ON REVERSIBILITY OF RINGS WITH INVOLUTION

Usama A. Aburawash and Muna E. Abdulhafed⁰

Department of Mathematics and Computer Science Faculty of Science, Alexandria University, Alexandria, Egypt e-mail: aburawash@alexu.cdu.eg

Faculty of Arts and Science, Azzaytuna University, Tarhunah, Libya muna.am2016@gmail.com

Abstract

Let R be a ring with involution *. We give the notion of central *-reversible *-rings which generalizes weakly *-reversible *-rings. Moreover, we introduce the class of weakly *-rings which is a generalization of central *-reversible *-rings and investigate their properties. Further, a generalization of the class of quasi-*-IFP *-rings is given; namely weakly quasi-*-IFP *-rings. Since every *-reversible *-ring is central *-reversible, we give sufficient conditions for central *-reversible, weakly *-reversible and weakly quasi-*-IFP *-rings to be *-reversible and some examples are given to illustrate these situations. Finally, we show that the properties of *-reversible, central *-reversible, weakly *-reversible and weakly quasi-*-IFP can be transfer to some extensions of the *-ring.

1 Introduction

Throughout this paper, a ring will always mean an associative ring with unity unless otherwise stated. A ring R is said to be *-ring if on R there is defined an involution *; that is an anti-isomorphism of order two. The right annihilator of the nonempty set A of R is denoted by $r_R(A)$ and the right *-annihilator of A is denoted by $r_{*R}(A) = \{x \in R \mid Ax = Ax^* = 0\}$. If there is no ambiguity, we omit the subsuffix R. A *-*ideal* (self-adjoint) I of R is an ideal closed under involution. A self adjoint idempotent; $e^2 = e = e^*$, is

Key words: Involution; *-Reversible; Central *-reversible; Weakly *-reversible; Quasi-*-IFP; Weakly *-IFP; Weakly quasi-*-IFP *-rings. 2010 AMS Mathematics classification:

²⁰¹⁰ AMS Mathematics classification

called projection. A nonzero element a of a *-ring R is called *-zero divisor if $ab = 0 = a^*b$, for some nonzero element $b \in R$ and R is *-domain if it has no nonzero *-zero divisors, from [6]. A *-ring R is said to be Abelian (*-Abelian) if every idempotent (projection) of R is center. A *-ring R is reduced if it has no nonzero nilpotent elements. A ring R is called *semicommutative* or has (*IFP*) if for all $a, b \in R$, ab = 0 implies aRb = 0 (equivalently r(a) is an ideal of R for all $a \in R$ (see [10]). A *-ring R is said to have *-*IFP* if for all $a, b \in R$, ab = 0 implies $aRb^* = 0$ (equivalently r(a) is a *-ideal of R for all $a \in R$) (see [4]). From [13], recall a ring R is weakly semicommutative if for all $a, b \in R$, ab = 0 implies arb is a nilpotent element for each $r \in R$. By [7], a ring R is called *reversible* if for all $a, b \in R$, ab = 0 implies ba = 0. According to [3], a *-ring R is called *-reversible if for all $a, b \in R$, $ab = 0 = ab^*$ implies ba = 0, and R has quasi-*-IFP if for all $a, b \in R$, $ab = ab^* = 0$ implies aRb = 0. From [5], an element a of a *-ring R is called *-nilpotent if $a^m = (aa^*)^n = 0$, for some positive integers m and n. R is *-reduced if it has no nonzero *-nilpotent elements. Following [9], a *-ring R is called *Baer* *-ring if the right annihilator of every nonempty subset of R is generated, as a right ideal, by a projection. By [5], a *-ring R is called *-Baer *-ring if the *-right annihilator of every nonempty subset of R is generated, as a biideal, by a projection. From [8] a ring R is central reversible rings if for all $a, b \in R$, ab = 0 implies ba belongs to the center of R and a ring R is called *weakly reversible* if ab = 0 implies Rbra is nil left ideal of R, for all $a, b, r \in R$, from [11]. The natural numbers and the integers will be denoted by N and Z, respectively. $M_n(R)$ will denote the full matrix ring of all $n \times n$ matrices over the ring R, while $T_n(R)$ $(T_{nE}(R))$ will denote the $n \times n$ upper triangular matrix ring (with equal diagonal elements) over R.

In this paper, we introduce central and weakly *-reversible *-rings, both are proper generalizations of *-reversible *-rings. Moreover, the class of weakly *-reversible *-rings contains strictly central *-reversible *-rings. We also prove that central *-reversible *-rings are *-Abelian and there exists a *-Abelian *-ring which is not central *-reversible. Clearly *-reversible *-rings are quasi-*-IFP and example is given to show that the converse is not true and another example shows that commutative weakly *-reversible *-rings do not necessarily have quasi-*-IFP. It is also shown that if R is a commutative *-ring, then $T_{nE}(R)$ is weakly *-reversible (weakly quasi-*-IFP) *-ring. Moreover, weakly quasi-*-IFP condition is given for *-rings which generalizes quasi-*-IFP. We show also that commutative weakly quasi-*-IFP *-rings may not be quasi-*-IFP. Moreover, for a *-Armendariz *-ring R, we prove that R is *-reversible (central *-reversible) if and only if the polynomial *-rings R[x] is *-reversible (central *-reversible) if and only if the Laurent polynomial *-ring $R[x; x^{-1}]$ is *-reversible (central *-reversible). Furthermore, it is proved that R is *reversible (central *-reversible) if and only if the Dorroh extension $D(R,\mathbb{Z})$ of R is *-reversible (central *-reversible). Finally, the Ore *-ring R is shown to be *-reversible if and only if its classical quotient Q is *-reversible.

2 Central *-Reversible *-Rings

In this section, we introduce and study the class of central *-reversible *-rings, which is a generalization of *-reversible *-rings. We start by giving the main definition.

Definition. A *-ring R is called *central* *-reversible if for all $a, b \in R$, $ab = 0 = ab^*$ implies ba is central in R. Consequently, b^*a is central in R.

Clearly, a central reversible *-ring is central *-reversible and a *-reversible *-ring is central *-reversible. However, the next result shows that $T_{3E}(R)$, in general, is central *-reversible but not *-reversible.

Proposition 1. Let R be a commutative *-ring, then the ring

$$T_{3E}(R) = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c, d \in R \right\}$$

volution defined as $\begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix}^* = \begin{pmatrix} a & d & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$ is central *-reversible

*-ring.

with in

Proof. Let
$$x = \begin{pmatrix} a_1 & b_1 & c_1 \\ 0 & a_1 & d_1 \\ 0 & 0 & a_1 \end{pmatrix}$$
 and $y = \begin{pmatrix} a_2 & b_2 & c_2 \\ 0 & a_2 & d_2 \\ 0 & 0 & a_2 \end{pmatrix} \in T_{3E}(R)$. If $xy = 0 = xy^*$, then we have the following equations :

$$a_1 a_2 = 0 \tag{1}$$

$$a_1b_2 + b_1a_2 = 0, \quad a_1d_2 + b_1a_2 = 0 \tag{2}$$

$$a_1c_2 + b_1d_2 + c_1a_2 = 0, \quad a_1c_2 + b_1b_2 + c_1a_2 = 0$$
 (3)

$$a_1d_2 + d_1a_2 = 0, \quad a_1b_2 + d_1a_2 = 0.$$
 (4)

Hence $yx = \begin{pmatrix} 0 & 0 & b_2d_1 - b_1d_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$, is central and consequently $T_{3E}(R)$

is central *-reversible. On the other hand, $T_{3E}(R)$ is not *-reversible, since $yx \neq 0$, while the converse is clear from [3, Example 3.8].

In general, **Proposition 1** is not true for $n \ge 4$ which is clear from the following example.

Example 1. Consider the *-ring $T_{4E}(\mathbb{Z})$ with the involution * defined as:

$$\begin{pmatrix} a & a_{12} & a_{13} & a_{14} \\ 0 & a & a_{23} & a_{24} \\ 0 & 0 & a & a_{34} \\ 0 & 0 & 0 & a \end{pmatrix} = \begin{pmatrix} a & a_{34} & a_{24} & a_{14} \\ 0 & a & a_{23} & a_{13} \\ 0 & 0 & a & a_{12} \\ 0 & 0 & 0 & a \end{pmatrix}.$$

The matrices $A = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ satisfies $AB = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ is not central and so $T_{4E}(\mathbb{Z})$ is not

central*-reversible.

It is clear that each central reversible is central *-reversible. However, the converse is true when the ring has *-IFP as shown in the next result.

Proposition 2. Let R be a *-ring. If R is central *-reversible and has *-IFP, then R is central reversible.

Proof. Obvious, since ab = 0, implies $aRb^* = 0$, by *-IFP property, and R is central reversible.

Recall that a *-ring R is *-semiprime if and only if it is semiprime (see ([1])). Next, we give some particular conditions for a central *-reversible *-ring to be *-reversible.

Proposition 3. A semiprime central *-reversible *-ring is *-reversible.

Proof. Assume that R is a semiprime central *-reversible *-ring. If $ab = ab^* = 0$, then ba is central and consequently baRba = 0. Form semiprimeness, we get ba = 0 and so R is *-reversible.

Proposition 4. If R is a *-Baer and central *-reversible *-ring, then R is *-reversible.

Proof. Let R be a *-Baer *-ring and $ab = 0 = ab^*$, then there exists a projection $e \in R$ such that $r_*(a) = eRe$. We have ae = 0 and b = ebe = eb, since $b \in r_*(a) = eRe$. Hence ba = eba = bae = 0, since ba is central, and so R is *-reversible.

Since each Bear *-ring is *-Bear, we have the following corollary.

Corollary 1. If R is a Baer and central *-reversible *-ring, then R is *-reversible.

Furthermore, the class of central *-reversible *-rings is clearly closed under direct sums (with changeless involution) and under taking *-subrings by [3], since every *-reversible *-ring is central *-reversible.

Proposition 5. The class of central *-reversible *-ring is closed under direct sums and under taking *-subrings.

Proposition 6. Let R be a *-ring and e be a central projection of R. Then eR and (1-e)R are *-reversible if and only if R is *-reversible.

Proof. It suffices to show the necessity by [3, Proposition 3.15]. Let $ab = ab^* = 0$ with $a, b \in R$, then $eab = eab^* = 0$ and $(1 - e)ab = (1 - e)ab^* = 0$. By assumption, we have bea = 0 and b(1 - e)a = 0. Hence ba = bea + [b(1 - e)a] = 0 and so R is *-reversible.

By a similar proof as **Proposition 6**, and using **Proposition 5**, the following corollary is immediate.

Corollary 2. Let R be a *-ring and e be a central projection of R. Then eR and (1-e)R are central *-reversible if and only if R is central *-reversible.

Recall that a *-ideal I of a *-ring R is *-*nil* if each element of I is *-nilpotent.

Obviously, each *-nil ideal is nil. The following example shows that the converse is not always true.

Example 2. For the *-ring $R = \mathbb{M}_2(\mathbb{Z})$ of all 2×2 matrices over the integers \mathbb{Z} with transpose of matrices as involution, the nonzero elements of the form $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$ are all nilpotent but not *-nilpotent, since $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}^2 = 0$ but $\begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ x & 0 \end{pmatrix} = \begin{pmatrix} x^2 & 0 \\ 0 & 0 \end{pmatrix} \neq 0$

We note that the homomorphic image of a cental *-reversible *-ring need not be central *-reversible as seen from the following example.

Example 3. Let D be a *-division ring, R = D[x, y] and $I = \langle xy \rangle$, where $xy \neq yx$. Since R is *-domain, R is central *-reversible. On the other hand, (x+I)(y+I) and $(x+I)^*(y+I) = (x+I)(y+I)$ are both zero. But (y+I)(x+I) is not central in R/I, hence R/I is not central *-reversible.

Moreover, the next example shows that if the homomorphic image of a *-ring R is central *-reversible, then R need not be central *-reversible.

Example 4. Let $R = \begin{pmatrix} \mathbb{F} & \mathbb{F} \\ 0 & \mathbb{F} \end{pmatrix}$, where \mathbb{F} is a field, with the adjoint involution * definition by $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^* = \begin{pmatrix} c & -b \\ 0 & a \end{pmatrix}$ for all $a, b, c \in \mathbb{F}$. Consider the *ideal $I = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ of R. Then R/I is central *-reversible, because of the commutativity property of R/I. For $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in R$ where $B^* = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \in R$, we have $AB = 0 = AB^*$. Consider $C = \begin{pmatrix} c_1 & c_2 \\ 0 & c_3 \end{pmatrix} \in R$ with $c_1 \neq c_3$. It is clear that $CBA \neq BAC$ and therefore Ris not central *-reversible.

Our next endeavour is to give a condition on the homomorphic image of a *-ring to be central *-reversible. Recall that a *-ring R is called *unit-central*, if all unit elements of R are central in R. Moreover, we show that every unit central *-ring is *-Abelian.

Proposition 7. Let R be a unit-central*-ring. If I is a *-nil ideal of R, then R/I is central *-reversible.

Proof. Let $a, b \in R$ with $(a + I)(b + I) = (a + I)(b + I)^* = I$. Then $ab \in I$, $ab^* \in I$ and so there exists a positive integers m, n, p and q such that $(ab)^m = 0$, $((ab)(ab)^*)^n = 0$, $(ab^*)^p = 0$ and $((ab^*)(ab^*)^*)^q = 0$. It follows that $(ba)^{m+1} = 0$, whence 1 - ba is unit and so central by hypothesis. Thus rba = bar for any $r \in R$ and therefore (b + I)(a + I) is central in R/I.

Since each *-reversible *-ring is central *-reversible and each *-domain is *-reversible, by [3, Example 3.2], we have immediately the following corollary.

Corollary 3. Every *-domain is a central *-reversible *-ring.

The converse of **Corollary 3** is not true by **Example 4**. However, the converse is true for *-prime *-rings as follows.

Proposition 8. Let R be a *-ring. Then R is *-prime and central *-reversible if and only if it is *-domain.

Proof. Let R be *-prime and central *-reversible and $ab = ab^* = 0$ for some $a, b \in R$. We have $rab = rab^* = 0$ for every $r \in R$ and so bra and b^*ra are central. Since bratb = 0 and $bratb^* = 0$ for all $t \in R$, then a = 0 or b = 0 and R is a *-domain. The converse is obvious by **Corollary 3**.

It is well known from [3, Corollary 3.7] that every *-reversible *-ring is *-Abelian. Similarly, we have the same result for central *-reversible case.

Proposition 9. A central *-reversible *-ring R is *-Abelian.

Proof. Let $e^2 = e = e^* \in R$. for any $r \in R$, $(re - ere)(1 - e) = (re - ere)(1 - e)^* = 0$ implies (1 - e)(re - ere) = re - ere is central. Commuting re - ere by e we get re - ere = 0. Similarly for any $r \in R$, $(r^*e - er^*e)(1 - e) = (r^*e - er^*e)(1 - e)^* = 0$ implies $r^*e - er^*e = 0$. Therefore re = ere = er and R is *-Abelian.

The next example shows that the reverse implication of **Proposition 9** is not true in general; that is there exists a *-Abelian *-ring which is not central *-reversible, and hence is not *-reversible.

Example 5. The only projections of the *-ring $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a \equiv c \pmod{2}, b \equiv 0 \pmod{2}, a, b, c \in \mathbb{Z} \right\} \text{ under adjoint involution * are } \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and so } R \text{ is *-Abelian. On the other hand, for} \\ x = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \text{ and } y = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \in R \text{ with } xy = xy^* = 0, \text{ we have} \\ yx = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix} \text{ is not central and so } R \text{ is not central *-reversible.}$

3 Weakly *-Reversible *-Rings

In this section, we introduce another generalization for *-reversible; namely weakly *-reversible *-rings.

Definition. A *-ring R is called *weakly* *-reversible if for all $a, b, r \in R$, $ab = ab^* = 0$, implies Rbra is a nil left (equivalently, braR is a nil right) ideal of R. Consequently, Rb^*ra is a nil left (equivalently, b^*raR is a nil right) ideal of R.

Each commutative *-ring is weakly reversible. Clearly, each weakly reversible *-ring is weakly *-reversible. The converse is true when the ring has *-IFP as shown in the following.

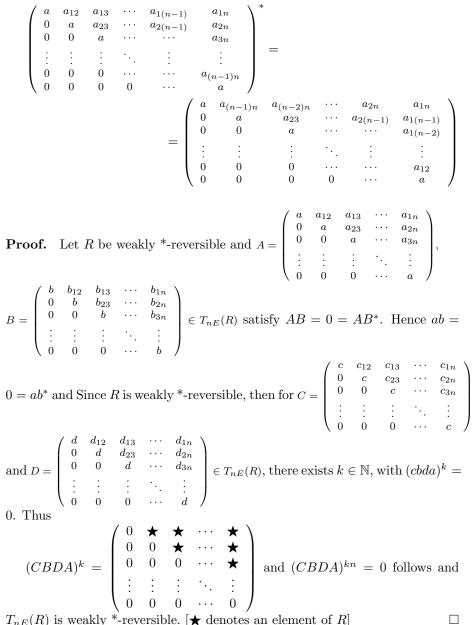
Proposition 10. Let R be a *-ring. If R is weakly *-reversible and has *-IFP, then R is weakly reversible.

Proof. Obvious, since ab = 0, implies $aRb^* = 0$, by the *-IFP property, and R is weakly reversible.

Moreover, we can easily prove the following result.

Proposition 11. The class of weakly *-reversible *-ring is closed under direct sums (with changeless involution) and under taking *-subrings.

Proposition 12. For a commutative *-ring R, $T_{nE}(R)$ is a weakly *-reversible *-ring, with involution * defined by fixing the two diagonals considering the diagonal right / left lower as symmetric ones and interchange the symmetric elements about it; that is



U. A. Aburawash and M. E. Abdulhafed

Next, the given example shows that there exists a weakly *-reversible and quasi *-IFP *-ring which is not *-reversible.

Example 6. Let R be a commutative *-ring. Then the *-ring

$$T_{3E}(R) = \left\{ \left(\begin{array}{ccc} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{array} \right) \mid a, b, c, d \in R \right\},\$$

is weakly *-reversible by **Proposition 12**, for some $a \neq 0$. For $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, we have $AB = 0 = AB^*$ and $BA = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, so

 $T_{3E}(R)$ is not *-reversible, while it has quasi-*-IFP.

We note that if R is a commutative then the *-ring.

$$T_{nE}(R) = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R, n \ge 3 \right\},$$

is not *-reversible by [3, Example 3.8] and is weakly *-reversible by **Proposi**tion 12. Moreover, it is clear that $T_{4E}(R)$ is not quasi-*-IFP and so $T_{nE}(R)$ is not quasi-*-IFP for $n \ge 4$.

The next example demonstrates that the condition $T_{nE}(R)$ in **Proposi**tion 12, cannot be weakened to the full matrix *-ring $\mathbb{M}_n(R)$, where n is any integer bigger than 1.

Example 7. Let R be a weakly *-reversible *-ring and n any integer bigger than 1, then $\mathbb{M}_2(R)$, with adjoint involution, is not weakly *-reversible. For $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, we have $AB = 0 = AB^*$ and for $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \mathbb{M}_2(R)$, we see that $RBCA = \begin{pmatrix} 0 & a \\ 0 & c \end{pmatrix}$ is not nil.

The following result shows that the class of central *-reversible *-rings lies properly between the classes of *-reversible and weakly *-reversible *-rings.

Theorem 1. Let R be a *-ring and consider the following conditions.

- 1. R is *-reversible.
- 2. R is central *-reversible.

3. R is weakly *-reversible. Then $(1) \Longrightarrow (2) \Longrightarrow (3)$.

Proof.

- $(1) \Longrightarrow (2)$: Clearly.
- (2) \implies (3): Let $a, b \in R$ with $ab = ab^* = 0$. Then for all $s \in R$, $sab = sab^* = 0$ and bsa is central, since R is central *-reversible. Hence $(rbsa)^2 = (rbsa)(rbsa) = r(bsa)r(bsa) = rr(bs(ab)sa) = 0$, for all $r, s \in R$ and R is weakly *-reversible.

The converse of **Theorem 1** is not true by **Examples 1** and 6. However, from **Corollary 3** and **Theorem 1** we get the following corollary.

Corollary 4. Every *-domain is a weakly *-reversible *-ring.

4 Weakly quasi-*-IFP

Here, weakly quasi-*-IFP *-rings are introduced as generalization for the class of quasi-*-IFP *-rings. First, we introduce weakly *-IFP *-rings.

Definition. A *-ring R is called *weakly* *-*IFP* if for all $a, b \in R$, ab = 0 implies $arb^* \in nil(R)$ for all $r \in R$.

Each commutative *-ring is weakly *-IFP. As before, one can easily prove the following result.

Proposition 13. The class of weakly *-IFP *-ring is closed under direct sums (with changeless involution) and under taking *-subrings.

Proposition 14. For a commutative *-ring R, $T_{nE}(R)$ is weakly *-IFP, with involution * given in **Proposition 12**.

Proof. Let $A = (a_{ij})$ and $B = (b_{ij}) \in T_{nE}(R)$ with AB = 0, where $1 \leq i \leq j \leq n$, then we have ab = 0, where a and b are the diagonal elements of A and B, respectively. Since R is weakly *-IFP, there exists $k \in \mathbb{N}$ such that $(acb)^k = 0$ for all $C = (c_{ij}) \in T_{nE}(R)$, where c is the diagonal element of C. Hence $((ACB^*)^k)^n = 0$ and $T_{nE}(R)$ is weakly *-IFP.

It is clear that every *-ring having *-IFP is weakly *-IFP while the converse is not always true as shown by the following example.

U. A. Aburawash and M. E. Abdulhafed

Example 8. The *-ring
$$T_{3E}(\mathbb{Z})$$
 with the involution * given by: $\begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix}^* = \begin{pmatrix} a & d & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$ is weakly *-IFP by **Proposition 14.** For $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, we have $AB = 0$ and $ARB^* = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$, so $T_{3E}(\mathbb{Z})$ has not *-IFP.

By the way, there exists a weakly IFP *-ring which is not weakly *-IFP as in the next example.

Example 9. Let \mathbb{F} be a field and consider the *-ring $R = \mathbb{F} \bigoplus \mathbb{F}$, with the exchange involution $(a, b)^* = (b, a)$, for all $a, b \in \mathbb{F}$. R is clearly weakly IFP and is not weakly *-IFP.

Next, we define weakly quasi-*-IFP *-rings

Definition. A *-ring R is said to be weakly quasi-*-*IFP* if for all $a, b \in R$, $ab = 0 = ab^*$ implies arb is a nilpotent element for each $r \in R$. Consequently arb^* is also nilpotent.

Each commutative *-ring is weakly quasi *-IFP. Clearly, each weakly IFP *-ring is weakly quasi-*-IFP. The converse is true when the ring has *-IFP as shown in the following.

Proposition 15. Let R be a *-ring. If R is weakly quasi-*-IFP and has *-IFP, then R is weakly IFP.

Proof. Clearly, since ab = 0, implies $aRb^* = 0$, by the *-IFP property, and R is weakly quasi-*-IFP.

Moreover, the class of weakly quasi-*-IFP *-ring is closed under direct sums (using changeless involution) and under taking *-subrings.

Proposition 16. The class of weakly quasi-*-IFP *-ring is closed under direct sums and under taking *-subrings.

By a proof similar to **Proposition 12**, we get the following.

Proposition 17. If R is a commutative *-ring, then $T_{nE}(R)$ is weakly quasi-*-IFP, with involution * given in **Proposition 12**. Note that if R is a commutative *-ring then the *-ring.

$$T_{nE}(R) = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \mid a, a_{ij} \in R, n \ge 3 \right\},$$

is not *-reversible by [3, Example 3.8] and is weakly quasi-*-IFP by **Proposi**tion 17. However, It is clearly that $T_{4E}(R)$ is not quasi-*-IFP and so $T_{nE}(R)$ is not quasi-*-IFP for $n \ge 4$.

The next example demonstrates that the condition $T_{nE}(R)$ in **Proposi**tion 17, cannot be weakened to the full matrix *-ring $\mathbb{M}_n(R)$, where n > 1.

Example 10. \mathbb{Z} is weakly quasi-*-IFP *-ring with identical involution, while the *-ring $\mathbb{M}_2(\mathbb{Z})$ with adjoint involution * is not weakly quasi-*-IFP. Indeed, the matrices $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$ satisfy $AB = 0 = AB^*$ and for $C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathbb{M}_2(R)$, we have $ACB = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$ is not nilpotent.

It is well known that every *-reversible *-ring has quasi-*-IFP by [3, Proposition 3.6]. Next, we prove that central *-reversible *-rings are weakly quasi-*-IFP.

Theorem 2. Let R be a *-ring and consider the following conditions.

- 1. R is *-reversible.
- 2. R is central *-reversible.
- 3. R is weakly quasi-*-IFP. Then $(1) \Longrightarrow (2) \Longrightarrow (3)$.

Proof.

- $(1) \Longrightarrow (2)$. Is clear.
- (2) \implies (3). If $a, b \in R$ satisfy $ab = ab^* = 0$, then ba is central and $(arb)^2 = 0$. Hence arb is nilpotent for all $r \in R$ and R is weakly quasi-*-IFP.

The converse of **Theorem 2** is not true by **Examples** 1 and 6. Moreover, from **Corollary 3** and **Theorem 2** we have the following result.

Corollary 5. Every *-domain is a weakly quasi-*-IFP *-ring.

From **Proposition 4** we have immediately the following corollary.

Corollary 6. If R is a *-Baer and central *-reversible *-ring, then R has quasi *-IFP.

From [8, Proposition 2.20], if R is central reduced (that is every nilpotent element is central), then T(R, R) is central reversible and from [3, Proposition 3.14], if R is *-reduced and *-reversible, then T(R, R), with componentwise involution, is *-reversible. Accordingly, we have the following corollaries.

Corollary 7. If the *-ring R is central reduced *-ring then T(R, R) is central *-reversible.

Corollary 8. If the *-ring R is reduced then T(R, R) is central *-reversible.

Corollary 9. If the *-ring R is *-reduced and *-reversible then T(R, R), with componentwise involution, is central *-reversible.

Corollary 10. If the *-ring R is reduced and *-reversible then T(R, R), with componentwise involution, is central *-reversible.

By [11, Corollary 2.4], R is weakly reversible if and only if its trivial extension T(R, R) is weakly reversible and from **Proposition 12**, we have the following corollaries.

Corollary 11. If R is weakly reversible then T(R, R) is weakly *-reversible.

Corollary 12. If T(R, R) is weakly reversible then R is weakly *-reversible.

Corollary 13. A commutative *-ring R is weakly *-reversible if and only if T(R, R), with adjoint involution, is weakly *-reversible.

From [13, Corollary 2.1], R is weakly IFP if and only if T(R, R) is weakly IFP and by **Proposition 17**, we have the following corollaries.

Corollary 14. If R is weakly IFP then T(R, R) is weakly quasi *-IFP.

Corollary 15. If T(R, R) is weakly IFP then R is weakly quasi *-IFP.

Corollary 16. A commutative *-ring R is weakly quasi *-IFP if and only if T(R, R), with adjoint involution, is weakly quasi *-IFP.

5 Extensions of *-Reversible and Weakly quasi-*-IFP *-Rings

In this section, the properties of *-reversible, central *-reversible and weakly quasi-*-IFP are shown to be extended from *-ring to its localization, polynomial, Laurent polynomial, Dorroh extension and from Ore *-ring to its classical

Quotient.

Let R be a *-ring and S be a multiplicatively closed subset of R consisting of nonzero central regular elements, then the localization of R to S is $S^{-1}R = \{u^{-1}a | u \in S, a \in R\}$ is a *-ring with involution \diamond defined as:

$$(u^{-1}a)^{\diamond} = u^{-1^*}a^* = u^{*-1}a^*.$$

Proposition 18. A *-ring R is *-reversible if and only if $S^{-1}R$ is *-reversible.

Proof. Let R be a *-reversible *-ring and $\alpha\beta = 0 = \alpha\beta^{\diamond}$ with $\alpha = u^{-1}a$, $\beta = v^{-1}b$ where $a, b \in R$ and $u, v \in S$. Hence $\alpha\beta = u^{-1}av^{-1}b = u^{-1}v^{-1}ab = (vu)^{-1}ab = 0$ and $\alpha\beta^{\diamond} = u^{-1}a(v^*)^{-1}b^* = u^{-1}(v^*)^{-1}ab^* = (v^*u)^{-1}ab^* = 0$, since S is contained in the center of R, so $ab = 0 = ab^*$. By hypothesis ba = 0 which implies $\beta\alpha = v^{-1}bu^{-1}a = v^{-1}u^{-1}ba = (uv)^{-1}ba = 0$ and $S^{-1}R$ is *-reversible. The converse is clear.

By a similar proof, we get analogous results for central *-reversible and weakly quasi-*-IFP *-rings.

Proposition 19. A *-ring R is central *-reversible if and only if $S^{-1}R$ is central *-reversible.

Proposition 20. A *-ring R is weakly quasi-*-IFP, if and only if $S^{-1}R$ is weakly quasi-*-IFP.

From Propositions 18, 19 and 20 we get the following corollaries.

Corollary 17. If R is a reversible *-ring, then $S^{-1}R$ is *-reversible.

Corollary 18. If $S^{-1}R$ is a reversible *-ring, then R is *-reversible.

Corollary 19. If R is a central reversible *-ring, then $S^{-1}R$ is central *reversible.

Corollary 20. If $S^{-1}R$ is a central reversible *-ring, then R is central *reversible.

Corollary 21. If R has quasi-*-IFP, then $S^{-1}R$ is weakly quasi-*-IFP.

Corollary 22. If $S^{-1}R$ has quasi-*-IFP, then R is weakly quasi-*-IFP.

The *-ring of Laurent polynomials in x, with coefficients in a *-ring R, consists of all formal sum $f(x) = \sum_{i=k}^{n} a_i x^i$ with obvious addition and multiplication, where $a_i \in R$ and k, n are (possibly negative) integers and with involution * defined as $f^*(x) = \sum_{i=k}^{n} a_i^* x^i$. We denote this ring as usual by $R[x; x^{-1}]$.

Corollary 23. Let R be a *-ring. Then R[x] is *-reversible if and only if $R[x; x^{-1}]$ is *-reversible.

Proof. By [3, Proposition 3.15], it suffices to establish necessity. Clearly $S = \{1, x, x^2, \dots\}$ is a multiplicatively closed subset of R[x]. Since $R[x; x^{-1}] = S^{-1}R[x]$, it follows that $R[x; x^{-1}]$ is *-reversible, by **Proposition 18**.

Corollary 24. Let R be a *-ring. Then R[x] is central *-reversible if and only if $R[x; x^{-1}]$ is central *-reversible.

Proof. By **Proposition 5**, it suffices to prove necessity which can be done as the proof of **Corollary 23** using **Proposition 19**. \Box

Corollary 25. For a *-ring, R[x] is weakly quasi-*-IFP if and only if $R[x; x^{-1}]$ is weakly quasi-*-IFP.

Proof. By **Proposition 16**, it suffices to establish necessity which can be done as the proof of **Corollary 23** using **Proposition 20**. \Box

From Corollary 25 we have the following results.

Corollary 26. If R[x] has quasi-*-IFP, then $R[x; x^{-1}]$ is weakly quasi-*-IFP.

Corollary 27. If $R[x; x^{-1}]$ has quasi-*-IFP, then R[x] is weakly quasi-*-IFP.

Corollary 28. If R[x] has IFP, then $R[x; x^{-1}]$ is weakly quasi-*-IFP.

Corollary 29. If $R[x; x^{-1}]$ has IFP, then R[x] is weakly quasi-*-IFP.

Corollary 30. If R[x] has *-IFP, then $R[x; x^{-1}]$ is weakly quasi-*-IFP.

Corollary 31. If $R[x; x^{-1}]$ has *-IFP, then R[x] is weakly quasi-*-IFP.

A *-ring R is called a *-Armendariz *-ring if whenever the polynomials $f(x) = \sum_{i=0}^{m} a_i x^i, g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ satisfy $f(x)g(x) = f(x)g^*(x) = 0$, then $a_i b_j = 0$ for all i, j. Consequently $a_i b_j^* = 0$.

Theorem 3. Let R be a *-Armendariz *-ring. Then the following statements are equivalent.

- 1. R is *-reversible (central *-reversible).
- 2. R[x] is *-reversible (central *-reversible).
- 3. $R[x; x^{-1}]$ is *-reversible (central *-reversible).

Proof.

- (1) \Longrightarrow (2): Let $f(x) = \sum_{i=0}^{m} a_i x^i$ and $g(x) = \sum_{j=0}^{n} b_j x^j \in R[x]$ with $f(x)g(x) = 0 = f(x)g^*(x)$. Since R is *-Armendariz, $a_i b_j = 0 = a_i b_j^*$ for each i and j. But R is *-reversible (central *-reversible), hence $b_j a_i = 0$ ($b_j a_i$ is central) for each i and j. It follows that g(x)f(x) = 0 (g(x)f(x) is central) and R[x] is *-reversible (central *-reversible).
- $(2) \Longrightarrow (1)$: Clear from [3, Proposition 3.15] (**Proposition 5**).
- (2) \iff (3): Follows from Corollary 23 (Corollary 24).

The following corollary is an immediate from **Theorem 3**.

Corollary 32. Let R be an Armendariz *-ring. Then the following statements are equivalent.

- 1. R is *-reversible (central *-reversible).
- 2. R[x] is *-reversible (central *-reversible).
- 3. $R[x; x^{-1}]$ is *-reversible (central *-reversible).

The Dorroh extension $D(R,\mathbb{Z}) = \{(r,n) : r \in R, n \in \mathbb{Z}\}$ of a *-ring R is a ring with componentwise addition and multiplication $(r_1, n_1)(r_2, n_2) = (r_1r_2 + n_1r_2 + n_2r_1, n_1n_2)$. The involution of R can be extended naturally to $D(R,\mathbb{Z})$ as $(r,n)^* = (r^*,n)$ (see [2]). We have the following:

Proposition 21. A *-ring R is *-reversible if and only if its Dorroh extension $D(R,\mathbb{Z})$ of R is *-reversible.

Proof. The sufficiency is clear. For necessity, let (r_1, n_1) , $(r_2, n_2) \in D(R, \mathbb{Z})$ with $(r_1, n_1)(r_2, n_2) = 0 = (r_1, n_1)(r_2^*, n_2)$, then from $0 = (r_1, n_1)(r_2, n_2) = (r_1r_2 + n_1r_2 + n_2r_1, n_1n_2)$ and $0 = (r_1, n_1)(r_2^*, n_2) = (r_1r_2^* + n_1r_2^* + n_2r_1, n_1n_2)$, we have $r_1r_2 + n_1r_2 + n_2r_1 = 0$, $r_1r_2^* + n_1r_2^* + n_2r_1 = 0$ and $n_1n_2 = 0$. Since \mathbb{Z} is *-domain, $n_1 = 0$ or $n_2 = 0$. If $n_1 = 0$, we get $0 = r_1r_2 + n_2r_1 = r_1(r_2 + n_2)$ and $0 = (r_2 + n_2)r_1 = r_1(r_2^* + n_2)$. From the *-reversibility of R it follows that $0 = (r_2 + n_2)r_1 = r_2r_1 + n_2r_1 = (r_2, n_2)(r_1, 0)$ and so $D(R, \mathbb{Z})$ is *-reversible. \Box

By a similar proof to the previous proposition, we get the following.

Proposition 22. A *-ring R is central *-reversible if and only if its Dorroh extension $D(R,\mathbb{Z})$ of R is central *-reversible.

Recall that a ring R is called right Ore if given $a, b \in R$ with b regular there exist $a_1, b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$. Left Ore is defined similarly and R is *Ore ring* if it is both right and left Ore. For *-rings, right Ore implies left Ore and vice versa. It is a known fact that R is Ore if and only if its classical quotient ring Q of R exists and for *-rings, * can be extended to Q by $(a^{-1}b)^* = b^*(a^*)^{-1}$ (see[12, Lamme 4]).

Theorem 4. Let R be an Ore *-ring and Q be its classical quotient *-ring, then R is *-reversible if and only if Q is *-reversible.

Proof. The sufficiency is clear by [3, Proposition 3.15]. The proof of necessity is similar to that of [10, Theorem 2.6]. \Box

From [10, Theorem 2.6] and **Theorem 4**, we have the following corollaries.

Corollary 33. If R is a reversible *-ring, then Q is *-reversible.

Corollary 34. If Q is a reversible *-ring, then R is *-reversible.

Corollary 35. If R is a *-reversible *-ring, then Q is central *-reversible (weakly *-reversible).

Corollary 36. If Q is a *-reversible *-ring, then R is central *-reversible (weakly *-reversible).

Conclusion

Finally, we can sate following implications in the class of rings with involution.

References

- U. A. Aburawash. Semiprime involution rings and chain conditions. Contr. to General Algebra 7, Hölder-Pichler-Tempsky, Wien and B. G. Teubner, Stuttgart, :7–11, 1991.
- [2] U. A. Aburawash. On embedding of involution rings. *Mathematica Pannonica*, 8(2):245–250, 1997.
- [3] U. A. Aburawash and M. Saad. *-reversible and *-reflexive properties for rings with involution. *Submitted for publication*.
- [4] U. A. Aburawash and M. Saad. On biregular, IFP and quasi-Baer *-rings. East-West Journal of Mathematics, 16(2):182–192, 2014.

- [5] U. A. Aburawash and M. Saad. *-Baer property for rings with involution. Studia Sci. Math. Hungar, 53(2):243-255, 2016.
- U. A. Aburawash and Khadija B. Sola. *-zero divisors and *-prime ideals. East-West J.Math., 12(1):27–31, 2010.
- [7] P. M. Cohn. Reversible rings. Bull. London Math. Soc., 31:641-648, 1999.
- [8] H. Kose, B. Ungor, S. Halicioglu and A. Harmanci. A generalization of reversible rings. Iranian Journal of science and Technology, 38A(1):43–48, 2014.
- [9] I. Kaplansky. Ring of operators. Benjamin, New york, 1968.
- [10] N. K. Kim and Y. Lee. Extensions of reversible rings. Journal of Pure and Applied Algebra, 185:207–223, 2003.
- [11] Z. Liang and Y. Gang. On weakly reversible rings. Acat Math. Unvi. Comenianae, LXXVI(2):189–192, 2007.
- [12] W. S. Martindale. Rings with involution and polynomial identities. Journal of Algebra, 11:186–194, 1969.
- [13] L. Liang, L. Wang and Z. Liu. On a generalization of semicommutative rings. Taiwanese Journal of Mathematics, 11(5):1359–1368, 2007.