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Abstract

Let F be a distribution in D′ and let f be a locally summable function.
The composition F (f(x)) of F and f is said to exist and be equal to the
distribution h(x) if the neutrix limit of the sequence {Fn(f(x))} is equal
to h(x), where Fn(x) = F (x) ∗ δn(x) for n = 1, 2, . . . and {δn(x)} is a
certain regular sequence converging to the Dirac delta. It is proved that
the neutrix composition δ(s)[lnr(1 + x

1/r
+ )] exists and is given by

s∑
k=0

kr+r−1∑
i=0

(
kr + r − 1

i

)
(−1)(r+1)k+r+s+i−1s!(i + 1)sr+r−1

2(sr + r − 1)!k!
δ(k)(x)

for s = 0, 1, 2, . . . and r = 1, 2, . . . . Further results are also proved.
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1. Introduction

In the theory of distributions, many arguments show that no meaning can be
generally given to expressions of the form F (f(x)), where F is a distribution
and f is a locally summable function.

Using the concepts of a neutrix and neutrix limit due to van der Corput
[1], the third author gave a general principle for the discarding of unwanted
infinite quantities from asymptotic expansions. This has been exploited in the
context of distributions, particularly in connection with the composition of
distributions, see [2, 3]. With Fisher’s definition, Koh and Li gave a meaning
to δr and (δ′)r for r = 2, 3, . . . , see [12], and the more general form (δ(s)(x))r

was considered by Kou and Fisher in [13]. More recently the r-th powers of
the Dirac function δ(x) and the Heaviside function H(x) for negative integers
have been defined in [14] and [15] respectively.

In the following, we let D be the space of infinitely differentiable functions
with compact support, let D[a, b] be the space of infinitely differentiable func-
tions with support contained in the interval [a, b] and let D′ be the space of
distributions defined on D.

Now let ρ(x) be a function in D having the following properties:
(i) ρ(x) = 0 for |x| ≥ 1,
(ii) ρ(x) ≥ 0,
(iii) ρ(x) = ρ(−x),

(iv)
∫ 1

−1

ρ(x) dx = 1.

Putting δn(x) = nρ(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular
sequence of infinitely differentiable functions converging to the Dirac delta-
function δ(x). Further, if F is an arbitrary distribution in D′ and Fn(x) =
F (x) ∗ δn(x) = 〈F (x− t), ϕ(t)〉, then {Fn(x)} is a regular sequence converging
to F (x).

If f is an infinitely differentiable function having a single simple zero at the
point x = x0, then the distribution δ(r)(f(x)) is defined by

δ(r)(f(x)) =
1

|f ′(x0)|
[ 1
|f ′(x)|

d

dx

]r
δ(x− x0) (1)

for r = 0, 1, 2, . . . , see [11].
The third author generalized equation (1) in [2] as follows:

Definition 1. Let f be an infinitely differentiable function. We say that the
neutrix composition δ(r)(f(x)) exists and is equal to h on the open interval
(a, b), with −∞ < a < b <∞, if

N−lim
n→∞

∫ ∞

−∞
δ(r)n (f(x))ϕ(x)dx = 〈h(x), ϕ(x)〉
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for all ϕ in D[a, b], where N is the neutrix, see [1], having domain N ′ the
positive and range N ′′ the real numbers, with negligible functions which are
finite linear sums of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the usual sense as n tends to infinity.

Note that taking the neutrix limit of a function f(n) is equivalent to taking
the usual limit of Hadamard’s finite part of f(n).

Definition 1 was later generalized with the following definition in [3] and
was originally called the neutrix composition of distributions.

Definition 2. Let F be a distribution in D′ and let f be a locally summable
function. We say that the neutrix composition F (f(x)) exists and is equal to h
on the open interval (a, b), with −∞ < a < b <∞, if

N−lim
n→∞

∫ ∞

−∞
Fn(f(x))ϕ(x)dx = 〈h(x), ϕ(x)〉

for all ϕ in D[a, b], where Fn(x) = F (x) ∗ δn(x) for n = 1, 2, . . . . In particular,
we say that the composition F (f(x)) exists and is equal to h on the open interval
(a, b) if

lim
n→∞

∫ ∞

−∞
Fn(f(x))ϕ(x)dx = 〈h(x), ϕ(x)〉

for all ϕ in D[a, b].

The following theorem was proved in [4].

Theorem 1. The neutrix composition δ(s)(sgnx|x|λ) exists and

δ(s)(sgnx|x|λ) = 0

for s = 0, 1, 2, . . . and (s+ 1)λ = 1, 3, . . . and

δ(s)(sgnx|x|λ) =
(−1)(s+1)(λ+1)s!
λ[(s+ 1)λ − 1]!

δ((s+1)λ−1)(x)

for s = 0, 1, 2, . . . and (s+ 1)λ = 2, 4, . . . .

Next two theorems were proved in [5].

Theorem 2. The compositions δ(2s−1)(sgnx|x|1/s) and δ(s−1)(|x|1/s) exist and

δ(2s−1)(sgnx|x|1/s) =
(2s)!

2
δ′(x), δ(s−1)(|x|1/s) = (−1)s−1δ(x)

for s = 1, 2, . . . .
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Theorem 3. The neutrix composition δ(s)[ln(1 + |x|1/r)] exists on the interval
(−1, 1) and

δ(s)[ln(1 + |x|1/r)]

=
m∑

k=0

kr+r−1∑
i=0

(
kr + r − 1

i

)
(−1)s+i−1[1 + (−1)k]r(i+ 1)s

2(k!)
δ(k)(x) (2)

for r = 2, 3, . . . and s = 0, 1, 2, . . . , where m denotes the largest integer less
than or equal (s+ 1)/r − 1.

In particular, the composition δ(s)[ln(1 + |x|1/r)] exists and

δ(s)[ln(1 + |x|1/r)] = 0 (3)

for r = 2, 3, . . . and s = 0, 1, 2, . . . , r − 2, and

δ(r−1)[ln(1 + |x|1/r)] = (−1)r−1r!δ(x) (4)

for r = 2, 3, . . . .

2. Main Results

We now prove the following theorem.

Theorem 4. The neutrix composition δ(s)[lnr(1 + x
1/r
+ )] exists and

δ(s)[lnr(1 + x
1/r
+ )]

=
s∑

k=0

kr+r−1∑
i=0

(
kr + r − 1

i

)
(−1)(r+1)k+r+s+i−1s!(i+ 1)sr+r−1

2(sr + r − 1)!k!
δ(k)(x) (5)

for s = 0, 1, 2, . . . and r = 1, 2, . . . .

Proof. To prove equation (5), we will first of all evaluate

N−lim
n→∞

〈δ(s)n [lnr(1 + x
1/r
+ )], ϕ(x)〉,

for an arbitrary function ϕ(x) in D[a, 1], where a < 0.
By Taylor’s Theorem, we have

ϕ(x) =
s∑

k=0

ϕ(k)(0)
k!

xk +
xs+1

(s+ 1)!
ϕ(s+1)(ξx),
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where 0 < ξ < 1. Then if ϕ(x) in D[a, 1], we have

N−lim
n→∞

〈δ(s)n [lnr(1 + x
1/r
+ )], ϕ(x)〉

= N−lim
n→∞

s∑
k=0

ϕ(k)(0)
k!

∫ 1

a

δ(s)n [lnr(1 + x
1/r
+ )]xk dx

+ N−lim
n→∞

1
(s+ 1)!

∫ 1

a

δ(s)n [lnr(1 + x
1/r
+ )]xs+1ϕ(s+1)(ξx) dx. (6)

For large enough n, we have

∫ 1

a

δ(s)n [lnr(1 + x
1/r
+ )]xk dx

= ns+1

∫ 1

a

ρ(s)[n lnr(1 + x
1/r
+ )]xk dx

= ns+1

∫ 0

a

ρ(s)[n lnr(1 + x
1/r
+ )xk dx+ ns+1

∫ 1

0

ρ(s)[n lnr(1 + x
1/r
+ )]xk dx

= ns+1ρ(s)(0)
∫ 0

a

xk dx+ ns+1

∫ 1

0

ρ(s)[n lnr(1 + x1/r)]xk dx

= − ns+1ak+1ρ(s)(0)
k + 1

+ ns+1

∫ 1

0

ρ(s)[n lnr(1 + x1/r)]xk dx

= E1 + E2. (7)

It follows immediately that

N−lim
n→∞

E1 = 0. (8)

Making the substitution t = n lnr(1 + x1/r), we have

E2 = ns+1

∫ 1

0

ρ(s)[n lnr(1 + x1/r)]xk dx

= ns+1−1/r

∫ 1

0

t1/r−1{exp[(t/n)1/r] − 1}kr+r−1 exp[(t/n)1/r]ρ(s)(t) dt

= ns+1−1/r
kr+r−1∑

i=0

(
kr + r − 1

i

)
(−1)kr+r+i−1

×
∫ 1

0

t1/r−1 exp[(i+ 1)(t/n)1/r]ρ(s)(t) dt, (9)
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where

ns+1−1/r

∫ 1

0

t1/r−1 exp[(i+ 1)(t/n)1/r]ρ(s)(t) dt

=
sr+r−2∑

j=0

∫ 1

0

(i+ 1)jt(j+1)/r−1

j!n(j+1)/r−s−1
ρ(s)(t) dt

+
1

(sr + r − 1)!

∫ 1

0

(i+ 1)sr+r−1tsρ(s)(t) + O(n−1/r).

It follows that

N−lim
n→∞

ns+1−1/r

∫ 1

0

t1/r−1 exp[(i+ 1)(t/n)1/r]ρ(s)(t) dt

=
(−1)ss!(i+ 1)sr+r−1

2(sr + r − 1)!
(10)

for i = 0, 1, 2, . . . , kr + r − 1 and it now follows from equations (9) and (10)
that

N−lim
n→∞

E2 =
kr+r−1∑

i=0

(
kr + r − 1

i

)
(−1)kr+r+s+i−1s!(i+ 1)sr+r−1

2(sr + r − 1)!
. (11)

Then using equations (7), (8) and (11), we see that

N−lim
n→∞

∫ 1

a

δ(s)n [lnr(1 + x
1/r
+ )]xk dx

=
kr+r−1∑

i=0

(
kr + r − 1

i

)
(−1)kr+r+s+i−1s!(i+ 1)sr+r−1

2(sr + r − 1)!
, (12)

for k = 0, 1, 2, . . . , s.
When k = s+ 1, we have∫ 1

0

∣∣∣δ(s)n [lnr(1 + x
1/r
+ )]xs+1

∣∣∣dx
≤ ns+1−1/r

∫ 1

0

t1/r−1{exp[(t/n)1/r] − 1}sr+2r−1 exp[(t/n)1/r]|ρ(s)(t)| dt

= ns+1−1/r

∫ 1

0

t1/r−1[(t/n)1/r +O(n−2/r)]sr+2r−1[1 + O(n−1/r)]|ρ(s)(t)| dt

= ns+1−1/r

∫ 1

0

t1/r−1[(t/n)s+2−1/r +O(n−(s+2))]|ρ(s)(t)| dt
= O(n−1) (13)
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and so if ψ is an arbitrary function in D[a, 1], we have

lim
n→∞

∫ 1

0

∣∣∣δ(s)n [lnr(1 + x
1/r
+ )]xs+1ψ(x)

∣∣∣ dx = 0. (14)

It then follows from equations (6), (12) and (14) that

N−lim
n→∞

〈δ(s)n [lnr(1 + x
1/r
+ )], ϕ(x)〉

=
s∑

k=0

kr+r−1∑
i=0

(
kr + r − 1

i

)
(−1)kr+r+s+i−1s!(i+ 1)sr+r−1ϕ(k)(0)

2(sr + r − 1)!k!

=
s∑

k=0

kr+r−1∑
i=0

(
kr + r − 1

i

)

× (−1)(r+1)k+r+s+i−1s!(i+ 1)sr+r−1

2(sr + r − 1)!k!
〈δ(k)(x), ϕ(x)〉,

proving equation (5) on the interval [a, 1].
Since δ(s)n [lnr(1 + x

1/r
+ )] = 0 for x > 0, it follows that equation (5) holds for

x > a and since a < 0 is arbitrary, it follows that equation (5) holds on the
real line, completing the proof of the theorem.

Theorem 5. The neutrix composition δ(s)[lnr(1 + |x|1/r)] exists and

δ(s)[lnr(1 + |x|1/r)]

=
s∑

k=0

kr+r−1∑
i=0

(
kr + r − 1

i

)

× (−1)r+s+k+i−1[1 + (−1)k]s!(i+ 1)sr+r−1

2(sr + r − 1)!k!
δ(k)(x), (15)

for s = 0, 1, 2, . . . and r = 1, 2, . . . .

Proof. To prove equation (15), we now have to evaluate

N−lim
n→∞

〈δ(s)n [lnr(1 + |x|1/r)], ϕ(x)〉,

for an arbitrary function ϕ(x) in D[−1, 1]. By Taylor’s Theorem, we have

ϕ(x) =
s∑

k=0

ϕ(k)(0)
k!

xk +
xs+1

(s+ 1)!
ϕ(s+1)(ξx),
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where 0 < ξ < 1. Then if ϕ is in D[−1, 1], we have

N−lim
n→∞

〈δ(s)n [lnr(1 + |x|1/r)], ϕ(x)〉

= N−lim
n→∞

s∑
k=0

ϕ(k)(0)
k!

∫ 1

−1

δ(s)n [lnr(1 + x1/r)]xk dx

+ N−lim
n→∞

1
(s+ 1)!

∫ 1

−1

δ(s)n [lnr(1 + |x|1/r]xs+1ϕ(s+1)(ξx) dx. (16)

Since∫ 0

−1

δ(s)n [lnr(1 + |x|1/r)]xk dx = (−1)k

∫ 1

0

δ(s)n [lnr(1 + |x|1/r)]xk dx

= (−1)kns+1

∫ 1

0

ρ(s)[n lnr(1 + x1/r)]xk dx, (17)

it follows from equations (9) and (11) that

N−lim
n→∞

∫ 1

−1

δ(s)n [lnr(1 + |x|1/r)]xk dx

=
[1 + (−1)k]

2

kr+r−1∑
i=0

(
kr + r − 1

i

)
(−1)r+s+i−1s!(i+ 1)sr+r−1

(sr + r − 1)!
(18)

for k = 0, 1, 2, . . . , s.
When k = s+ 1, we have as in the proof of equation (14),

lim
n→∞

∫ 1

−1

∣∣∣δ(s)n [lnr(1 + |x|1/r)]xs+1ψ(x)
∣∣∣ dx = 0, (19)

for an arbitrary continuous function ψ. It then follows from equations (16),
(18) and (19) that

N−lim
n→∞

〈δ(s)
n [lnr(1 + x1/r)], ϕ(x)〉

= N−lim
n→∞

s∑
k=0

ϕ(k)(0)

k!

∫ 1

−1

δ(s)
n [lnr(1 + |x|1/r)]xk dx

+ lim
n→∞

1

(s + 1)!

∫ 1

−1

δ(s)
n [lnr(1 + |x|1/r)]xs+1ϕ(s+1)(ξx)dx

=

s∑
k=0

kr+r−1∑
i=0

(
kr + r − 1

i

)
(−1)r+s+i−1[1 + (−1)k]s!(i + 1)sr+r−1ϕ(k)(0)

2(sr + r − 1)!k!

=

s∑
k=0

kr+r−1∑
i=0

(
kr + r − 1

i

)
(−1)r+s+k+i−1[1 + (−1)k]s!(i + 1)sr+r−1

2(sr + r − 1)!k!
〈δ(k)(x),ϕ(x)〉,
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proving equation (15) on the interval [−1, 1]. However, it is clear that outside
this interval, δ(s)n [lnr(1+ |x|1/r)] = 0, and so equation (15) is proved on the real
line.

Theorem 6. The neutrix composition δ(r
s−1)[ln1/r(1 + |x|)] exists and

δ(r
s−1)[ln1/r(1 + |x|)]

=
rs−1−1∑

k=0

k∑
i=0

(
k

i

)
(−1)rs−i−1[1 + (−1)k]r(rs − 1)!(i+ 1)rs−1−1

2(rs−1 − 1)!k!
δ(k)(x) (20)

for s = 1, 2, . . . and r = 2, 3, . . . .

Proof. This time we must evaluate

N−lim
n→∞

〈δ(rs−1)
n [ln1/r(1 + |x|)], ϕ(x)〉,

for an arbitrary function ϕ(x) in D[−1, 1].
By Taylor’s Theorem, we have

ϕ(x) =
rs−1−1∑

k=0

ϕ(k)(0)
k!

xk +
xrs−1

(rs−1)!
ϕ(rs−1)(ξx),

where 0 < ξ < 1. Then if ϕ(x) in D[−1, 1], we have

N−lim
n→∞

〈δ(rs−1)
n [ln1/r(1 + |x|)], ϕ(x)〉

= N−lim
n→∞

rs−1−1∑
k=0

ϕ(k)(0)
k!

∫ 1

−1

δ(r
s−1)

n [ln1/r(1 + |x|)]xk dx

+ N−lim
n→∞

1
(rs−1)!

∫ 1

−1

δ(r
s−1)

n [ln1/r(1 + |x|)]xrs−1
ϕ(rs−1)(ξx) dx. (21)

For large enough n, we have

∫ 1

−1

δ(r
s−1)

n [ln1/r(1 + |x|)]xk dx = nrs

∫ 1

−1

ρ(rs−1)[n ln1/r(1 + |x|)]xk dx

= nrs

[1 + (−1)k]
∫ 1

0

ρ(rs−1)[n ln1/r(1 + x)]xk dx. (22)
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Making the substitution t = n ln1/r(1 + x), we have

nrs

∫ 1

0

ρ(rs−1)[n ln1/r(1 + x)]xk dx

= rnrs−r

∫ 1

0

tr−1{exp[(t/n)r] − 1}k exp[(t/n)r]ρ(rs−1)(t) dt

= rnrs−r
k∑

i=0

(
k

i

)
(−1)k−i

∫ 1

0

tr−1 exp[(i+ 1)(t/n)r ]ρ(rs−1)(t) dt,

where

rnrs−r

∫ 1

0

tr−1 exp[(i+ 1)(t/n)r]ρ(rs−1)(t) dt

=
∞∑

j=0

∫ 1

0

r(i+ 1)jtr(j+1)−1

j!nr(j+1)−rs ρ(rs−1)(t) dt.

It follows that

N−lim
n→∞

rnrs−r

∫ 1

0

tr−1 exp[(i+ 1)(t/n)r]ρ(rs−1)(t) dt

=
∫ 1

0

r(i+ 1)rs−1−1tr
s−1

(rs−1 − 1)!
ρ(rs−1)(t) dt

=
(−1)rs−1r(rs − 1)!(i+ 1)rs−1−1

2(rs−1 − 1)!
(23)

for i = 0, 1, 2, . . . , k and so

N−lim
n→∞

nrs

∫ 1

0

ρ(rs−1)[n ln1/r(1 + x)]xk dx

=
k∑

i=0

(
k

i

)
(−1)rs+k−i−1r(rs − 1)!(i+ 1)rs−1−1

2(rs−1 − 1)!
. (24)

It now follows from equations (22) and (24) that

N−lim
n→∞

∫ 1

−1

δ(r
s−1)

n [ln1/r(1 + |x|)]xk dx

= [1 + (−1)k]
k∑

i=0

(
k

i

)
(−1)rs+k−i−1r(rs − 1)!(i+ 1)rs−1−1

2(rs−1 − 1)!
, (25)

for k = 0, 1, 2, . . . , rs−1 − 1.
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When k = rs−1, we have∫ 1

0

∣∣∣δ(rs−1)
n [ln1/r(1 + x))]xrs−1

∣∣∣ dx
≤ rnrs−r

∫ 1

0

tr−1{exp[(t/n)r]− 1}rs−1
exp[(t/n)r]|ρ(rs−1)(t)| dt

= rnrs−r

∫ 1

0

tr−1[(t/n)r +O(n−2r)]r
s−1

[1 + O(n−r)]|ρ(rs−1)(t)| dt

= rnrs−r

∫ 1

0

tr−1[(t/n)rs

+O(n−(rs+r))]|ρ(rs−1)(t)| dt
= O(n−r)

and so if ψ is an arbitrary function in D[a, 1], we have

lim
n→∞

∫ 1

0

∣∣∣δ(rs−1)
n [ln1/r(1 + x)]xrs−1

ψ(x)
∣∣∣ dx = 0.

Then if ϕ is an arbitrary function in D[−1, 1], we have

lim
n→∞

∫ 1

−1

∣∣∣δ(rs−1)
n [ln1/r(1 + |x|)]xrs−1

ϕrs−1
(ξx)

∣∣∣ dx = 0 (26)

and it follows from equations (21), (25) and (26) that

N−lim
n→∞

〈δ(rs−1)
n [ln1/r(1 + |x|)]xk, ϕ(x)〉

=
rs−1−1∑

k=0

[1 + (−1)k]
k∑

i=0

(
k

i

)
(−1)rs+k−i−1r(rs − 1)!(i+ 1)rs−1−1ϕ(k)(0)

2(rs−1 − 1)!k!

=
rs−1−1∑

k=0

[1 + (−1)k]
k∑

i=0

(
k

i

)
(−1)rs−i−1(rs − 1)!(i+ 1)rs−1−1

2(rs−1 − 1)!k!
〈δ(k)(x), ϕ(x)〉,

proving equation (20) on the interval [−1, 1]. However, it is clear that outside
this interval δ(r

s−1)
n [ln1/r(1 + |x|)] = 0, and so equation (20) is proved.

Finally we have

Theorem 7. The neutrix composition δ(r
s−1)(ln1/r |1 + x|) exists and

δ(r
s−1)(ln1/r |1 + x|)

=
rs−1−1∑

k=0

k∑
i=0

(
k

i

)
(−1)ir(rs − 1)!(i+ 1)rs−1−1

(rs−1 − 1)!k!
δ(k)(x) (27)
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for s = 1, 2, . . . and r = 1, 3, 5, . . . .

Proof. This time we must evaluate

N−lim
n→∞

〈δ(rs−1)
n (ln1/r |1 + x|), ϕ(x)〉,

for an arbitrary function ϕ(x) in D[−1, 1].
For large enough n, we have on making the substitution t = n ln1/r(1 + x),

∫ 1

−1

δ(r
s−1)

n (ln1/r |1 + x|)xk dx

=
∫ 1

−1

δ(r
s−1)

n [ln1/r(1 + x)]xk dx

= rnrs−r

∫ 1

−1

tr−1{exp[(t/n)r] − 1}k exp[(t/n)r]ρ(rs−1)(t) dt

= rnrs−r
k∑

i=0

(
k

i

)
(−1)k−i

∫ 1

−1

tr−1 exp[(i+ 1)(t/n)r]ρ(rs−1)(t) dt,

where

rnrs−r

∫ 1

−1

tr−1 exp[(i+ 1)(t/n)r]ρ(rs−1)(t) dt

=
∞∑

j=0

∫ 1

−1

r(i+ 1)jtr(j+1)−1

j!nr(j+1)−rs ρ(rs−1)(t) dt.

Noting that rs − 1 is an even integer when r is an odd integer, and using
equation (23), it follows that

N−lim
n→∞

rnrs−r

∫ 1

−1

tr−1 exp[(i+ 1)(t/n)r]ρ(rs−1)(t) dt

=
∫ 1

−1

r(i+ 1)rs−1−1tr
s−1

(rs−1 − 1)!
ρ(rs−1)(t) dt =

r(rs − 1)!(i+ 1)rs−1−1

(rs−1 − 1)!

for i = 0, 1, 2, . . . , k and so

N−lim
n→∞

nrs−r

∫ 1

−1

ρ(rs−1)[n ln1/r(1 + x)]xk dx

=
k∑

i=0

(
k

i

)
(−1)k−i(rs − 1)!(i+ 1)rs−1−1

(rs−1 − 1)!
.
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Thus,

N−lim
n→∞

∫ 1

−1

δ(r
s−1)

n [ln1/r |1 + x|]xk dx

=
k∑

i=0

(
k

i

)
(−1)k−i(rs − 1)!(i+ 1)rs−1−1

(rs−1 − 1)!
, (28)

for k = 0, 1, 2, . . . , rs−1 − 1.

When k = rs−1, it follows that
∫ 1

−1

∣∣∣δ(rs−1)
n [ln1/r(|1 + x|)]xrs−1

∣∣∣ = O(n−r)

and so if ϕ is an arbitrary function in D[−1, 1], then

lim
n→∞

∫ 1

−1

∣∣∣δ(rs−1)
n [ln1/r(|1 + x|)]xrs−1

ϕ(rs−1)(x)
∣∣∣dx = 0. (29)

Now let ϕ be an arbitrary function in D[−1, 1]. By Taylor’s Theorem, we

have ϕ(x) =
rs−1−1∑

k=0

ϕ(k)(0)
k!

xk +
xrs−1

(rs−1)!
ϕ(rs−1)(ξx), where 0 < ξ < 1. Then if

ϕ is in D[−1, 1] and using equations (28) and (29), we have

N−lim
n→∞

〈δ(rs−1−1)
n (ln1/r |1 + x|), ϕ(x)〉

= N−lim
n→∞

rs−1−1∑
k=0

ϕ(k)(0)
k!

∫ 1

−1

δ(r
s−1)

n [ln1/r |1 + x|]xk dx

+ N−lim
n→∞

1
(rs−1)!

∫ 1

−1

δ(r
s−1)

n (ln1/r(|1 + x|)xrs

ϕ(rs−1)(ξx) dx

=
rs−1−1∑

k=0

k∑
i=0

(
k

i

)
(−1)k−ir(rs − 1)!(i+ 1)rs−1−1ϕ(k)(0)

(rs−1 − 1)!k!

=
rs−1−1∑

k=0

k∑
i=0

(
k

i

)
(−1)i(rs − 1)!(i+ 1)rs−1−1

(rs−1 − 1)!k!
〈δ(k)(x), ϕ(x)〉,

proving equation (27) on [−1, 1]. However, it is clear that outside this interval
δ
(rs−1)
n [ln1/r(|1 + x|)] = 0, and so equation (27) is proved on the real line.

For further results on the neutrix composition of distributions, see [7], [8],
[9] and [10].
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