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Abstract

For studying surfaces of higher dimensions and codimensions, some
general Gauss maps were used. In this paper, we introduce some such
maps including a new one, n’-Gauss maps of codimension two spacelike
surfaces in the Lorentz-Minkowski space L™ 1!,

1. Introduction

The classical Gauss map plays an important role in the study of codimension
one surfaces both in R™ and L"*!. It is a map from the surface to the unit
sphere. It is well-known that, the derivative of the Gauss map, called the
Weingarten map, is self-adjoint.

For studying the behaviour of surfaces of higher dimensions and codimen-
sions, some general Gauss maps were used in the same way as in the classical
differential geometry of surfaces. For example, for studying minimal 2-surfaces
in R™, one consider the Gauss map from the surfaces to G(2,R™), the Grass-
mannian of oriented 2-plane in R

9:5—G(2,R"),

where g(p) is the tangent plane to S at p (see [3]).
Marek Kossowski (see [9]) introduced the S?-valued Gauss maps to study
spacelike surfaces of dimension two in L4, while for studying spacelike surfaces
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154 On general Gauss maps of surfaces

of codimension two, Izumiya et. al. (see [4], [6]) used Gauss maps associated
with a normal field or ones whose values are in the lightcone.

In this paper, we introduce some general Gauss maps including a new one
in the last section.

Let M be a spacelike surface of codimension two. The normal plane of
M at p € M, denoted by N,M, can be viewed as a timelike 2-plane passing
the origin. The intersection of this plane and the hyperbolic with center v =
(=1,0,0,...,0) and radius 1, H}(v,1), is a hyperbola. For any r > 0, the
hyperplane {xo = r} meets this hyperbola exactly at two points, denoted by
n;(p).

This gives two differential maps p — n*(p), which are called n*-Gauss
maps. These maps are used in [2] to study the umbilicity of spacelike sur-
faces. The derivatives of the n*-Gauss maps are self-adjoint as in the classical
case, and hence we can define the nF-Weingarten maps, n;*-Gauss-Kronecker
curvatures, nf-mean curvatures and n-principal curvatures .. ..

Throughout this paper, a surface is always assumed smooth, oriented and
regular.

2. General Gauss maps of surfaces in R"

For a parametric surface X : Q — R3, where Q is an open domain in R?
1% ) 1% )

1

N=——"--X,
| X A X

AN Xy

stands as the unit normal vector field of S and can be seen as the Gauss map
of the surface.

2.1. General Gauss maps of minimal 2-surfaces in R”

We refer the reader to [1] and [3] for more details about this topic.

Let S be a 2-surface in R™, n > 3. The dimension of the normal space
N, S of the surface at each point p is bigger than 1 and one can not define
the Gauss map as above. For solving that problem, first one takes an arbitrary
unit normal vector field N and defines the second fundamental form (b;;(N) :=

( O°X Y, 4,7 = 1,2), the principal curvatures (k1(N), ko(NN)) as well as the

OuiOu;’
mean curvature (H(N)) of S with respect to N. It is known that b;;(N) and
H(N) are linear in N, and therefore there exist a unique vector field H such
that _
H(N)=H - N, for any unit normal vector field N.

The vector field ﬁ is c_)alled the mean curvature vector field of the surface and
S is called minimal if H = 0.
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Another way to study minimal 2-surfaces S in R" is studying the map
g:5—G(2,R"),

where G(2,R"™) is the Grassmannian of oriented 2-planes in R™ and g(p) is the
tangent plane to S at p (see [3]).

2.2. Curvature ellipses of 2-surfaces in R*

Let S be a surface in R and denote by k, (z,v) the normal curvature of S at
x € S with respect to the unit vector v € T,,S. It is well-known that k,(z,v) €
[k1(z), k2(x)], where ki(x), ka(z) are principal curvatures of S at z and x is
umbilic if the segment [k1(x), k2(z)] degenerates into a point, i.e. ky(z) = ka(x).
This fact can be generalized to a 2-surface in R* as follow.

Let X : M — R* be an immersion and {e1, ez, e3,e4} be an orthonormal
frame field on S chosen so that at each point € S, {e1, e2} is an orthonormal
basis of T,,S and {es, e4} is an orthonormal basis of N,.S.

The first fundamental form I and the second fundamental form II., with
respect to e;, ¢ = 3,4, are defined as in Subsection 2.1. Then, I :=11., + 11,
is called the second fundamental form of X and n(x,v) := IIIT'T(SS) is called the
normal curvature vector of S at z with respect to v. When v runs along the unit
circle S* C TS, n(x,v) draws an ellipse, called the curvature ellipse of S at
x. It is known that, the center of this ellipse is the mean curvature vector and
when the curvature ellipse degenerates into a segment or a point, x is called
semiumbilic or umbilic, respectively.

The similar curvature ellipses of a spacelike 2-surface in L* are introduced
in [4] (see Section 3 for the definition of the Lorentz-Minkowski L*). We have
the following result.

Theorem 2.1 ( [4, Theorem 5.3]) A spacelike surface M C IL* is totally semi-
umbilical if and only if M is v-umbilical for some non-zero normal vector field
v locally defined at each non umbilical point.

This result implies that, M C H3(a,r) (M C S3(a,r) or M C LC3(a)) if
and only if every point of M is either spacelike- (timelike- or lightlike-, resp.)
semiumbilical or umbilical and the curvature ellipse defines a parallel normal
field on M.

3. General Gauss maps of surfaces in L""!

The Lorentz-Minkowski (n + 1)-space L"*! is the (n + 1)-dimensional vector
space R"™ = {(xg,21,...,2,) : 7 € R,;i = 0,1,2,...,n} endowed a pseudo
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scalar product defined by
n
(z,y) = —woyo + Z ZiYi,
i=1

where * = (10,21, %2,...,Tn), ¥y = (Yo, Y1, Y2, - -, Yn) € L1 Since (,) is non-
positive defined, (x,z) may be zero or negative. We say a nonzero vector
x € LT is spacelike, lightlike or timelike if (z,x) > 0, (z,2) = 0 or (z,z) < 0,
respectively. If (x,y) = 0, we say x,y are pseudo-orthogonal.
For a nonzero vector n € L"*!, a hyperplane with pseudo-normal n is the
set
HP(n,c)={z cL"™: (z,n) = ¢, c € R}.

The hyperplane HP(n,c) is called spacelike, lightlike or timelike if n is
timelike, lightlike or spacelike, respectively.

A E-surface is call spacelike if its tangent spaces are all spacelike.
3.1 The shape operator associated with a normal field
Let M be a spacelike surface of codimension two in L”*!. Denote by

1. X(M) the space of all smooth tangent vector fields of M;

2. N (M) the space of all smooth normal vector fields of M;

3. V the pseudo-riemannian connection of L"*! and V is the reduced one
of M;

4. X alocal extension of X to L"*! for any X € X(M).
The second fundamental map of M is defined as follow
a: X(M)x X(M)— N(M)
(X,Y) — VgY — VyY,
and for any vector field v € N (M)
11, : T;M — R, I, (v) = (a(v,v),v),

is called the second fundamental form of M at x with respect to v.
The shape operator with respect to the nomal field v is defined by

S, : TM —TM, S,(X) = — (Vx7)',

where ()7 stands for the tangent component. This operator has some good
properties. For example, it is self-adjoint and satisfies the Weingarten equation

(S,(X),Y)=(a(X,Y),r), VX, Y € X(M).
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The definitions of v-principal curvatures, v-mean curvature, v-Gauss- Kro-
necker curvature, v-umbilic ... are defined as in the classical case.

For some applications of this operator to study v-umbilical surfaces of codi-
mension two, we refer the reader to [4].

3.2 The lightcone Gauss maps

Let M = X (U) be a spacelike surface of codimension two, defined by an im-
mersion X : U — L"*!, where U is an open subset of R*~!. For any p € M,
the tangent space T, M is spacelike while the normal space N,M is timelike.
Let nf'(u) € N,M be a future directed (i.e. the first coordinate is possitive)
unit timelike normal and set

nf (W) A Xy, (W) A=A Xy, (u)

S _
M) = ) A Xy (W) A A X ()]
It is easy to see that, n? is a spacelike unit normal vector field, i.e. (n®,n®) =
1. Moreover, (nf', nf’) = —1 and (nf',n®) = 0.

Clearly, the vectors nf (u) +n®(u) are lightlike. It is showed that (see [6]),
for two different future directed unit timelike normal vectors n’’ (u) and nf (u),
the corresponding lightlike normal vectors nf (u) + n®(u) and n¥ (u) + nS(u)
are parallel.

Therefore, we have the map p — n’ (u) +n®(u). Its derivative

dp(m® +n%): T,M — T,L"" = T,M & N,M
is linear and can be writen as
dp(n” +10%) = dy(n” +n%)T + d,(n” + %)Y
We call

1. the linear transformation S,(nf,n%) = —d,(nf + n%)T the (n%', n%)-
shape operator;

2. the linear transformation d,(nf + n®)" the normal connection with re-

spect to (nf’,n%).

By using this shape operator we can define some concepts as in the classical
case such as the lightcone principal curvatures, the lightcone Gauss-Kronecker
curvature, the lightcone mean curvature . ...

For any lightlike vector © = (x¢, z1, T2, ..., 2Zy), let T = (1 Lo T—") €

) T ? ’ Zo
Si_l ={z = (xo,21,22,...,2pn) : (x,x) = 0,20 = 1}.
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It is showed that (see [6]), if we choose another future directed unit timelike

normal vector n¥(u), then (nf +nS) = nf +nS € S?~'. Therefore, the
lightcone Gauss map of M can be defined

L:U — Si_l

u  — (nF +n%)(u)

The following theorem is a result concerning to this Gauss maps.

Theorem 3.1 ([6, Theorem 4.5]) For a spacelike embedding X : U — L"T!
(where U C R"™1), the following conditions are equivalent:

1. M is totally lightlike flat.
2. The lightcone Gauss map L is a constant map.

3. There exists a lightlike vector v and a real number ¢ such that M C
HP(v,c).
4. The n-Gauss maps
Let M be a spacelike surface of codimension two, defined by the immersion
X:UcCR"! L
Denote
HS,=H}(v,1)n{zg =1}, >0,
where v = (—1,0,...,0) and
H'(v,1)={z e " | (z —v,x —v) = -1, 29 > 0}.

We can see that HS, N N,M = {n:(p)}. The vectors n:*(p) are chosen so that

det(Xul5Xu2) b )Xun—15n;(p)5n:_(p)) > O

Definition 4.1 The maps

nf M — HS,
p o~ n(p)

are called the n*- Gauss maps of M.
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Remark The n-Gauss maps of the spacelike surface M = X(U) are the
solutions of the following system of equations

n,Xy,,)=0,i=1,2,....,.n—1,
<7’L—1/,7’L—l/>:—1, (1)
ng =r.

Proposition 4.2 The nf-Gauss maps are differentiable.

Proof Denote

Xu, = (aio, a1, - - -, Qin),
where a;;, 1 =1,2,...,n—1,7=0,1,2,...,n are differentiable functions and
nt = (r,n,...,nE,), then (1) can be written as follow:
—ayor + annfl + -+ alnnﬂfn =0
— a207 + CLQlTL:fl + -+ CLQnTL;En = 0
(2)
— Q(pn—-1)0T + a(n—l)lnfz!?l +eee a(n—l)nnrz!fn =0
+ 2 + 2 + 2 2
(nr,l) + (nr,Q) +ooet (nr,n) = ri+2r

Consider the first n — 1 equations. This is a system of n — 1 equations
in n unknowns n,1,ny2,...,Nyy. Since X is an immersion, the rank of the
system is n — 1. Thus, there are n — 1 unknowns, says 7,1, 72, ...N%rn—1 Can
be expressed in term of n, .

Substituting these results into the last equation of (2), we get a quadratic
equation in the unknown ann This equation has exactly two roots and of
course they are differentiable. Thus n are differentiable. O

The derivatives of n at p
dnE(p) © TyM — Tye ) H (v, 1) = Ty M @ N, M
can be writen as
dn¥(p) = dnf" (p) +dnt" (p),

+

r )

where dn*’ and dn" are the tangent and normal components of dn, re-
spectively.

We have some definitions.
Definition 4.3

+
(1) AY .= —dn=" (p) are called the nE- Weingarten maps of M at p.

T
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+ +

(2) K," :=det(A,") are called the n*-Gauss-Kronecker curvatures of M at

p.

+ +
(3) Hp™ := —=tr(Ap") are called the nf-mean curvatures of M at p.
(4) The eigenvalues k;" (p), ky" (p), -

+ +
. ki (p) of Ay are called the nift-
principal curvatures of M at p.

+
(5) b}y () == (522 (), 0 (D)), 3,5 = 1,2,...,n — 1 are called the coeffi-
cients of the ni*-second fundamental forms of M at p.

Remark: By the definition

Kpm =k (p)ky” (p) -k, 1 (D),

and
+ 1

n n n* n
Hy™ = —— (k" (p) + k" () + -+ Ly ()

Theorem 4.4
(1) The n-Weingarten maps are self-adjoint.

+
(2) The nt-principal curvatures kj™ (p),i=1,2,...,n—1 of M at p are the
solutions of the following equation

det(b} (p) — kgiy(p)) = 0. (3)

+
nt  det(b]] (p))
(3) Kp™ = “det(gi; (p)

Proof Let p = X(uy,ua,...,up_1) € M, we write n(u, us,
stead of (X (uy,u2,..., un_1)).

1,2,...,n—1.
Since (nf, X,,,) = (nF, X,,,) = 0, we have

ey Up—1) In-
Then, we have dnf(X,,) = (nfF).,, i =

<(n7:!:)uj’XUi> = _<n7:!:a XU1U7> = <(ni)ui’XUj>'

T

But
<(nr )Ui’XU7> = <dn7:!:(XU1)a XU7> = <dniT(XU1)a XU7> <A2f (Xum)a Xu7>a
and
<(n7:!:)uj5XU1> = <dn7:!:(XUj)5 Xu;) = <dn7:!:T(Xu7)’ Xus) _<Ag} (XU_7)5 Xus)
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These give the proof of (1) because { X, , Xu,, - - ., Xu,_, } is a basis of T, M.
Now suppose that

n—1
+
Ay (X)) =Y ariXu,, k=1,2,...,n—1 (4)
k=1

Then N
by = <X'Lli“.7’ nrj=:> = _<dni(XUi) Xu,)

1] r ’ J

n—1
= <A;!: (Xul)) X'LL7> = Z a‘k'i<Xuk’Xu.7>
k=1

n—1
= E Qkigdik;
k=1

where i =1,2,...,.n—1; 7=1,2,....,n—1.
+
Thus, (b;; ) = (gi5)(ai;), and hence

iJ

This proves (2).
The proof of (3) follows from the definition. O

For some applications of this Gauss map, we refer the reader to [2].
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