is basis for the family of

closed sets of a topology on �.Spec(RM), and call it lower patch topology (or
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lower constructible topology) of M . Thus

V�(M) =
{
V�(N)

⋃
U�(K) |N,K ≤M, U�(K) is lower Zariski−quasi−compact

}
,

and hence we obtain the family

U�(M) =
{
V�(K)

⋂
U�(N) |N,K ≤M, U�(K) is lower Zariski−quasi−compact

}
,

which is a basis for the open sets of the lower patch topology, i.e., the patch-
open subsets of �.Spec(RM) are precisely the unions of sets from U�(M). We
denote the patch-topology of �.Spec(RM) by T�p(M).

We need the following definition (a slightly different notion of lower patch
topology).

Definition 2.2. Let M be a left R-module, and let Ũ�(M) be the family
of all subsets of �.Spec(RM) of the form V�(N)

⋂
U�(K) where N , K ≤ M .

Clearly Ũ�(M) contains �.Spec(RM) and the empty set, since �.Spec(RM)
equals V�(0)

⋂
U�(M) and the empty set equals V�(M)

⋂
U�(0). Let T̃�p(M)

to be the collection Ũ of all unions of elements of Ũ�(M). Then T̃�p(M) is a
topology on �.Spec(RM) and it is called the finer lower patch topology or the
finer lower constructible topology (in fact, Ũl(M) is a basis for the finer lower
patch topology of M).

Lemma 2.3. Let M be an R-module and P ∈ �.Spec(RM). Then for each
finer lower patch-neighborhood U� of P , there exists a submodule L of M such
that (P : M) ⊂ (L : M) and P ∈ V�(P )

⋂
U�(L) ⊆ U�.

Proof . Since P ∈ U�, there exists a neighborhood of the form V�(K)
⋂
U�(N) ⊆

U� such that P ∈ V�(K)
⋂
U�(N) where (P : M) ⊇ (K : M) and (P : M) �

(N : M). Since P ∈ V�(P ) and V�(P ) ⊆ V�(K), we may replace V�(K) by
V�(P ). Now we claim that V�(P )

⋂
U�(N) = V�(P )

⋂
U�((I + P)M), where

P = (P : M) and I = (N : M). Since U�(IM) ⊆ U�((I + P)M),

V�(P )
⋂
U�(N) = V�(P )

⋂
U�(IM) ⊆ V�(P )

⋂
U�((I + P)M).

Suppose that Q ∈ V�(P )
⋂
U�((I + P)M), then Q /∈ U�(P ). On the other

hand Q ∈ U�((I + P)M) = U�(N)
⋃
U�(P ). This follows that Q ∈ U�(N).

Thus V�(P )
⋂
U�(N) = V�(P )

⋂
U�((I + P)M). Now let L = (I + P)M . Then

P ⊂ I + P ⊆ (L : M) and P ∈ V�(P )
⋂
U�(L) ⊆ U�. �

Let X be a topological space. Then for each subset Y of �.Spec(M), we
will denote the closure of Y in �.Spec(M) with finer lower patch topology by Y .
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Proposition 2.4. Let M be an R-module and Y ⊆ �.Spec(RM). If Q ∈ Y
with finer lower patch topology, then there exists A ⊆ Y such that V�(Q) =
V�(

⋂
P∈A

P ).

Proof. Let Q ∈ Y . If Q ∈ Y , then we are thorough. Thus we can assume that
Q /∈ Y . Let A = {P ∈ Y | (Q : M) ⊂ (P : M)}. Since Q ∈ U�(M)

⋂
V�(Q),

there exists P ′ ∈ Y such that P ′ ∈ U�(M)
⋂
V�(Q). Since Q /∈ Y , (Q : M) ⊂

(P ′ : M) and hence A �= ∅. Since (Q : M) ⊆ (P : M) for each P ∈ A,

(Q : M) ⊆
⋂

P∈A
(P : M) = (

⋂
P∈A

P : M).

If
⋂

P∈A
(P : M) � (Q : M), then

Q ∈ U�(
⋂

P∈A
P )

⋂
V�(Q).

Since Q ∈ Y , there exists P ′′ ∈ Y such that

P ′′ ∈ U�(
⋂

P∈A
P )

⋂
V�(Q).

Therefore P ′′ ∈ V�(Q) and hence P ′′ ∈ A. But

(
⋂

P∈A
P : M) =

⋂
P∈A

(P : M) ⊆ (P ′′ : M).

Thus P ′′ /∈ U�(
⋂

P∈A
P ). a contradiction. Thus

⋂
P∈A

(P : M) ⊆ (Q : M), and

hence
V�(Q) = V�(

⋂
P∈A

P ) = V�(
⋂

P∈A
(P : M)M). �

Proposition 2.5. Let M be a left R-module. Then �.Spec(M) with the finer
lower patch topology is Hausdorff. Moreover, �.Spec(RM) with this topology is
totally disconnected.

Proof. Suppose that P , Q ∈ �.Spec(M) are distinct points. Since P �=
Q, (P : M) �= (Q : M). Therefore either (P : M) � (Q : M) or (Q :
M) � (P : M). Assume that (P : M) � (Q : M). By Definition 2.2,
U1 := U�(M)

⋂
V�(P ) is a finer lower patch-neighborhood of P and since

(P : M) � (Q : M), U2 := U�(P )
⋂
V�(Q) is a finer lower patch-neighborhood

of Q. Clearly U�(P )
⋂
V�(P ) = ∅ and hence U1 ∩ U2 = ∅. Thus �.Spec(RM) is



174 A Generalization of Zariski topology of arbitrary ring for modules

a Hausdorff space. On the other hand for every submodule N of M , observer
that the sets U�(N) and V�(N) are open in finer lower patch topology, since
V�(N) = U�(M)

⋂
V�(N) and U�(N) = U�(N)

⋂
V�(0). Since U�(N) and V�(N)

are complement of each other, they are both finer lower both-closed as well.
Therefore, the finer patch topology on �.Spec(RM) has a basis of open sets
which are also closed, and hence �.Spec(RM) is totally disconnected in this
topology. �

An R-module M will be called weakly Noetherian if, for every element a
in R and element m in M , the submodule RaRm is finitely generated (see
[20]). For any ring R, every Noetherian module is weakly Noetherian. If R is
a commutative ring, then every R-module is weakly Noetherian.

Definition 2.6. An R-module M is called p∗-module if for each prime ideal
P of R such that (PM : M) = P, there exists a prime submodule P of M such
that (P : M) = P.

For example for each ring R, RR is a P ∗-module. By Proposition 1.3 (a),
every finitely generated faithful module over a commutative ring R is a P ∗-
module. Also every torsion free divisible module over any domain is a P ∗-
module. Now we show that every Noetherian left R-module M is also a P ∗-
module.

Lemma 2.7. Let M be a Notherian left R-module. Then M is p∗-module.

Proof. Let M be a Notherian left R-module. Then M is finitely generated
and weakly Notherian. By [20, Proposition 1.8], for each prime ideal P of R,
M(P) is a prime submodule of M such that (PM : M) = P. �

Theorem 2.8. Let R be a ring and M be a p∗-module such that R/Ann(M)
has ACC on ideals. Then �.Spec(RM) with the finer lower patch topology is a
compact space.

Proof. Suppose M is a p∗-module such that R/Ann(M) has ACC on ideals.
Let A be a family of finer lower patch-open sets covering �.Spec(RM) and
suppose that no finite subfamily of A covers �.Spec(RM) . Let

S = {L | L is an ideal of R such that Ann(M) ⊆ L and no finite subfamily of

A covers V�(LM)}.
Since V�(Ann(M)M) = V�(0) = �.Spec(M), S �= ∅. We may use the ACC on
ideals of R/Ann(M) to choose an ideal Q of R maximal with respect to the
property that no finite subfamily of A covers V�(QM) (i.e., Q is a maximal
element of S). It is clear that QM �= M . We claim that Q is a prime ideal
of R, for if not, suppose that I and J are two ideals of R properly containing
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Q and IJ ⊆ Q. Then V�(IM) and V�(JM) covered by finite subfamily of A.
Suppose P ∈ V�(IJM), then IJ ⊆ P := (P : M). Since P is prime, either
I ⊆ P or J ⊆ P, and hence either P ∈ V�(IM) or P ∈ V�(JM). Thus V�(IJM)
covered by a finite subfamily of A. Since IJ ⊂ Q, then V�(QM) ⊆ V�(IJM).
Thus V�(QM) covered by finite subfamily of A, a contradiction. Thus Q is
a prime ideal of R. We claim that (QM : M) = Q, for if not, then there
exists an ideal Q1 of R such that Q1 = (QM : M) and Q ⊂ Q1. This
follows that QM = Q1M and so no finite subfamily of A covers V�(Q1M),
contrary to maximality of Q. Therefore (QM : M) = Q and since M is p∗-
module, there exists Q ∈ �.Spec(M) such that (Q : M) = Q. Let U ∈ A
such that Q ∈ U . By Lemma 2.3, there exists a submodule K of M such that
Q = (Q : M) ⊂ (K : M) and

Q ∈ U�(K)
⋂
V�(Q) ⊆ U.

Let (K : M) = I. By Lemma 1.4, we know that U�(K) = U�(IM) and
V�(Q) = V�(QM), and so Q ∈ U�(IM)

⋂
V�(QM) ⊆ U . Since Q ⊂ I, then

V�(IM) can be covered by some finite subfamily A′ of A. But

V�(QM) \ V�(IM) = V�(QM) \ [U�(IM)]c = V�(QM)
⋂
U�(IM) ⊆ U.

and so V�(QM) can be covered by A′ ⋃{U}, contrary to our choice of Q. Thus
there must exist a finite subfamily of A which covers �.Spec(RM) . Therefore
�.Spec(RM) is compact in the finer lower patch topology of M . �

It is well-known that if M is a Noetherian module over a commutative ring
R, then R/Ann(M) is a Noetherian ring. Thus by Lemma 2.7 and Theorem
2.8, we conclude that for each Noetherian module M over a commutative ring
R, �.Spec(RM) with the finer lower patch topology is a compact space. Fur-
thermore, by a similar method that used in the proof of Theorem 2.8, we show
that this fact is also true for a Noetherian module over a non-commutative ring.

Theorem 2.9. Let M be a Noetherian left R-module. Then �.Spec(RM) with
the finer lower patch topology is a compact space.

Proof. Let M be a Noetherian left R-module, and let A be a family of finer
lower patch-open sets covering �.Spec(RM). Suppose that no finite subfamily
of A covers �.Spec(RM) . Let

T = {LM | L is an ideal of R such that no finite subfamily of A covers V�(LM)}.

Since V�(0M) = V�(0) = �.Spec(M), T �= ∅. We may use the ACC on submod-
ules of M to choose an ideal F of R such that FM maximal with respect to the
property that no finite subfamily of A covers V�(FM). Let (FM : M) = Q.
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Then V�(FM) = V�(QM). It is clear that QM �= M . We claim that Q is a
prime ideal of R, for if not, suppose that I and J are two ideals of R properly
containing Q and IJ ⊆ Q. Then FM ⊂ IM and FM ⊂ JM . Thus V�(IM)
and V�(JM) covered by finite subfamily of A. Suppose P ∈ V�(IJM), then
IJ ⊆ P := (P : M). Since P is prime, either I ⊆ P or J ⊆ P, and hence either
P ∈ V�(IM) or P ∈ V�(JM). Thus V�(IJM) covered by a finite subfamily of
A. Since IJ ⊆ P, then V�(QM) ⊆ V�(IJM). Thus V�(QM) covered by finite
subfamily of A, a contradiction. Thus Q is a prime ideal of R. Now we claim
that (QM : M) = Q, for if not, then there exists an ideal Q1 of R such that
Q ⊂ Q1 and Q1 = (QM : M). Therefore Q1M ⊆ QM ⊆ FM and hence
Q1 ⊆ (FM : M) = Q, a contradiction. Thus (QM : M) = Q. By Lemma 2.7,
M is p∗-module and so there exists Q ∈ �.Spec(M) such that (Q : M) = Q.
Let U ∈ A such that Q ∈ U . By Lemma 2.3, there exists a submodule K of
M such that Q = (Q : M) ⊂ (K : M) and

Q ∈ U�(K)
⋂
V�(Q) ⊆ U.

Let (K : M) = I. By Lemma 1.4, we know that U�(K) = U�(IM) and
V�(Q) = V�(QM), and so Q ∈ U�(IM)

⋂
V�(QM) ⊆ U . Since Q ⊂ I, then

V�(IM) can be covered by some finite subfamily A′ of A. But

V�(QM) \ V�(IM) = V�(QM) \ [U�(IM)]c = V�(QM)
⋂
U�(IM) ⊆ U.

and so V�(QM) can be covered by A′ ⋃{U}, contrary to our choice of Q. Thus
there must exist a finite subfamily of A which covers �.Spec(RM) . Therefore
�.Spec(RM) is compact in the finer lower patch topology of M . �

We need the following evident lemma.

Lemma 2.10. Assume that τ, τ∗ are two topology on X such that τ ⊆ τ∗. If
X is quasi-compact in τ∗ then τ is also quasi-compact in τ .

Theorem 2.11. Let M be an R-module. If �.Spec(RM) is compact with the
finer lower patch topology, then for each submodule N of M , U�(N) is a quasi-
compact subset of �.Spec(RM) with the lower Zariski topology. Consequently,
�.Spec(RM) with the lower Zariski topology is quasi-compact.

Proof. By Definition 2.2, for each submoduleN ofM , V�(N) = V�(N)
⋂
U�(M)

is an open subset of �.Spec(RM) with finer lower patch topology, and hence,
for each submodule N of M , U�(N) is a closed subset in �.Spec(RM) with finer
lower patch topology. Since every closed subset of a compact space is com-
pact, U�(N) is compact in �.Spec(RM) with finer lower patch topology and
so by Lemma 2.10, it is quasi-compact in �.Spec(RM) with the lower Zariski
topology. Now, since �.Spec(RM) = U�(M), �.Spec(RM) is quasi-compact with
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lower Zariski topology.�

Corollary 2.12. Let M be a left R-module. If �.Spec(RM) is compact with
finer lower patch topology, then the finer lower patch topology and the lower
patch topology of M coincide.

Proof. By Theorem 2.11, for each submoduleK ofM , U�(K) is quasi-compact.
Therefore for each N,K ≤M , V�(N)

⋂
U�(K) is an element of the basis U�(M)

of the lower patch topology on �.Spec(RM). �

Corollary 2.13. Let M be left R-module. If M is Noetherian or M is a
p∗-module such that R/Ann(M) has ACC on ideals, then the finer lower patch
topology and the lower patch topology of M coincide.

Proof. By Theorem 2.8, Theorem 2.9 and Corollary 2.12. �

We conclude this section with the following corollaries.

Corollary 2.14. Let M be a p∗-module and R/Ann(M) has ACC on ideals.
Then �.Spec(RM) with the lower Zariski topology is a Hausdorf, compact, to-
tally disconnected space.

Proof. By Proposition 2.5, Theorem 2.8, and Corollary 2.13. �

Corollary 2.15. Let M be a Notherian left R-module. Then �.Spec(RM) with
the lower Zariski topology is a Hausdorf, compact, totally disconnected space.

Proof. By Proposition 2.5, Theorem 2.9, and Corollary 2.13. �

3. Modules whose lower Zariski topologies are spectral

Let M be an R-module and let �.Spec(RM) be endowed with the lower
Zariski topology. For each subset Y of �.Spec(RM) , We will denote the closure
of Y in �.Spec(RM) by Y , and intersections of elements of Y by �(Y ) (note
that if Y = ∅, then �(Y ) = M).

A topological space X is called irreducible if X �= ∅ and every finite inter-
section of non-empty open sets of X is non-empty. A (non-empty) subset Y
of a topology space X is called an irreducible set if the subspace Y of X is
irreducible. For this to be so, it is necessary and sufficient that, for every pair
of sets Y1, Y2 which are closed in X and satisfy Y ⊆ Y1∪Y2, Y ⊆ Y1 or Y ⊆ Y2

(see [6, page 94]).

A topological space X is a T0-space if and only if for any two distinct points
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in X there exists an open subset of X which contains one of the points but
not the other. This characterization should be contrasted with an analogous
characterization of T1 spaces, where one can specify beforehand which points
will belong to the open set.

We know that, for any ring R, Spec(R) is always a T0-space for the usual
Zariski topology. This is not true for Spec(RM) (see [11, page 429]).

Let Y be a closed subset of a topological space. An element y ∈ Y is called
a generic point of Y if Y = {y}. Note that a generic point of the irreducible
closed subset Y of a topological space is unique if the topological space is a
T0-space.

Following Hochster [10], we say that a topological space X is a spectral
space in case X is homeomorphic to Spec(S), with the Zariski topology, for
some commutative ring S. Spectral spaces have been characterized by [10,
page 52, Proposition 4] as the topological spaces X which satisfy the following
conditions:

(i) X is a T0-space;
(ii) X is quasi-compact;
(iii) the quasi-compact open subsets of X are closed under finite intersection
and form an open base;
(iv) each irreducible closed subset of X has a generic point.

For any commutative ring R, Spec(R) is well-known to satisfy these condi-
tion (see [6, Chap II, 401-403]).

Corollary 3.1. Let M ba a module over a commutative ring R. For each
following cases �.Spec(M) with lower Zariski topology is a spectral space:

(1) M is a finitely generated nonzero R-module ;
(2) M is a faithfully flat nonzero R-module;
(3) M is a free module.

Proof. By Corollary 1.11 is clear. �

In this section, we will show that if �.Spec(RM) with the finer lower patch
topology is quasi compact, then �.Spec(RM) with the lower Zariski topology is
a spectral space.

Proposition 3.2. Let M be an left R-module and let Y = {P1, P2, ..., Pk} be
a finite subset of �.Spec(RM) with lower Zariski topology. Then Y = V�(P1) ∪
V�(P2) ∪ .... ∪ V�(Pk).

Proof. Clearly, Y ⊆ V�(P1) ∪ V�(P2) ∪ .... ∪ V�(Pk) . Suppose F be any
closed subset of �.Spec(M) such that Y ⊆ F . Thus F = V�(N), for sub-
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module Nof M . Let Q ∈ V�(P1) ∪ V�(P2) ∪ .... ∪ V�(Pk). Then there exists
j (1 ≤ j ≤ k) such that Q ∈ V�(Pj) and so (Pj : M) ⊆ (Q : M). Since
Pj ∈ F , (N : M) ⊆ (Pj : M) ⊆ (Q : M), and hence Q ∈ F . Thus
V�(P1)∪V�(P2)∪....∪V�(Pk) ⊆ F . Therefore, Y = V�(P1)∪V�(P2)∪....∪V�(Pk).�

The above proposition immediately yields that the following interesting re-
sult.

Corollary 3.3. Let M be a left R-module. Then

(a) {P} = V�(P ), for all P ∈ �.Spec(M).
(b) Q ∈ {P} if and only if (P : M) ⊆ (Q : M) if and only if V�(Q) ⊆ V�(P ).
(c) The set {P } is closed in �.Spec(RM) if and only if P is a virtually maximal

prime submodule of M .

Proof. By Proposition 3.2 is clear. �

Lemma 3.4. Let M be a left R-module and P,Q ∈ �.Spec(RM). If V�(P ) =
V�(Q), then P = Q.

Proof. If V�(P ) ⊆ V�(Q), then P ∈ V�(Q). Therefore (Q : M) ⊆ (P : M). On
the other hand V�(Q) ⊆ V�(P ), then Q ∈ V�(P ) and then (P : M) ⊆ (Q : M).
Therefore (P : M) = (Q : M) and hence P = Q. �

Proposition 3.5. Let M be a left R-module. Then �.Spec(RM) with the lower
Zariski topology is a T0-space.

Proof. Let P1, P2 be two distinct prime submodules of M. Since P1 �= P2, by
Lemma 3.3, V�(P ) �= V�(Q). Therefore either P �∈ V�(Q) or Q /∈ V�(P ). We
assume that P �∈ V�(Q) . Thus P ∈ U�(Q), but Q /∈ U�(Q). This means that
�.Spec(M) is a T0-space. �

Lemma 3.6. Let M be a left R-module. Then for each P ∈ Spec(RM), V�(P )
is irreducible.

Proof. Let V�(P ) ⊆ Y1

⋃
Y2, where Y1 and Y2 are closed sets. Then there

exist N1, N2 ≤ M such that Y1 = V�(N1) and Y2 = V�(N2). Suppose that
Q is a lower prime submodule of M such that (Q : M) = (P : M). Since
Q ∈ V�(P ), either Q ∈ Y1 or Q ∈ Y2. Without loss of generality we can assume
that Q ∈ Y1 = V�(N1), then (N1 : M) ⊆ (Q : M) = (P : M). Therefore
V�(P ) ⊆ V�(N1) = Y1. Thus V�(P ) is irreducible. �

Corollary 3.7. Let M be a left R-module and P be a prime submodule of M .
If Q ∈ �.Spec(RM) such that (Q : M) = (P : M). Then Q is a generic point
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for the irreducible closed subset V�(P ) of �.Spec(RM).

Proof. By Lemma 3.6, V�(P ) is irreducible closed subset of �.Spec(RM). On
the other hand by Corollary 3.3, {Q} = V�(Q) = V�(P ). Thus Q is a generic
point of irreducible closed subset V�(P ). �

Let M be a left R-module and Y ⊆ �.Spec(RM). We will denote the inter-
section of all elements in Y by �(Y ) and closure of Y in �.Spec(RM) with the
lower Zariski topology by Y .

Proposition 3.8. Let M be a left R-module and Y ⊆ �.Spec(RM). Then
V�(�(Y )) = Ȳ . Hence, Y is closed if and only if V�(�(Y )) = Y .

Proof. Clearly, Y ⊆ V�(�(Y )). Let V�(N) be a closed subset of �.Spec(RM)
containing Y . Then (N : M) ⊆ (P : M) for every P ∈ Y so that (N : M) ⊆
(�(Y ) : M). Hence for every Q ∈ V�(�(Y )), (N : M) ⊆ (�(Y ) : M) ⊆ (Q : M).
Therefore V�(�(Y )) ⊆ V�(N). Thus Y = V�(�(Y )). �

Now we show that if Y ⊆ �.Spec(RM) such that �(Y ) is a prime submodule
of M , then Y is irreducible.

Proposition 3.9. Let M be a left R-module and Y ⊆ �.Spec(RM). If �(Y ) is
a prime submodule of M , then Y is irreducible.

Proof. Suppose that P := �(Y ) is a prime submodule of M . By Proposition
3.8, Ȳ = V�(P ). Now let Y ⊆ Y1 ∪ Y2, where Y1, Y2 are closes sets. Thus
Ȳ ⊆ Y1 ∪ Y2. Since V�(P ) ⊆ Y1 ∪ Y2 and by Lemma 3.6, V�(P ) is irreducible,
V�(P ) ⊆ Y1 or V�(P ) ⊆ Y2. This follows that either Y ⊆ Y1 or Y ⊆ Y2 (since
Y ⊆ V�(P )). Thus Y is irreducible. �

Let R be a ring and M be a left R-module. For any ideal I of R,
√
I will

denote the radical of I, that is
√
I =

⋂
{P : P is a prime ideal of R and I ⊆ P}

Also, for a submodule N of M the prime radical
√
N (or radM (N)) is de-

fined to be the intersection of all prime submodules of M containing N , and in
case N is not contained in any prime submodule then

√
N is defined to be M .

In particular, for any module M , we define radR(M) =
√

(0). This is called
prime radical of M . Thus, if M has a prime submodule, then radR(M) is equal
to the intersection of all the prime submodules in M but, if M has no prime
submodule, then radR(M) = M .

Corollary 3.10. Let M be a left R-module and N ≤ M . If
√
N is a

prime submodule, then the subset V�(N) of �.Spec(RM) is irreducible with the
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lower Zariski topology.. Consequently, If radR(M) is a prime submodule, then
�.Spec(RM) is irreducible.

Proof. By Proposition 3.9. �

Proposition 3.11. Let M be a left R-module. If �.Spec(RM) is quasi-compact
with the finer lower patch topology, then every irreducible closed subset of
�.Spec(RM) with the lower Zariski topology has a generic point.

Proof. The first we show that Y =
⋃

P∈Y V�(P ). Clearly Y ⊆
⋃

P∈Y V�(P ).
By Corollary 3.3(a), for each P ∈ Y we have V�(P ) = {P } ⊆ Y , and since
Y = Y ,

⋃
P∈Y V�(P ) ⊆ Y . By Definition 2.2, for each P ∈ Y , V�(P ) =

V�(P )
⋂
U�(M) is an open subset of �.Spec(RM) with the finer lower patch

topology. Since Y is a closed subset in �.Spec(RM) with the finer lower patch
topology and since every closed subset of a compact space is compact, Y is
compact in �.Spec(RM) with the finer lower patch topology. Thus there exists
a finite subset Y ′ of Y such that Y =

⋃
P∈Y ′ V�(P ). Also since Y is irreducible

Y = V�(P ) for some P ∈ Y and so Y has a generic point. �

Corollary 3.12. Let M be a left R-module with |�.Spec(RM)| < ∞. Then
every irreducible closed subset of �.Spec(RM) with the lower Zariski topology
has a generic point.

Corollary 3.13. Let M be a p∗-module over a ring R such that R/Ann(M)
has ACC on ideals. Then every irreducible closed subset of �.Spec(RM) with
the lower Zariski topology has a generic point.

Corollary 3.14. Let M be a Notherian left R-module. Then every irreducible
closed subset of �.Spec(RM) with the lower Zariski topology has a generic point.

Theorem 3.15. Let M be a left R-module. If �.Spec(RM) is quasi-compact
with the finer lower patch topology. Then �.Spec(RM) with the lower Zariski
topology is a spectral space.

Proof. By Proposition 3.5, �.Spec(RM) is a T0-space and by Theorem 2.12,
�.Spec(RM) is quasi-compact and has a basis of quasi-compact open subsets.
Also, by Theorem 2.12, the family of quasi-compact open subsets of �.Spec(M)
is closed under finite intersections. Finally, by Proposition 3.11, every irre-
ducible closed subset of �.Spec(RM) has a generic point. Thus by Hochster’s
characterization of a spectral space, �.Spec(RM) is a spectral space. �

Corollary 3.16. Let M be a left R-module such that |�.Spec(RM)| <∞. Then
�.Spec(RM) with lower Zariski topology is a spectral space.
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Proof. By Theorem 3.15 is clear. �

Corollary 3.17. Let M be a p∗-module over ring R such that R/Ann(M) has
ACC on ideals. Then �.Spec(RM) with the lower Zariski topology is a spectral
space.

Proof. By Theorem 2.8 and Theorem 3.15 is clear. �

We conclude this article with the following interesting results for Noethe-
rian modules and for arbitrary rings, respectively.

Corollary 3.18. Let M be a Noetherian left R-module. Then �.Spec(RM)
with the lower Zariski topology is a spectral space.

Proof. By Theorem 2.9. Corollary 2.15 and Theorem 3.15. �

Corollary 3.19. Let R be a ring (not necessary commutative) with ACC on
ideals. Then Spec(R) with the usual Zariski topology is a spectral space i.e.,
Spec(R) is homeomorphic to Spec(S) for some commutative ring S.

Proof. By Corollary 2.14 and Theorem 3.15. �
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