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Abstract

Using a technique developed by Victor Wagner, that combines full and
partial transformations of a set, we classify all maximal Clifford inverse
subsemigroups of the semigroup of all (full) transformations of a set.
In addition, some computational results for properties of the Maximal
Clifford inverse subsemigroups of the semigroup of all partial one-to-one
transformations of a finite set are given.

1. Preliminaries

Recall that a semigroup is a set S with an associative binary operation. An
element e ∈ S is called an idempotent if e2 = e. We denote the set of all
idempotents of S with E(S).

A semigroup S is called (von Neumann) regular if for every s ∈ S there
exists t ∈ S such that sts = s. Clearly, taking t′ = tst we obtain st′s = s and
t′st′ = t′ (see [5], where this fact was observed for the first time).

Thus we can give an alternative definition: a semigroup S is regular if for
every s ∈ S there exists t ∈ S such that sts = s and tst = t. In this case we say
that t is an inverse of s (and, clearly, then s is an inverse of t). Observe that
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an inverse in the sense of group theory is an inverse in the sense of semigroup
theory. However, an element of a semigroup may have more than one inverse.

A semigroup S is inverse if each of its elements s ∈ S has a uniquely
determined inverse (which we denote as s−1). Observe that (ss−1)2 = ss−1

and (s−1s)2 = s−1s for all s ∈ S, that is, ss−1 and s−1s are idempotents of S.
These idempotents do not have to coincide, that is, ss−1 = s−1s need not be
true for all s ∈ S.

Alternatively, an inverse semigroup can be defined as a regular semigroup
with commuting idempotents (that is, ef = fe for any two idempotents e and
f). This is the original definition of inverse semigroups given by Wagner [6],
while our first definition belongs to Liber [3].

Recall that (lower) semilattice is a partially ordered set S in which each
pair of elements, a and b, has the greatest lower bound, a ∧ b.

For the set of all idempotents E(S) of a semigroup S, the natural partial
order on E(S) is defined by e � f if and only if ef = fe = e, for any e, f ∈ E(S).

Thus, any semilattice is a commutative semigroup of idempotents with re-
spect to this meet operation and the partial order on it is the natural partial
order of the semilattice. And, conversely, any commutative semigroup B of
idempotents is a semilattice with a ∧ b = ab where the meet is with respect
of the natural partial order on B. Therefore, we can identify the classes of
semilattices and commutative semigroups of idempotents.

The natural (or canonical) partial order on an inverse semigroup S is defined
by a � b if and only if a = aa−1b, for any a, b ∈ S. Wagner, who was the first
to introduce �, gave in [7] many equivalent definitions of the order relation.

Observe that although idempotents of an inverse semigroup commute, idem-
potents do not have to commute with non-idempotent elements. In other words,
idempotents of an inverse semigroup S do not necessarily belong to the center
(denoted C(S)) of the inverse semigroup. If idempotents commute with each
element, the semigroup is called a Clifford inverse semigroup. Clifford was the
first to consider this class of inverse semigroups in [1]. Clifford inverse semi-
groups have many alternative definitions. For example, an inverse semigroup
S is Clifford precisely when ss−1 = s−1s for all s ∈ S. Also, an inverse semi-
group is Clifford precisely when it is a union of its subgroups. In this case the
semigroup is a disjoint union of its maximal subgroups.

A partial transformation of (or a function in) a set A is a mapping of any
subset B ⊆ A into A. In particular, the mapping of an empty subset of A into
A is the empty partial transformation of A.

The set B ⊆ A on which the partial transformation f is defined is called
the first projection of f and denoted: pr1 f = B.

The set C ⊆ A that is the range of f is called the second projection of f,
and denoted: pr2 f = C. Thus, pr2 f = f(pr1 f).

We denote with ΔB the identity map on B, that is ΔB(b) = b for every
b ∈ B. Clearly pr1ΔB = pr2ΔB = B.
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The set FA of all partial transformations of A is a semigroup under the
natural composition of functions. If f, g ∈ FA then their composition g◦f ∈ FA

is defined as follows: g ◦ f(a) = g(f(a)) for every a ∈ A. Both sides of that
equality are defined or not defined simultaneously, that is, g ◦ f(a) is defined
exactly when both f(a) and g(f(a)) are defined. In particular, the product of
two nonempty functions may be the empty function.

A partial transformation f is called one-to-one if it satisfies (∀a, b ∈ A) [f(a) =
f(b) ⇒ a = b], i.e. if f(a) = f(b) implies a = b for any a, b ∈ A for which both
f(a) and f(b) are defined. In other words, a one-to-one partial transformation
of A is a one-to-one mapping of a subset of A into A. It is easy to see that the
set IA of all one-to-one partial transformations of a set A is a subsemigroup
of FA. Moreover, IA is an inverse semigroup called the symmetric inverse
semigroup of (all) one-to-one partial transformations of A.

Observe that for any two partial transformations f, g ∈ IA,

f � g ⇐⇒ f ⊆ g.

We consider a partial transformation as a binary relation. In particular,
f = {(a, f(a)) | a ∈ pr1f}. This explains our notation f ⊆ g.

Here f ⊆ g means that f is a restriction of g to a smaller domain (or,
equivalently, g is an extension of f to a larger domain). In other words, f(a) =
g(a) for every a ∈ pr1 f .

The set of all (full) transformations of A together with the natural compo-
sition of functions is also a semigroup called the full transformation semigroup
of a set A or (the symmetric semigroup of A) and denoted by TA.

Clearly, TA is a subsemigroup of FA but it is not a subsemigroup of IA.
Also it is not hard to see that TA is a regular semigroup, but it is not an inverse
semigroup, unless |A| ≤ 1.

A one-to-one mapping of A onto itself is called a permutation of A. The
set GA of all permutations of A forms a group (the symmetric group) on A.
This group is the group of units (that is, the elements invertible in the sense
of group theory) of IA. The group GA is contained in both, IA and TA.

Clearly, the groups are precisely those inverse semigroups in which the nat-
ural partial order is equality.

2. Maximal Clifford inverse subsemigroups of TA
2.1 Wagner’s transformation ϕ̃

Now let A be an arbitrary set and TA the full transformation semigroup on the
set A.

Suppose that Φ is an inverse subsemigroup of TA and EΦ is the semilattice of
idempotents of Φ. For every ϕ ∈ Φ define ϕ̃ = ϕΔpr2ϕ−1 . Let Φ̃ = {ϕ̃ : ϕ ∈ Φ}.
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Then Φ̃ is an inverse semigroup of partial one-to-one transformations of A and
the correspondence ϕ �→ ϕ̃ is an isomorphism of Φ onto Φ̃. This result belongs
to Wagner [6].

Let Ψ be an inverse subsemigroup of IA. Is it possible to find an inverse
subsemigroup Φ of TA such that Ψ = Φ̃? If yes, is Φ uniquely determined?
Generally speaking, we have negative answers to both questions. For example,
IA = Φ̃ for all Φ ⊂ TA. Also, it is not difficult to find two inverse semigroups
Φ1,Φ2 ⊂ TA such that Φ1 = Φ2 but Φ̃1 = Φ̃2 as shown next.

Example 2.1.1. Let |A| = 3 and formally let A = {1, 2, 3}. It is easy to check

that Φ1 = {
(

1 2 3
1 1 3

)
,

(
1 2 3
1 1 1

)
} and

Φ2 = {
(

1 2 3
1 3 3

)
,

(
1 2 3
1 1 1

)
} are inverse semigroups and Φ1 = Φ2

but Φ̃1 = Φ̃2 = {
(

1 3
1 3

)
,

(
1
1

)
}.

Thus, given Φ̃, we cannot “recover” Φ. However, if we know both Φ̃ and
EΦ, then it is possible to reconstruct Φ. Indeed, ϕ = ϕ̃ϕ−1ϕ for every ϕ ∈ Φ.
Now, ϕ−1ϕ is the only idempotent in EΦ such that pr2ϕ

−1ϕ = pr2ϕ
−1 and also

pr2ϕ = pr2ϕ̃. Thus, given ϕ̃ ∈ Φ̃, we take the only idempotent χ ∈ EΦ such
that pr2χ = pr2ϕ̃

−1ϕ̃ and see that ϕ = ϕ̃χ.
It follows that every inverse semigroup Φ of transformations of a set A can

be constructed from the isomorphic inverse semigroup Φ̃ of one-to-one partial
transformations of A and the subsemilattice EΦ of TA.

This technique is also discribed in detail in [2] and used in [4].
We will use it in the next section to classify the Maximal Clifford inverse

subsemigroups of TA with maximal semilattices of idempotents.

2.2 Maximal Clifford inverse subsemigroups of TA

Recall that inverse semigroup is called Clifford inverse if its idempotents belong
to the center of the semigroup. Since ϕ−1ϕ = ϕϕ−1 for any ϕ in a Clifford
inverse subsemigroup Φ of TA it is not hard to see that ϕ̃−1ϕ̃ = ϕ̃ϕ̃−1 and
hence pr1ϕ̃ = pr2ϕ̃ = pr2ϕ.

The following proposition gives necessary and sufficient conditions for an
inverse subsemigroup of TA to be a Clifford inverse semigroup.

Proposition 2.2.1. An inverse subsemigroup Φ of TA is Clifford if and only
if, for every ϕ ∈ Φ and ψ ∈ EΦ such that pr2ψ ⊆ pr2ϕ, ϕ̃ψ = ψϕ.

Proof. If Φ is Clifford and pr2ψ ⊆ pr2ϕ, then ϕ̃ϕ̃−1 = ϕ̃−1ϕ̃ and hence
pr1ϕ̃ = pr2ϕ̃ so that pr2ψ ⊆ pr2ϕ = pr2ϕ̃ = pr1ϕ̃, and hence ϕ̃ψ = ϕψ = ψϕ
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because idempotents of Φ are central, that is, they commute with all elements
of Φ.

Conversely, suppose that ϕ̃ψ = ψϕ for all ϕ ∈ Φ and ψ ∈ EΦ such that
pr2ψ ⊆ pr2ϕ. Clearly, pr1ψϕ = A, and hence pr1ϕ̃ψ = A. Thus pr2ψ ⊆
pr1ϕ̃ = pr2ϕ

−1. Let ψ = ϕ−1ϕ. Then pr2ψ = pr2ϕ
−1 = pr1ϕ̃, so that ϕ̃ψ =

ϕψ = ψϕ. Thus ϕ = ϕϕ−1ϕ = ϕ−1ϕϕ. It follows that ϕϕ−1 = ϕ−1ϕϕϕ−1,
that is, ϕϕ−1 � ϕ−1ϕ for all ϕ ∈ Φ. Here � denotes the natural (canonical)
order relation of Φ, as defined in the Preliminary Section. Replacing ϕ−1 by ϕ
we obtain that ϕ−1ϕ � ϕϕ−1, that is, ϕ−1ϕ = ϕϕ−1 for all ϕ ∈ Φ, and hence
Φ is Clifford. �

Let Φ be a Clifford inverse subsemigroup of TA with the semilattice EΦ

of idempotents. If ϕ ∈ Φ then ϕ−1ϕ = ϕϕ−1 = f is an idempotent in EΦ.
Observe that ϕ̃−1ϕ̃ = ϕ̃ϕ̃−1 and hence pr1ϕ̃ = pr2ϕ̃ = pr2ϕ. Now let f ∈ EΦ

with pr2f = B and let α ∈ GB be a permutation of B.

Definition 2.2.1. We say that α, as described above, is a local automorphism
of e ∈ EΦ if pr2e ⊆ B and αeα−1 = e|B. In other words, α is a local automor-
phism of e precisely when pr2e ⊆ B and [∀a, b ∈ B] e(a) = b ⇔ eα(a) = α(b).

Observe from the definition that any local automorphism is a partial one-
to-one map, that is, any local automorphism is an element of IA. Next we prove
that for an element ϕ of a Clifford inverse subsemigroup of TA, the correspond-
ing Wagner’s transformation ϕ̃ is a local automorphism for all idempotents of
that subsemigroup which are no grater (in canonical sense) then the idempotent
ϕ−1ϕ.

Proposition 2.2.2. Let Φ be a Clifford inverse subsemigroup of TA with the
semilattice EΦ of idempotents and let ϕ be an element of Φ such that ϕ−1ϕ =
f ∈ EΦ. Then ϕ̃eϕ̃−1 = epr2ϕ for every e ∈ EΦ such that e � f. In other words,
ϕ̃ is a local automorphism of e for every e � f.

Proof. Let Φ be a Clifford inverse subsemigroup of TA with the semilattice
EΦ of idempotents and let ϕ be an element of Φ such that ϕ−1ϕ = f ∈ EΦ.
Suppose that ϕ̃fϕ̃−1(a) exists for some a ∈ A. Then a = ϕ̃(b) for some b ∈ B.
Therefore, b ∈ pr2f , and hence f(b) = b. It follows that ϕ̃fϕ̃−1(a) = ϕ̃f(b) =
ϕ̃(b) = a. Conversely, if a ∈ pr2ϕ then ϕ̃−1(a) exists because pr2ϕ̃ = pr2ϕ.
Let ϕ̃−1(a) = b. Then f(b) = b because b ∈ pr1ϕ̃ = pr2f . Thus ϕ̃fϕ̃−1(a) =
ϕ̃f(b) = ϕ̃(b) = a. Therefore, ϕ̃fϕ̃−1 = Δpr2ϕ.

By Proposition 2.2.1, ϕ̃e = eϕ for every e ∈ EΦ such that pr2e ⊆ pr2f.
Recall that ϕ = ϕ̃f and hence ϕ̃e = eϕ̃f . Multiplying this by ϕ̃−1 on the right
we obtain ϕ̃eϕ̃−1 = eϕ̃fϕ̃−1 = eΔpr2ϕ = e|B , where B = pr1ϕ̃ = pr2ϕ. �

Now we are at the point where we can classify the maximal Clifford inverse
subsemigroups of TA with maximal semilattices of idempotents.
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Theorem 2.2.1. Let E be a subsemilattice of TA and Φ̃E the set of all local
automorphisms of E . For each α̃ ∈ Φ̃E there is a unique element fα̃ ∈ E such
that pr2fα̃ = pr1α̃. Denote α̂ = α̃fα̃. Then the set Φ̂E is the greatest among
all Clifford inverse subsemigroups Ψ of TA, for which E is their semilattice of
idempotents (that is, EΨ = E).

Proof. First observe that if α is a local automorphism of E so is α−1, since
αeα−1 = e|B = α−1eα = α−1e(α−1)−1

.

So for every α̂ = α̃f ∈ Φ̂E , both α̃ and α̃−1 belong to Φ̃E and also pr1α̃ =
pr2α̃ = pr1α̃

−1 = pr2α̃
−1 = pr2f = B, since α̃ and α̃−1 are permutations of

B = pr2f. Clearly, β̂ = α̃−1f is an inverse of α̂, since

α̂β̂α̂ = α̃fα̃−1fα̃f = α̃f [α̃−1fα̃]f = α̃ff |Bf = α̃f = α̂

and is the only element with this property (since α̃−1 is the only inverse of α̃.)
Hence, for any α̂ ∈ Φ̂E we have α̂−1 ∈ Φ̂E .

To prove that Φ̂E is closed under multiplication of transformations assume
that α̂, β̂ ∈ Φ̂E . Then α̂ = α̃fα̃ and β̂ = β̃fβ̃ for uniquely determined fα̃, fβ̃ ∈ E
with pr2fα̃ = pr1α̃ = B ⊆ A and pr2fβ̃ = pr1β̃ = C ⊆ A.

Since fβ̃ and fα̃ are elements of a subsemilattice, their product is also an
idempotent in E . Thus e = fβ̃fα̃ ∈ E and also, pr2e = D = pr2fα̃ ∩ pr2fβ̃ , that
is, D = B ∩ C.

By e � fα̃ and α̃ local automorphism of E it follows that α̃ is a local
automorphism of e, and hence α̃eα̃−1 = e|B. Similarly, pr2e ⊆ pr2fβ̃ and so
β̃eβ̃−1 = e|C .

The product of the partial maps α̃ and β̃ is defined on the inverse image
under β̃ of the intersection of the second projection of the first with the first
projection of the second, and so pr1γ̃ ⊆ D where γ̃ = α̃β̃. So γ̃ is a permutation
on D1 = pr2γ̃ ⊆ D and γ̃ is a local automorphism of every e′ � e where
e′ ∈ E and pr2e

′ ⊆ D1. To clarify this last statement observe that α̃ is a local
automorphism of e′ and β̃ is a local automorphism of e′ and if e′(a) = b for
every a, b ∈ D,

e′α̃β̃(a) = α̃(e′β̃(a)) = α̃(β̃(b)) = α̃β̃(b).

So γ̃ ∈ Φ̃E . Finally, α̂β̂ = α̃fα̃β̃fβ̃ = γ̃e ∈ Φ̂E .
On the other hand, for every α̂ ∈ Φ̂E we have

α̂α̂−1 = α̃fα̃α̃
−1fα̃ = fα̃ = α̂−1α̂.

Therefore, Φ̂E is a Clifford inverse subsemigroup of TA.

Further, suppose that Φ̂E ⊂ Ψ, where Ψ is a Clifford inverse semigroup with
semilattice of idempotents E . Then there exists ϕ ∈ Ψ such that ϕ ∈ Φ̂E and
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ϕ−1ϕ ∈ E . By Proposition 2.2.2 ϕ̃ is a local automorphism of ϕ−1ϕ and ϕ̃ ∈ Φ̃E
since Φ̃E is the set of all local automorphisms of E . Thus ϕ = ϕ(ϕ−1ϕ) =
ϕ̃(ϕ−1ϕ) is an element of Φ̂E , which contradicts the assumption that ϕ ∈ Φ̂E .
Therefore, Φ̂E is a maximal Clifford inverse subsemigroup of TA.

�
Straightforward corollary from the above theorem follows.

Corollary. If E is a maximal subsemilattice of TA then Φ̂E is a maximal
Clifford inverse subsemigroup of TA. If S is a maximal Clifford inverse sub-
semigroup of TA with semilattice of idempotents E then S = Φ̂E .

3. Maximal Clifford inverse subsemigroups of IA
The goal in this section is to classify maximal Clifford inverse subsemigroups
of IA, that is, the semigroup of all partial one-to-one transformations of a set
A onto itself, without any restrictions over the cardinality of A. In addition,
we study the relationships between Clifford inverse subsemigroups of IA and
the equivalence relations on A. A classification of the maximal Clifford inverse
subsemigroups of IA in the finite case is obtained in [8]. Here we also generalize
some of the computational results in [8] for a finite set A and add a few
additional results.

Let ε be an equivalence relation on a set A. Consider the set Gε of all
permutations of A that map each equivalence class of ε onto itself. In other
words, ϕ ∈ Gε if and only if ϕ(K) = K for every ε-class K. Obviously, Gε is a
permutation group.

A subset B ⊆ A is called ε-saturated if it is a union of equivalence classes
of ε. Thus B is ε-saturated exactly when it satisfies the following condition:
a ∈ B and (a, b) ∈ ε imply b ∈ B for all a, b ∈ A.

Let Iε denote the set of all restrictions of permutations from Gε to arbitrary
ε-saturated subsets of A. The elements of Iε are precisely permutations ϕ
of arbitrary ε-saturated subsets B of A such that ϕ preserves all ε-classes
contained in B. It is easy to see that Iε is a Clifford inverse semigroup of one-
to-one partial transformations of A. Indeed, all of its elements are such partial
transformations. If ϕ ∈ Iε then ϕ−1 ∈ Iε, where ϕ−1 denotes the one-to-one
partial transformation inverse to ϕ. Clearly, ϕ−1 ◦ ϕ = ϕ ◦ ϕ−1 = ΔB, where
B is the domain, denoted pr1ϕ, (and hence also the range, denoted pr2ϕ) of ϕ.
Finally, if ϕ, ψ ∈ Iε, where ϕ is a permutation of B and ψ a permutation of C
for some ε-saturated subsets B and C of A, then ψ ◦ ϕ is a permutation of the
ε-saturated subset B ∩ C. Clearly, this product of two partial permutations is
an element of Iε.

The following theorem gives a classification of the maximal Clifford inverse
subsemigroups of IA in terms of the structures Iε described above and it is the
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central result in this section.

Theorem 3.1 Iε is a maximal Clifford inverse subsemigroup of IA. Con-
versely, every maximal Clifford inverse subsemigroup of IA coincides with Iε

for a suitable equivalence relation ε on A.

Proof. Suppose that Iε ⊂ Ψ, where Ψ is a Clifford inverse subsemigroup
of IA. Let ψ ∈ Ψ\Iε. Then ψ−1 ◦ ψ ∈ Ψ. Here ψ−1 ◦ ψ = ΔB , where
B = pr1ψ. Since ΔB is an idempotent in Ψ it follows that ΔB commutes
with each element ϕ of Iε. Clearly, ΔB is not the empty transformation (and
thus B = ∅) since otherwise ψ would be the empty transformation and so ψ
would belong to Iε which would contradict the original assumption. Thus,
there are (at least one) ε-classes, which have non-empty intersection with B.
If B is not ε-saturated, then there exists a non-singleton ε-class, say K, such
that a, b ∈ K and a /∈ B, b ∈ B. Consider the transformation ϕ = (a, b), where
(a, b) is a transposition of K interchanging a and b. Clearly ϕ ∈ Iε, and hence
ϕ◦ΔB = ΔB ◦ϕ on one hand, but on the other the left handside of the identity,
ϕ ◦ ΔB(a) is undefined at a while the right handside ΔB ◦ ϕ(a) = b. The last
contradiction shows that B is ε-saturated.

Thus B is a union of ε-classes. Choose one of these classes, say, L. Then
ΔL ∈ Iε, and hence ψ ◦ΔL = ΔL ◦ψ. The last identity is possible if and only if
ψ(L) = L, therefore, ψ is a permutation of L. Thus the domain of ψ is a union
of ε-classes and ψ(L) = L for each of these ε-classes. It follows that ψ ∈ Iε,
and hence Ψ = Iε. That proves the first claim of Theorem 3.1.

Now suppose that Ψ is a maximal Clifford inverse subsemigroup of IA.
Choose a binary relation πΨ on A defined as follows:

(a, b) ∈ πΨ ⇔ (∀ϕ ∈ Ψ){a ∈ pr1ϕ⇔ b ∈ pr1ϕ}.

Clearly, πΨ is an equivalence relation on A.
Let us write π instead of πΨ when the semigroup Ψ is specified. We are

going to prove that Ψ = Iπ .
Let ψ ∈ Ψ. From the definition of π it follows directly that the domain of

ψ is π-saturated. Further, let a ∈ pr1ψ and ψ(a) = c. Then ψ−1(c) = a and
from ψ ◦ ψ−1 = ψ−1 ◦ ψ it follows that a ∈ pr1ψ

−1 and c ∈ pr1ψ.
Finally, for any ϕ ∈ Ψ such that a ∈ pr1ϕ, recall that ϕ−1 ∈ Ψ and ϕ−1 ◦ϕ

is an idempotent in Ψ that commutes with any element of Ψ, thus

c = ψ ◦ ϕ−1 ◦ ϕ(a) = ϕ−1 ◦ ϕ ◦ ψ(a) = ϕ−1 ◦ ϕ(c),

that is ϕ(c) is defined and c ∈ pr1ϕ. Hence aπc and ψ preserves the π classes
K.

Thus ψ(K) = K, and hence ψ ∈ Iπ so that Ψ ⊆ Iπ. By the maximality of
Ψ, Ψ = Iπ. �
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Clearly the relationship πΨ is an equivalence relation and Ψ ⊆ IπΨ for every
Clifford inverse subsemigroup Ψ of IA. It turns out that π is not necessarily
the only equivalence relation of A with this property.

Define the following binary relation τΨ on A: τΨ =
⋃

Ψ, that is, τΨ is the
transitivity relation of Ψ. In other words,

τΨ = {(a, b) | ψ(a) = b for some ψ ∈ Ψ}.

Indeed, τ is obviously a transitive binary relation. It is symmetric because
ψ(a) = b ⇒ ψ−1(b) = a. It is reflexive in the case of maximal Clifford inverse
subsemigroup Ψ of IA, because ΔA ∈ Ψ for, otherwise, Ψ ∪ {ΔA} is a Clifford
inverse subsemigroup of IA that properly contains Ψ, which contradicts the
maximality of Ψ. Thus τ is an equivalence relation on A.

In general τ is not necessarily reflexive for an arbitrary Clifford inverse
subsemigroup, since some element of A may not be mapped into itself for any
element of Ψ. So we redefine τ as:

τΨ = {(a, b) | ψ(a) = b for some ψ ∈ Ψ} ∪ ΔA,

where ΔA = {(x, x) | x ∈ A}, the diagonal on A, (the smallest equivalence
relation on A).

Now τΨ is an equivalence relation and Ψ ⊆ IτΨ for every Clifford inverse
subsemigroup Ψ of IA.

Proposition 3.1. Let ε be an equivalence relation on a set A. A Clifford
inverse semigroup Ψ of partial permutations of A is contained in the maximal
Clifford inverse semigroup Iε if an only if τΨ ⊆ ε ⊆ πΨ. Thus, the equivalence
relations ε on A such that Ψ ⊆ Iε form the interval [τΨ, πΨ] in the lattice of
all equivalence relations on A.

Proof. Let Ψ ⊆ Iε. Suppose that (a, b) ∈ τΨ, that is, a = b or ϕ(a) = b for
some ϕ ∈ Ψ. In the former case (a, b) ∈ ε. In the latter case b belongs to the
same ε-class as a because ϕ permutes this class. Thus (a, b) ∈ ε, and so τΨ ⊆ ε.

Now suppose that (a, b) ∈ ε for some a, b ∈ A and a ∈ pr1ϕ for an idempo-
tent ϕ of Ψ. Since all elements of Ψ are partial one-to-one maps, then ϕ(a) = a
and, since pr1ϕ is ε-saturated, b ∈ pr1ϕ. Similarly, b ∈ pr1ϕ ⇒ a ∈ pr1ϕ.
Therefore, (a, b) ∈ πΨ and so ε ⊆ πΨ.

Let η be an equivalence relation on A such that τΨ ⊆ η and let K be an
η-class. If a ∈ A, ϕ ∈ Ψ, and ϕ(a) is defined, then (a, ϕ(a)) ∈ τΨ ⊆ η, and
hence ϕ(a) ∈ K. Therefore, ϕ maps K into itself, that is, ϕ|K is a partial
permutation of K. Now, if η ⊆ πΨ and ϕ(a) is defined, then ϕ−1 ◦ ϕ(a) is
defined so that a ∈ pr1ϕ

−1 ◦ ϕ. If (a, b) ∈ η, then (a, b) ∈ πΨ, and hence
b ∈ pr1ϕ

−1 ◦ϕ. Therefore, ϕ(b) is defined. We obtain a ∈ pr1ϕ⇔ b ∈ pr1ϕ for
all ϕ ∈ Ψ so that Ψ is η-saturated. �
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Remark Observe that we proved a little more: Let Ψ be a Clifford inverse
semigroup of partial one-to-one transformations of a set A and ε an equivalence
relation on A. Then

a. ϕ(K) ⊆ K for every equivalence class K of ε and every ϕ ∈ Ψ if and only
if τΨ ⊆ ε;

b. Ψ is ε-saturated if and only if ε ⊆ πΨ.

�
We may write τ and π instead of τΨ and πΨ when the semigroup Ψ is

specified.
Further, since τ ⊆ π for every Clifford inverse subsemigroup of partial

permutations of IA, clearly every π-class is a union of τ -classes.
Consider a finite set A with |A| > 0 and let K1, K2, . . . , Kp be the equiv-

alence classes of π and L1, L2, . . . , Lq those of τ, and let lki be the number of
L classes that are contained in the Ki class. Then the following result holds
for every Clifford inverse semigroup Ψ of partial permutations of A :

Corollary 3.1. The number of the maximal Clifford inverse subsemigroups of
IA that contain Ψ is:

p∏
i=1

[
lki∑
j=1

S(lki , j)],

where S(n, k) =
1
k!

k−1∑
i=0

(−1)i

(
k

i

)
(k − i)n is the Stirling number of the second

kind.

Proof. Without loss of generality assume that the first lk1 classes of τ form
the K1 class of π, i.e.

K1 = ∪lk1
i=1Li.

Every equivalence relation ε for which τ ⊆ ε ⊆ π has a partition that
contains the Li classes and is contained in the K1 class. The number of all such
partitions is the sum of the Stirling numbers S(lk1 , i) from 1 to lk1 . Combining
all such partitions for every π-class we obtain the above formula. �

Example 3.1. Clearly, each of the following Clifford inverse subsemigroups of
IA :

Ψ1 = {∅}, Ψ2 = {ΔA}, Ψ3 = Ψ1 ∪ Ψ2 = {∅, ΔA},

is contained in every maximal Clifford inverse subsemigroup of IA.
For each of Ψi, i = 1, 2, 3 we have τΨi = ΔA - the smallest equivalence

relation on A and πΨi = ω the universal equivalence relation on A. Thus, p = 1
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and lki = |A|, and substituting into the formula from Corollary 3.1 we obtain
that the total number of the maximal Clifford inverse subsemigroups of IA is
|A|∑
j=1

S(|A|, j).

To finish the discussion about the relationship of τ, π and Clifford inverse
subsemigroups of IA, consider the following proposition.

Proposition 3.2. Let Φ be a subsemigroup of IA. Then:
1) If Φ is a maximal Clifford inverse subsemigroup of IA then πΦ = τΦ;

2) If |A| <∞ and πΦ = τΦ then Φ is a Clifford inverse subsemigroup of IA

and Φ ⊆ Iπ;

3) Φ is a maximal Clifford inverse subsemigroup of IA if and only if
Φ ∼=

∏
i∈I G∗

Ki
, where G∗

Ki
is the symmetric group with adjoint empty trans-

formation on the π-equivalence class Ki, that is, the group with zero of all
bijective maps of the set Ki onto itself with the empty map as a zero element.

Proof. 1) We proved already that Φ = Iτ . What is left to prove is that
Φ ⊆ Iπ.

Let ϕ ∈ Φ. By the definition of π, pr1ϕ is π−saturated.
Let K be a π−class such that K ⊆ pr1ϕ.
Assume that ϕ(K) = K. Then there exists a ∈ K such that ϕ(a) = b ∈ K.

Since (a, b) ∈ π there exists ψ ∈ Φ such that ψ(a) is undefined and ψ(b)
defined (or the other way around). Observe that in the first case we reach
a contradiction with ϕ ◦ (ψ−1 ◦ ψ)(a) that is undefined, but (ψ−1 ◦ ψ) ◦ ϕ(a)
defined, and in the later case with ϕ−1 ◦ (ψ−1 ◦ ψ)(b) that is undefined, but
(ψ−1 ◦ ψ) ◦ ϕ−1(b) defined.

Therefore, ϕ(K) = K and so Φ ⊆ Iπ .

2) Let |A| < ∞, τ = π and let ϕ ∈ Φ. Clearly π is an equivalence relation
on A for any subsemigroup of IA and since τ = π, then τ is an equivalence
relation on A.

Recall that the elements of IA are partial one-to-one maps and every el-
ement has a unique inverse. Thus, ϕ−1 ∈ IA and pr1ϕ = pr2ϕ

−1, pr2ϕ =
pr1ϕ

−1. And also

ϕ ◦ ϕ−1 = Δpr1ϕ−1 and ϕ−1 ◦ ϕ = Δpr1ϕ.

Further, let a ∈ pr1ϕ and ϕ(a) = b ∈ pr2ϕ. Then (a, b) ∈ τ and so (a, b) ∈ π,
therefore b ∈ pr1ϕ that is pr2ϕ ⊆ pr1ϕ. Since A is finite set, it follows that
pr2ϕ = pr1ϕ. Finally, from τ an equivalence relation we have (a, b) ∈ τ, which
implies (b, a) ∈ τ, that is, there exists ψ ∈ Φ, such that ψ(b) = a. From
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(b, a) ∈ π it follows that pr1ψ = pr1ϕ. From Φ semigroup (in particular closed
under composition) it follows that ϕ−1 belongs to Φ and pr1ϕ−1 = pr1ϕ. Thus
ϕ ◦ ϕ−1 = ϕ−1 ◦ ϕ for every ϕ ∈ Φ, that is Φ is Clifford inverse semigroup.

On the other hand, the domain of ϕ is π-saturated and preserves the equiv-
alence classes by construction, so Φ ⊆ Iπ .

3) Let Φ be a maximal Clifford inverse subsemigroup of IA. By Theorem ,
Φ = Iπ.

For every ϕ ∈ Φ let ϕKi be the restriction of ϕ to the π-class Ki. Again
by Theorem , such restriction is either an empty map or a permutation on Ki.
Thus, Φ|Ki ⊆ G∗

Ki
. On the other hand Φ = Iπ contains all restrictions of a

permutations of Gπ to an arbitrary π-saturated subset of A. Thus, G∗
Ki

⊆ Φ|Ki.

Clearly, ϕ =
⋃

i∈I ϕKi , that is, ϕ is a direct sum of its restrictions to the
different equivalence classes Ki of πΦ and two different maps of Φ will differ on
at least one such restriction. So there exists a one-to-one correspondence ϕ↔
(ϕKi )i∈I . This correspondence is also surjective, since Φ is maximal Clifford
inverse. Thus Φ ∼=

∏
i∈I G∗

Ki
.

Conversely, if Φ ∼=
∏

i∈I G∗
Ki
, then consider the map ϕ↔ (ϕ|K1⊕ϕ|K2⊕· · · )

that maps each element of Φ to the direct product of its restrictions over the
equivalence classes of πΦ. Clearly, this map is an isomorphism between Φ and∏

i∈I G∗
Ki
, and so the elements of Φ are precisely permutations ϕ of arbitrary

π-saturated subsets B of A such that ϕ preserves all π-classes contained in B,
that is, Φ is maximal Clifford inverse subsemigroup of IA.

�

From here to the end of the work we consider a finite set A.
First we start with a computation of the elements of a maximal Clifford

inverse subsemigroup of IA.

Corollary 3.1. Let A be a finite set with n > 0 elements and ε an equiva-
lence relation on A with m equivalence classes K1, K2, . . . , Km of cardinalities
k1, k2, . . . , km, respectively (in particular,

∑m
i=1 ki = n). The maximal Clifford

inverse semigroup Iε is isomorphic to
∏m

i=1 G∗
Ki
, and has |Iε| =

∏m
i=1(ki! + 1)

elements.

Proof. The first statement follows from Proposition . Since |A| < ∞, obvi-
ously for every ϕ ∈ Iε we have ϕ =

⋃m
i=1 ϕi, and the one-to-one correspondence

between Iε and
∏m

i=1 G∗
Ki

is defined as ϕ↔ (ϕ1, ϕ2, . . . , ϕm). By Theorem , for
every i either pr1ϕi = Ki or pr1ϕi = ∅. In the former case, ϕi is a permutation
of Ki, and hence ϕi ∈ GKi. In the latter case, ϕi = ∅. If ϕi ∈ GKi, then there
are ni! ways to choose ϕi. If Ki ⊆ pr1ϕ, then ϕi is the zero element of IKi and
there is only one way to choose ϕi. Altogether we have ni + 1 choices for each
ϕi, and hence there exist

∏m
i=1(ki! + 1) choices for arbitrary elements of Iε. �
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Example 3.2. Let ω = A × A be the universal equivalence relation on a set
A of cardinality n. Thus, every two elements of A are ω-equivalent. Then
Iω = Gn ∪ {∅}, that is, we obtain the symmetric group on A with an empty
partial transformation of A adjoined. Clearly, |Iω| = n! + 1.

Now let ΔA = {(a, b) | a = b} be the equality relation on A. Then
IΔA = {ΔB : B ⊆ A}, and hence IΔA is isomorphic to the semilattice of all
subsets of A under the operation of set-theoretical intersection. This follows
from the fact that ΔB ◦ ΔC = ΔB∩C for all B,C ⊆ A. Clearly, |IΔA | = 2n.

Maximal Clifford inverse semigroups on the same set of points can have
very different numbers of elements.

The following corollary answers the question: For what equivalence relation
on a finate set A does the corresponding maximal Clifford inverse subsemigroup
of IA have a maximal (minimal) order and what is that order?

Corollary 3.2. Let A be a finite set with n > 0 elements, ε an equivalence
relation on A, and Iε a corresponding maximal Clifford inverse semigroup.
If n = 2m is even then the minimal order of Iε is 3m. In this case each
equivalence class of ε consists of exactly two elements. If n = 2m + 1 is odd
then the minimal order of Iε is 2 · 3m and each equivalence class of ε consists
of exactly two elements except one class that is a singleton.

The maximal order of Iε for n = 2, 3 is n! + 1 and it is achieved for ε = ω.
If n is 2 or 3, the maximal order of Iε is 4 or 8, respectively.

Proof. If n = 1 then ω = ΔA is the only equivalence relation on A and
|IA| = 1! + 1 = 2.

For n = 2 there are two different equivalence relations ω and ΔA with
|Iω| = 2! + 1 = 3 and |IΔA | = (1! + 1)2 = 4.

For n = 3 there are three types of equivalence relations on A: ω, ΔA, and
an equivalence relation ε with two classes that contain one and two elements
of A, respectively. It follows that |Iω| = 3! + 1 = 7, |IΔA | = (1! + 1)3 = 8 and
|Iε| = (1! + 1)(2! + 1) = 6.

For completeness’ sake, observe that if n = 0 (that is, A = ∅), then I∅
consists of a single empty transformation, and hence I∅ is a singleton.

Therefore, we may assume that n ≥ 4.
For n > 4, let Iε be a maximal Clifford inverse semigroup of minimal order

m. Suppose that ε has an equivalence class B with k > 2 elements in it.
From the formula for the order of maximal Clifford inverse semigroup with a
finite set A which we obtained in Corollary it follows that k! + 1|m. Split B
into two equivalence classes, one with two elements and the other with k − 2
elements. As a result, ε is replaced by another equivalence relation η. Observe
that k2 − k ≥ 6 and (k − 2)! ≥ 1 for k ≥ 3. Thus

k!+1 > k!−3(k−2)!+3 = (k2−k−3)(k−2)!+3 ≥ 3(k−2)!+3 = (2!+1)((k−2)!+1),
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and hence |Iε| = m >
m

k! + 1
(2! + 1)((k − 2)! + 1) = |Iη| contradicting the

minimality of the order of Iε. It follows that each ε-class has no more than
two elements.

If ε has two classes, {a} and {b}, each of them a singleton, applying again the
formula from Corollary , it follows that m is divisible by (1!+1)2 = 4. Replace
ε by a new equivalence relation η with an equivalence class {a, b} and all other

classes the same as in ε. Then |Iε| = m >
3
4
m =

m

(1! + 1)2
(2! + 1) = |Iη|,

again contradicting the minimality of the order of Iε. Thus all ε-classes consist
of two elements, except possibly one class consisting of a single element. This
completes the proof of the first part of our Corollary (for the minimal order of
a maximal Clifford semigroup).

Suppose now that 0 < k < n. Then

n!
k!(n− k)!

=
(
n

k

)
≥ n > 3 ≥ 1 +

1
k!

+
1

(n− k)!
=
k!(n− k)! + k! + (n− k)!

k!(n− k)!
.

Therefore,

|Iω| = n!+1 > k!(n−k)!+k!+ (n−k)!+ 1 = (k!+1)((n−k)!+1) = |Iε| (1)

for any equivalence relation ε with exactly two equivalence classes consisting
of k and n− k elements.

Assume, further, that

|Iω| = n! + 1 >
m∏

i=1

(ki! + 1) = |Iε| (2)

is true for any equivalence relation ε with m > 1 equivalence classes, and
consider an equivalence relation ε with m+ 1 equivalence classes, (m > 1).

Let Ki be an equivalence class of ε with cardinality ki, 1 ≤ i ≤ m+1. Then
the remaining m classes form an equivalence relation ε̄ on A \Ki and by the
inductive assumption (2) it follows that

|IωA\Ki
| = (n− ki)! + 1 >

m+1∏
j=1,j �=i

(kj ! + 1) = |Iε̄|. (3)

Multiplying both sides of the inequality (3) by (ki! + 1) we obtain

(ni! + 1)((n− ki)! + 1) > (ni! + 1)
m+1∏

j=1,j �=i

(kj! + 1) =
m+1∏
j=1

(kj! + 1). (4)

By (1) the lefthandside of (4) is smaller than n! + 1 and so
|Iω| = n! + 1 >

∏m+1
i=1 (ki! + 1) = |Iε| which completes the inductive steps.
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Thus, |Iω| = n! + 1 >
∏m

i=1(ki! + 1) = |Iε| is satisfied for any equivalence
relation ε with m > 1 equivalence classes. It follows that |Iω| is the maximal
Clifford semigroup with the greatest number of elements. �

Remark Here are the orders of the smallest and the largest maximal Clifford
semigroups min|Iε| and max|Iε|, respectively, for n ≤ 10:

n 1 2 3 4 5 6 7 8 9 10
min|Iε| 2 3 6 9 18 27 54 81 162 243
max|Iε| 2 4 8 25 121 721 5041 40,321 362,881 3,628,801
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