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Abstract

In this article we will define the negative inner product sets and char-
acterize their properties. One property concerning the negative linear
combination leads to the existence of the non-negative and positive so-
lutions of some classes of systems of linear equations. Applications on
obtuse cones and monotone matrices are also discussed.

1. Introduction

Let V be a vector space over the field of real numbers. An inner product
〈·, ·〉 is a real number that satisfies the properties:

1. 〈α, β〉 + 〈γ, β〉 = 〈α + γ, β〉
2. 〈kα, β〉 = k 〈α, β〉
3. 〈α, β〉 = 〈β, α〉
4. 〈α, α〉 > 0, for α �= 0.

Two vectors α and β are said to be orthogonal if 〈α, β〉 = 0. A subset of a
vector space is called an orthogonal set if 〈α, β〉 = 0 for all α and β in the set
for which α �= β. An orthogonal set is independent. In an n-dimensional vector
space, an independent (orthogonal) subset can have at most n vectors.

In this research, we are interested in a set which we called a negative inner
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product set; that is, the set two different elements of which the inner product
is negative. The negative inner product sets have similar properties to that of
the orthogonal sets.

A negative inner product set Not a negative inner product set

Definition 1.1 Let W be a non-empty subset of a vector space over a field of
real number. W is called a negative inner product (NIP) set if 〈α, β〉 < 0 for
all α and β in W , with α �= β.
Examples of NIP sets are as follows:

1. The singleton set with a non-zero vector.

2. {α,−α} where α is a non-zero vector,

3. {α, β, γ}, where α = ρ, β = −ρ − 〈ρ, θ〉
| 〈ρ, θ〉 |θ and γ = − ρ

|ρ| −
θ

|θ| , where ρ

and θ are independent vectors.

The properties of an NIP set are different but similar to that of an orthogonal
set:

1. In an n-dimensional vector space, there are at most n + 1 vectors in the
NIP set.

2. A proper subset of an NIP set is independent.
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Note :

1. The independent set may not be an NIP set.
The NIP set may not be independent.
There exists an NIP set that has n+1 elements.

2. Since the NIP set can be defined only in real vector spaces, so, throughout
this article the vector spaces (finite or infinite dimensional) means the
vector spaces over the field of real numbers.

2. Main Results

Lemma 2.1 Let m be a positive integer, and α1, α2, . . . , αm be non-zero vectors
in a vector space. Also, let

β =
m∑

i=1

kiαi �= 0

where ki < 0 for all i ∈ I = {1, 2, . . . , m}. Then there is αs for some s ∈ I such
that 〈αs, β〉 < 0

Proof. Suppose that 〈αi, β〉 ≥ 0 for all i ∈ I. Then

〈β, β〉 =

〈
m∑

i=1

kiαi, β

〉
=

m∑
i=1

ki 〈αi, β〉 ≤ 0,

since ki < 0 for all i ∈ I. This is a contradiction since 〈β, β〉 > 0. Thus, there
must be αs for some s ∈ I such that 〈αs, β〉 < 0. �

Lemma 2.2 Let m be a positive integer, and α1, α2, . . . , αm be non-zero vec-
tors in a vector space. If ki, i ∈ I = {1, 2, . . . , m} are real numbers such that
m∑

i=1
kiαi �= 0. If

〈
αj,

m∑
i=1

kiαi

〉
≤ 0 for all j ∈ I, then there is s ∈ I such that

ks < 0.

Proof. Let β =
m∑

i=1

kiαi �= 0. Suppose that kj ≥ 0 for all j ∈ I. Since

〈αj, β〉 ≤ 0 for all j, then 〈β, β〉 =
〈

m∑
i=1

kiαi, β

〉
=

m∑
i=1

ki〈αi, β〉 ≤ 0. This is a

contradiction since 〈β, β〉 > 0. Thus, there is s ∈ I such thak ks < 0. �

Lemma 2.3 (Gordan’s Theorem)
Let A be an m × n matrix whose elements are real numbers. One and only
one of the following two systems has solutions: (i) Ax < 0 for x ∈ Rn×1; (ii)
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AT y = 0, y ≥ 0 for some non-zero y ∈ Rm×1.
(For the proof see [2])

Lemma 2.4 Let m be a positive integer, and W = {α1, α2, . . . , αm} be a subset
of a vector space. If W is independent, then there are negative real numbers ki

for i ∈ I = {1, 2, . . . , m} such that
〈

αj,
m∑

i=1
kiαi

〉
< 0 for all j ∈ I.

Proof. Consider the system of linear inequalities:

〈α1, α1〉 k1 + 〈α1, α2〉 k2 + · · · + 〈α1, αm〉 km < 0
〈α2, α1〉 k1 + 〈α2, α2〉 k2 + · · · + 〈α2, αm〉 km < 0

...
...

...
...

〈αm, α1〉 k1 + 〈αm, α2〉 k2 + · · · + 〈αm, αm〉 km < 0

We are going to show that this system of inequalities has a negative solution.
Let B = [〈αi, αj〉]mi,j=1 be the coefficient matrix of the system and k = [ki]

m
i=1.

Note that BT = B. It can be shown that {α1, α2, . . . , αm} is independent
implies B is invertible. Hence the system Bk < 0 has a solution k. Also
uT Bu > 0 for any non-zero vector u ∈ Rm×1. Now, let AT = [B | Im] where
Im is the identity matrix of order m, and yT =

[
uT |vT

]
where u and v are

m (column) vectors. So, ATy = Bu + v. Consider the system (ii) Bu + v =
0,u ≥ 0 and v ≥ 0. Suppose that this system has a solution u ≥ 0 and v ≥ 0,
then uT Bu + uT v = 0. This is impossible since uT Bu > 0 and uTv ≥ 0, and

so the system (ii) has no solution. By Lemma 2.3 the system
[

B
Im

]
x < 0 has

a solution. Therefore there exists k < 0 such that Bk < 0 �

Note : The vector k in Lemma 2.4 may not be negative. But if W is an NIP
set, then k has to be negative.

Theorem 2.5 Let {α1, α2, . . . , αm} be an NIP subset of a vector space. Let

ki, i = 1, 2, . . . , m, be real numbers such that β =
m∑

i=1
kiαi �= 0. If 〈αi, β〉 ≤ 0

for all i = 1, 2, . . . , m, then ki < 0 for all i = 1, 2, . . . , m.

Proof. WLOG, suppose that ki ≥ 0 for all i ∈ I = {1, 2, ..., p} and ki < 0 for
all i ∈ J = {p + 1, p + 2, ..., m}. (By Lemma 2.2 there is ki < 0, for some i.)

Consider 〈β, αj〉 =
p∑

i=1

ki 〈αi, αj〉 +
m∑

i=p+1

ki 〈αi, αj〉 ≤ 0.

Since 〈αi, αj〉 < 0 for all i �= j , then for j ≤ p, we have
m∑

i=p+1
ki 〈αi, αj〉 > 0.

Then
p∑

i=1

ki 〈αi, αj〉 < 0 for j ∈ I.
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Since
p∑

i=1
ki 〈αi, αj〉 =

〈
p∑

i=1
kiαi, αj

〉
< 0, for all j ∈ I, then, by Lemma 2.2,

there is j ∈ I such that kj < 0. This contradicts the assumption that ki ≥ 0
for all i ∈ I.
Therefore ki < 0 for all i = 1, 2, . . . , m. �

Corollary Let {α1, α2, . . . , αm} be an NIP subset of a vector space. Let ki, i =

1, 2, . . . , m, be real numbers, and β =
m∑

i=1

kiαi. If 〈αi, β〉 > 0 for all i =

1, 2, . . . , m, then ki > 0 for all i = 1, 2, . . . , m.

Theorem 2.6 Let S = {α1, α2, . . . , αm} be an NIP subset of a vector space. If
S is linearly dependent, then there is no vector β such that 〈αi, β〉 < 0 for all
i = 1, 2, . . . , m.

Proof. Since S is linearly dependent, then there are real numbers ki, i =

1, 2, . . . , m− 1, not all zeros, such that αm =
m−1∑
i=1

kiαi.

Since 〈αj, αm〉 =
〈

αj,
m−1∑
i=1

kiαi

〉
< 0 for all j = 1, 2, . . . , m − 1, then ki < 0

for all i = 1, 2, . . . , m− 1.
Suppose that 〈αi, β〉 < 0 for i = 1, 2, . . . , m− 1.

Consider 〈αm, β〉 =
〈

m−1∑
i=1

kiαi, β

〉
=

m−1∑
i=1

ki 〈αi, β〉
> 0 (Since ki < 0 for all i = 1, 2, . . . , m− 1)

Therefore, there is no vector β such that 〈αi, β〉 < 0 for all i = 1, 2, . . . , m. �

It follows corollaries:

Corollary 1 If S is a set that has a dependent proper subset, then S is not an
NIP set.

Corollary 2 A proper subset of an NIP set is independent.

Corollary 3 In a n-dimensional vector space, there are at most n + 1 vectors
in an NIP set.

Corollary 4 Let S = {α1, α2, . . . , αm} be an NIP subset of a vector space.
Then S is linearly independent if and only if there are negative numbers ki, i =

1, 2, . . . , m, such that
〈

αj,
m∑

i=1

kiαi

〉
< 0 for all j = 1, 2, . . . , m.

Proof: Follows from Lemma 2.4 and Corollary 2. �
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3. Applications

3.1 Obtuse Cone
Let S = {α1, α2, . . . , αm} be a subset of a vector space, we define the

following notations:

Lin S = {β | β =
m∑

i=1
kiαi, ki ∈ R}, the linear subspace generated by S

cone S = {β | β =
m∑

i=1

kiαi, ki ≥ 0}, the cone generated by S.

If C ⊆ Rn, we define the dual of C:

C∗ = {z ∈ Rn| 〈x, z〉 ≤ 0, ∀x ∈ C}.

A non-empty subset C of Rn is called a cone if x ∈ C implies λx ∈ C for
all λ ≥ 0. Thus, If S ⊆ Rn then cone S defined above is a cone. A cone C is
said to be acute if 〈x, y〉 ≥ 0 for all x, y ∈ C. A cone C is said to be obtuse if
C∗∩ Lin C is an acute cone.

If A is a m × n real matrix, then Lin A shall mean the linear subspace
generated by columns of A, and cone A means the cone generated by columns
of A.

The matrix AT A is called the Gram matrix of A.
If A is a matrix with full column rank, then the matrix

A+ = (AT A)−1AT

is called the (Moore-Penrose) pseudoinverse of A.
A matrix G is said to be monotone if Gx ≥ 0 implies x ≥ 0.

The following property concerning the introduced objects is well known (see
[1], [4]).

Lemma 3.1 Let A have full column rank. The following conditions are equiv-
alent:

1. cone A is obtuse,

2. cone A+T is acute,

3. (cone A)∗∩ Lin A ⊆ −cone A,

4. (AT A)−1 ≥ 0

5. AT A is monotone.

To check that a matrix has one of these properties may be difficult. We
have sufficient conditions to have these properties.
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Theorem 3.2 Let A be a matrix with full column rank. If the set of columns
of A is an NIP set, then cone A is obtuse.

Proof: We shall prove that the conditions in the theorem imply (iii) in Lemma
3.1.
Let x ∈ (cone A)∗ ∩ Lin A. Then x =

m∑
i=1

kixi , where ki are real number, and

xi, i ∈ I = {1, 2, . . . , m}, are columns of A. Also, 〈x, y〉 ≤ 0 for all y ∈ cone A.
Thus, since xi ∈ cone A, for all i ∈ I, we have〈

m∑
i=1

kixi, xj

〉
≤ 0, for all j ∈ I

Since {xj | j ∈ I} is an NIP set, then, by Theorem 2.5, ki < 0 for all i ∈ I.

Then, x =
m∑

i=1

kixi = −
m∑

i=1

(−ki)xi ∈ −cone A, since −ki > 0.

Therefore (coneA)∗∩ Lin A ⊆ −cone A
So, cone A is obtuse. �

3.2 Non-negative and positive solutions of system of equations.
Let A be a m×n matrix and b is an n-vector. The system of linear equations

Ax = b

has a solution if rank [A | b] = rank A. If A is square, then the system has a
unique solution if and only if A is non-singular (A is invertible). Here we are
interested in the system in which the solution is non-negative. One obvious
result is from the monotone property of the coefficient matrix A.

Lemma 3.3 Let A be a square matrix. Then A is monotone if and only if A
is invertible and A−1 ≥ 0.

Proof (see [4])

Lemma 3.4 If A is invertible and A−1 ≥ 0, then the system Ax = b has a
non-negative solution if b ≥ 0.

Proof: Since A−1 ≥ 0 and b ≥ 0, then the solution z = A−1b ≥ 0. �

Corollary If a matrix A has full column rank and the columns of A form an
NIP set, then the system AT Ax = b has a non-negative solution if b ≥ 0.

Proof: From Theorem 3.2, there exists (AT A)−1 ≥ 0. Thus, the non-negative
solution follows. �

Let A be a class of square matrices with positive diagonal and non-positive
off-diagonal elements. A matrix A ∈ A is called an M-matrix if A−1 ≥ 0. Thus,
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an M-matrix is monotone and will give a non-negative solution as in Lemma
3.4. More details on properties of the monotone matrix and M-matrix can be
found in [1, 4, 7].

If columns of A form an NIP set, then we have a nice condition to obtain
the positive solution.

Theorem 3.5 Let A be an n × n matrix. Suppose that columns of the matrix
[A | −b] form an NIP set, then the system Ax = b has a positive solution.

Proof: Let Ai for i = 1, 2, . . . , n denote columns of A, and A′ = {Ai | i =
1, 2, . . . , n} From Corollary 2, A′ is independent. Therefore A is non-singular
and the system Ax = −b has a solution. Thus, there exists yi for i = 1, 2, . . . , n

such that −b =
n∑

i=1

Aiyi. Since A′ is an NIP set and 〈−b, Ai〉 ≤ 0 for all

i = 1, 2, . . . , n, then, by Theorem 2.5, we have that yi < 0 for all i. Thus the
system Ax = b has the solution x = −y > 0. �

4. Constructing the NIP set

We may sometimes want to construct an NIP set in a linear space. The
following procedure can produce an NIP set in the given space.

Let S be a subset of a vector space. The procedure to construct an NIP set
in the space Lin S will be as the following:

1. Construct an orthonormal basis B = {β1, β2, . . . , βn} for Lin S.

2. Let α1 = β1. For j = 2, . . . , n, let

αj = βj − 1
j.n

j−1∑
i=1

βi,

and αn+1 = −
n∑

i=1

βi.

Theorem 4.1 The set S′ = {α1, α2, . . . , αn+1} obtained from the above proce-
dure is an NIP set.

Proof: It is clear that Lin S′ = Lin S. We need to show that 〈αj, αk〉 < 0
for all j �= k.
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Considure 〈αj, βk〉 =
〈

βj − 1
j.n

j−1∑
i=1

βi, βk

〉

= 〈βj , βk〉 − 1
j.n

j−1∑
i=1

〈βi, βk〉

=

⎧⎪⎨
⎪⎩

0, if j < k
1, if j = k

− 1
j.n

, if j > k

For k < j ≤ n, we have:

〈αj, αk〉 =
〈

αj, βk − 1
k.n

k−1∑
i=1

βi

〉

= 〈αj, βk〉 − 1
k.n

k−1∑
i=1

〈αj, βi〉

= − 1
j.n

− 1
k.n

k−1∑
i=1

−1
j.n

= − 1
j.n

(
1 − k − 1

k.n

)
< 0.

And 〈αj, αn+1〉 =
〈

αj,−
n∑

i=1

βi

〉

= −
j−1∑
i=1

〈αj, βi〉 − 〈αj, βj〉−
n∑

i=j+1

〈αj, βi〉

= −
j−1∑
i=1

−1
j.n

− 1 −
n∑

i=j+1

0

=
j − 1
j.n

− 1 < 0.

Therefore S′ is an NIP set and Lin S′ = Lin S. �
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