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Abstract

For studying surfaces of higher dimensions and codimensions, some
general Gauss maps were used. In this paper, we introduce some such
maps including a new one, n±

r -Gauss maps of codimension two spacelike
surfaces in the Lorentz-Minkowski space Ln+1.

1. Introduction

The classical Gauss map plays an important role in the study of codimension
one surfaces both in Rn and Ln+1. It is a map from the surface to the unit
sphere. It is well-known that, the derivative of the Gauss map, called the
Weingarten map, is self-adjoint.

For studying the behaviour of surfaces of higher dimensions and codimen-
sions, some general Gauss maps were used in the same way as in the classical
differential geometry of surfaces. For example, for studying minimal 2-surfaces
in Rn, one consider the Gauss map from the surfaces to G(2, Rn), the Grass-
mannian of oriented 2-plane in Rn

g : S → G(2, Rn),

where g(p) is the tangent plane to S at p (see [3]).
Marek Kossowski (see [9]) introduced the S2-valued Gauss maps to study

spacelike surfaces of dimension two in L4, while for studying spacelike surfaces
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of codimension two, Izumiya et. al. (see [4], [6]) used Gauss maps associated
with a normal field or ones whose values are in the lightcone.

In this paper, we introduce some general Gauss maps including a new one
in the last section.

Let M be a spacelike surface of codimension two. The normal plane of
M at p ∈ M, denoted by NpM, can be viewed as a timelike 2-plane passing
the origin. The intersection of this plane and the hyperbolic with center ν =
(−1, 0, 0, . . . , 0) and radius 1, Hn

+(ν, 1), is a hyperbola. For any r > 0, the
hyperplane {x0 = r} meets this hyperbola exactly at two points, denoted by
n±

r (p).
This gives two differential maps p �→ n±

r (p), which are called n±
r -Gauss

maps. These maps are used in [2] to study the umbilicity of spacelike sur-
faces. The derivatives of the n±

r -Gauss maps are self-adjoint as in the classical
case, and hence we can define the n±

r -Weingarten maps, n±
r -Gauss-Kronecker

curvatures, n±
r -mean curvatures and n±

r -principal curvatures . . . .
Throughout this paper, a surface is always assumed smooth, oriented and

regular.

2. General Gauss maps of surfaces in Rn

For a parametric surface X : Ω → R3, where Ω is an open domain in R2,

N =
1

|Xu ∧ Xv|Xu ∧Xv

stands as the unit normal vector field of S and can be seen as the Gauss map
of the surface.

2.1. General Gauss maps of minimal 2-surfaces in Rn

We refer the reader to [1] and [3] for more details about this topic.
Let S be a 2-surface in Rn, n > 3. The dimension of the normal space

NpS of the surface at each point p is bigger than 1 and one can not define
the Gauss map as above. For solving that problem, first one takes an arbitrary
unit normal vector field N and defines the second fundamental form (bij(N) :=
〈 ∂2X

∂ui∂uj
, N〉, i, j = 1, 2), the principal curvatures (k1(N), k2(N)) as well as the

mean curvature (H(N)) of S with respect to N. It is known that bij(N) and
H(N) are linear in N, and therefore there exist a unique vector field

−→
H such

that
H(N) =

−→
H · N, for any unit normal vector field N.

The vector field
−→
H is called the mean curvature vector field of the surface and

S is called minimal if
−→
H = 0.
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Another way to study minimal 2-surfaces S in Rn is studying the map

g : S → G(2, Rn),

where G(2, Rn) is the Grassmannian of oriented 2-planes in Rn and g(p) is the
tangent plane to S at p (see [3]).

2.2. Curvature ellipses of 2-surfaces in R4

Let S be a surface in R3 and denote by kn(x, v) the normal curvature of S at
x ∈ S with respect to the unit vector v ∈ TpS. It is well-known that kn(x, v) ∈
[k1(x), k2(x)], where k1(x), k2(x) are principal curvatures of S at x and x is
umbilic if the segment [k1(x), k2(x)] degenerates into a point, i.e. k1(x) = k2(x).
This fact can be generalized to a 2-surface in R4 as follow.

Let X : M → R4 be an immersion and {e1, e2, e3, e4} be an orthonormal
frame field on S chosen so that at each point x ∈ S, {e1, e2} is an orthonormal
basis of TxS and {e3, e4} is an orthonormal basis of NxS.

The first fundamental form I and the second fundamental form IIei with
respect to ei, i = 3, 4, are defined as in Subsection 2.1. Then, II := IIe3 + IIe4

is called the second fundamental form of X and η(x, v) := IIx(v)
Ix(v) is called the

normal curvature vector of S at x with respect to v. When v runs along the unit
circle S1 ⊂ TxS, η(x, v) draws an ellipse, called the curvature ellipse of S at
x. It is known that, the center of this ellipse is the mean curvature vector and
when the curvature ellipse degenerates into a segment or a point, x is called
semiumbilic or umbilic, respectively.

The similar curvature ellipses of a spacelike 2-surface in L4 are introduced
in [4] (see Section 3 for the definition of the Lorentz-Minkowski L4). We have
the following result.

Theorem 2.1 ( [4, Theorem 5.3]) A spacelike surface M ⊂ L4 is totally semi-
umbilical if and only if M is ν-umbilical for some non-zero normal vector field
ν locally defined at each non umbilical point.

This result implies that, M ⊂ H3(a, r) (M ⊂ S3(a, r) or M ⊂ LC3(a)) if
and only if every point of M is either spacelike- (timelike- or lightlike-, resp.)
semiumbilical or umbilical and the curvature ellipse defines a parallel normal
field on M .

3. General Gauss maps of surfaces in �Ln+1

The Lorentz-Minkowski (n + 1)-space Ln+1 is the (n + 1)-dimensional vector
space Rn+1 = {(x0, x1, . . . , xn) : xi ∈ R, i = 0, 1, 2, . . . , n} endowed a pseudo
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scalar product defined by

〈x, y〉 = −x0y0 +
n∑

i=1

xiyi,

where x = (x0, x1, x2, . . . , xn), y = (y0, y1, y2, . . . , yn) ∈ Ln+1. Since 〈, 〉 is non-
positive defined, 〈x, x〉 may be zero or negative. We say a nonzero vector
x ∈ Ln+1 is spacelike, lightlike or timelike if 〈x, x〉 > 0, 〈x, x〉 = 0 or 〈x, x〉 < 0,
respectively. If 〈x, y〉 = 0, we say x, y are pseudo-orthogonal.

For a nonzero vector n ∈ Ln+1, a hyperplane with pseudo-normal n is the
set

HP (n, c) = {x ∈ Ln+1 : 〈x, n〉 = c, c ∈ R}.
The hyperplane HP (n, c) is called spacelike, lightlike or timelike if n is

timelike, lightlike or spacelike, respectively.
A k-surface is call spacelike if its tangent spaces are all spacelike.

3.1 The shape operator associated with a normal field

Let M be a spacelike surface of codimension two in Ln+1. Denote by

1. X (M) the space of all smooth tangent vector fields of M ;

2. N (M) the space of all smooth normal vector fields of M ;

3. ∇ the pseudo-riemannian connection of Ln+1 and ∇ is the reduced one
of M ;

4. X a local extension of X to Ln+1 for any X ∈ X (M).

The second fundamental map of M is defined as follow

α : X (M) ×X (M) → N (M)

(X, Y ) �→ ∇XY −∇XY,

and for any vector field ν ∈ N (M)

IIν : TxM → R, IIν (v) = 〈α(v, v), ν〉,
is called the second fundamental form of M at x with respect to ν.

The shape operator with respect to the nomal field ν is defined by

Sν : TM → TM, Sν(X) = − (∇Xν
)T

,

where ( )T stands for the tangent component. This operator has some good
properties. For example, it is self-adjoint and satisfies the Weingarten equation

〈Sν(X), Y 〉 = 〈α(X, Y ), ν〉, ∀X, Y ∈ X (M).
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The definitions of ν-principal curvatures, ν-mean curvature, ν-Gauss- Kro-
necker curvature, ν-umbilic . . . are defined as in the classical case.

For some applications of this operator to study ν-umbilical surfaces of codi-
mension two, we refer the reader to [4].

3.2 The lightcone Gauss maps

Let M = X(U) be a spacelike surface of codimension two, defined by an im-
mersion X : U → Ln+1, where U is an open subset of Rn−1. For any p ∈ M,
the tangent space TpM is spacelike while the normal space NpM is timelike.
Let nF (u) ∈ NpM be a future directed (i.e. the first coordinate is possitive)
unit timelike normal and set

nS(u) =
nF (u) ∧ Xu1 (u) ∧ · · · ∧ Xun−1 (u)
|nF (u) ∧ Xu1 (u) ∧ · · · ∧ Xun−1 (u)| .

It is easy to see that, nS is a spacelike unit normal vector field, i.e. 〈nS , nS〉 =
1. Moreover, 〈nF , nF 〉 = −1 and 〈nF , nS〉 = 0.

Clearly, the vectors nF (u)±nS(u) are lightlike. It is showed that (see [6]),
for two different future directed unit timelike normal vectors nF (u) and nF (u),
the corresponding lightlike normal vectors nF (u) + nS(u) and nF (u) + nS(u)
are parallel.

Therefore, we have the map p �→ nF (u) + nS(u). Its derivative

dp(nF + nS) : TpM → TpLn+1 = TpM ⊕ NpM

is linear and can be writen as

dp(nF + nS) = dp(nF + nS)T + dp(nF + nS)N .

We call

1. the linear transformation Sp(nF , nS) = −dp(nF + nS)T the (nF , nS)-
shape operator;

2. the linear transformation dp(nF + nS)N the normal connection with re-
spect to (nF , nS).

By using this shape operator we can define some concepts as in the classical
case such as the lightcone principal curvatures, the lightcone Gauss-Kronecker
curvature, the lightcone mean curvature . . . .

For any lightlike vector x = (x0, x1, x2, . . . , xn), let x̃ =
(
1, x1

x0
, . . . , xn

x0

)
∈

Sn−1
+ = {x = (x0, x1, x2, . . . , xn) : 〈x, x〉 = 0, x0 = 1}.
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It is showed that (see [6]), if we choose another future directed unit timelike

normal vector nF (u), then ( ˜nF + nS) = ˜nF + nS ∈ Sn−1
+ . Therefore, the

lightcone Gauss map of M can be defined

L̃ : U → Sn−1
+

u �→ ( ˜nF + nS)(u)
.

The following theorem is a result concerning to this Gauss maps.

Theorem 3.1 ([6, Theorem 4.5]) For a spacelike embedding X : U → Ln+1

(where U ⊂ Rn−1), the following conditions are equivalent:

1. M is totally lightlike flat.

2. The lightcone Gauss map L̃ is a constant map.

3. There exists a lightlike vector v and a real number c such that M ⊂
HP (v, c).

4. The n±
r -Gauss maps

Let M be a spacelike surface of codimension two, defined by the immersion

X : U ⊂ Rn−1 → Ln+1.

Denote

HSr = Hn
+(ν, 1) ∩ {x0 = r}, r > 0,

where ν = (−1, 0, . . . , 0) and

Hn
+(ν, 1) = {x ∈ Ln+1 | 〈x − ν, x − ν〉 = −1, x0 ≥ 0}.

We can see that HSr ∩NpM = {n±
r (p)}. The vectors n±

r (p) are chosen so that

det(Xu1 , Xu2 , . . . , Xun−1 , n
−
r (p), n+

r (p)) > 0.

Definition 4.1 The maps

n±
r : M → HSr

p �→ n±
r (p)

are called the n±
r - Gauss maps of M .
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Remark The n±
r -Gauss maps of the spacelike surface M = X(U) are the

solutions of the following system of equations⎧⎪⎨
⎪⎩

〈n, Xui〉 = 0, i = 1, 2, . . . , n− 1,

〈n − ν, n− ν〉 = −1,

n0 = r.

(1)

Proposition 4.2 The n±
r -Gauss maps are differentiable.

Proof Denote
Xui = (ai0, ai1, . . . , ain),

where aij, i = 1, 2, . . . , n − 1, j = 0, 1, 2, . . . , n are differentiable functions and
n±

r = (r, n±
r,1, . . . , n

±
r,n), then (1) can be written as follow:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− a10r + a11n
±
r,1 + · · ·+ a1nn±

r,n = 0

− a20r + a21n
±
r,1 + · · ·+ a2nn±

r,n = 0
...

− a(n−1)0r + a(n−1)1n
±
r,1 + · · ·+ a(n−1)nn±

r,n = 0

(n±
r,1)

2 + (n±
r,2)

2 + · · ·+ (n±
r,n)2 = r2 + 2r

(2)

Consider the first n − 1 equations. This is a system of n − 1 equations
in n unknowns nr,1, nr,2, . . . , nr,n. Since X is an immersion, the rank of the
system is n − 1. Thus, there are n − 1 unknowns, says nr,1, nr,2, . . . nr,n−1 can
be expressed in term of nr,n.

Substituting these results into the last equation of (2), we get a quadratic
equation in the unknown n±

r,n. This equation has exactly two roots and of
course they are differentiable. Thus n±

r are differentiable. �

The derivatives of n±
r at p

dn±
r (p) : TpM → Tn±

r (p)H
n
+(ν, 1) = TpM ⊕ NpM ;

can be writen as

dn±
r (p) = dn±

r
T (p) + dn±

r
N (p),

where dn±
r

T and dn±
r

N are the tangent and normal components of dn±
r , re-

spectively.
We have some definitions.

Definition 4.3

(1) A
n±

r
p := −dn±

r
T (p) are called the n±

r -Weingarten maps of M at p.



160 On general Gauss maps of surfaces

(2) K
n±

r
p := det(An±

r
p ) are called the n±

r -Gauss-Kronecker curvatures of M at
p.

(3) H
n±

r
p := 1

n−1
tr(An±

r
p ) are called the n±

r -mean curvatures of M at p.

(4) The eigenvalues k
n±

r
1 (p), kn±

r
2 (p), . . . , kn±

r
n−1(p) of A

n±
r

p are called the n±
r -

principal curvatures of M at p.

(5) b
n±

r

ij (p) := 〈 ∂2X
∂ui∂uj

(p), n±
r (p)〉, i, j = 1, 2, . . . , n − 1 are called the coeffi-

cients of the n±
r -second fundamental forms of M at p.

Remark: By the definition

K
n±

r
p = k

n±
r

1 (p)kn±
r

2 (p) . . . k
n±

r
n−1(p),

and
H

n±
r

p =
1

n − 1
(kn±

r
1 (p) + k

n±
r

2 (p) + · · ·+ k
n±

r
n−1(p)).

Theorem 4.4

(1) The n±
r -Weingarten maps are self-adjoint.

(2) The n±
r -principal curvatures k

n±
r

i (p), i = 1, 2, . . . , n− 1 of M at p are the
solutions of the following equation

det(bn
±
r

ij (p) − kgij(p)) = 0. (3)

(3) K
n±

r
p =

det(b
n±

r
ij (p))

det(gij(p)) .

Proof Let p = X(u1, u2, . . . , un−1) ∈ M, we write n±
r (u1, u2, . . . , un−1) in-

stead of n±
r (X(u1 , u2, . . . , un−1)). Then, we have dn±

r (Xui) = (n±
r )ui , i =

1, 2, . . . , n − 1.
Since 〈n±

r , Xui〉 = 〈n±
r , Xuj〉 = 0, we have

〈(n±
r )uj , Xui〉 = −〈n±

r , Xuiuj〉 = 〈(n±
r )ui , Xuj〉.

But

〈(n±
r )ui , Xuj〉 = 〈dn±

r (Xui ), Xuj〉 = 〈dn±
r

T (Xui), Xuj 〉 = −〈An±
r

p (Xui), Xuj 〉,
and

〈(n±
r )uj , Xui〉 = 〈dn±

r (Xuj ), Xui〉 = 〈dn±
r

T (Xuj ), Xui〉 = −〈An±
r

p (Xuj ), Xui〉.
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These give the proof of (1) because {Xu1 , Xu2 , . . . , Xun−1} is a basis of TpM.
Now suppose that

A
n±

r
p (Xui ) =

n−1∑
k=1

akiXuk , k = 1, 2, . . . , n − 1. (4)

Then
b
n±

r

ij = 〈Xuiuj , n
±
r 〉 = −〈dn±

r (Xui), Xuj 〉

= 〈A±
p (Xui), Xuj〉 =

n−1∑
k=1

aki〈Xuk , Xuj〉

=
n−1∑
k=1

akigjk;

where i = 1, 2, . . . , n− 1; j = 1, 2, . . . , n − 1.

Thus, (bn
±
r

ij ) = (gij)(aij), and hence

det[(aij) − kI] = det[(gij)−1(bn
±
r

ij ) − kI]

= det(gij) det[(bn
±
r

ij ) − k(gij)].

This proves (2).
The proof of (3) follows from the definition. �

For some applications of this Gauss map, we refer the reader to [2].
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