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Abstract

The paper presents a survey of recent results on a classification of
finite dimensional Hopf algebras with some restrictions on the category
of its finite dimensional modules.

1. Introduction

Hopf algebras play a substantial role in the theory of noncommutative rings,
noncommutative algebraic geometry and quantum groups.

One of the main problems in the theory of finite dimensional Hopf algebras
is a classification of these algebras up to an isomorphism. In order to solve the
problem it is necessary to find a list of main series of these algebras and to
show that any algebra belongs to this list if its dimension is sufficiently large.
Nowadays there is no satisfactory hypothesis concerning the main series. So it
is necessary to find a classification of finite dimension semisimple Hopf algebra
of under certain restrictions.

Suppose that H is a finite dimensional semisimple Hopf algebra over an
algebraically closed field k. It is assumed that char k is coprime with the
dimension of H . We shall assume that in each dimension d > 1 there exist
at most one irreducible H-modules of dimension d. Under these assumptions
there is found an explicit form of the counit and the antipode in H . In the
paper we are summarizing recent results on this problem.
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106 Hopf algebras

The topic of the paper is motivated by the results of G.M. Seitz on a charac-
terization of finite groups G having only one irreducible complex representation
of degree d > 1. A group G with this property is either an extraspecial 2-group
of order 22m+1, d = 2m, or |G| = d(d + 1), where d + 1 = pf , p a prime.

It is necessary to mention that semisimple Hopf algebras of dimension less
than 60 were considered in [11]. Another approach to a classification of semisim-
ple Hopf algebras is presented in [10].

2. Hopf algebras

In this section we shall remind basic notion in Hopf algebra theory from [9]. An
associative algebra H over a filed k is a Hopf algebra if there exist an algebra
homomorphisms of comultiplication Δ : H → H⊗2, of a counit ε : H → k and
algebra anti-homomorphism S : H → H , an antipode, such that the following
diagrams are commutative:

H
Δ ��

Δ

��

H⊗2

1⊗Δ

��
H⊗2

Δ⊗1
�� H⊗3

H
Δ ��

Δ

��

1

������������������������� H⊗2

1⊗ε

��
H⊗2

ε⊗1
�� H

H
Δ ��

Δ

��

ε

����������������������������������������� H⊗2
1⊗S �� H⊗2

μ

��
H⊗2

S⊗1
�� H⊗2

μ
�� k

where μ : H⊗2 → H is the multiplication map, [9]. Throughout the paper we
shall use Sweedler’s notation for comutiplication. If h ∈ H then

Δ(h) =
∑

h

h(1) ⊗ h(2) ∈ H ⊗ H (1)

For example any group algebra kG of a group G over a field k is a Hopf
algebra where

Δ(g) = g ⊗ g, ε(g) = 1, S(g) = g−1
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for any g ∈ G.
Another series of examples of Hopf algebras are universal (restricted) en-

veloping algebra U [3] of a Lie (restricted) algebra L. Comultiplication, counit
and antipode in U is defined as follows

Δ(x) = x ⊗ 1 + 1 ⊗ x, ε(x) = 0, S(x) = −x

for all x ∈ L [3, Chapter 2,1].
Suppose that k[G] is an algebra of regular functions on an algebraic group

G. Then k[G]⊗ k[G] is the algebra of regular functions on G × G. So k[G] is
a Hopf algebra in which

Δ(f)(x, y) = f(xy), ε(f) = f(1), S(f)(x) = f
(
x−1

)
.

If H has finite dimension then the dual space H∗ is a Hopf algebra with
convolutive multiplication l1∗l2, comultiplication Δ∗, counit ε∗ and an antipode
S∗ which are defined as follows

l1 ∗ l2 = μ · (l1 ⊗ l2) · Δ, Δ(l)(x ⊗ y) = l(xy),
(S∗l)(x) = l(S(x)), ε∗(l) = l(1)

for all x, y ∈ H .
In other words l1 ∗ l2 is obtained as a composition of maps

H
Δ �� H⊗2

l1⊗l2 �� k ⊗ k
μ �� k

An element g ∈ H is a group-like element if Δ(g) = g ⊗ g and ε(g) = 1.
The set G(H) of all group-like elements is a multiplicative group in H . If H is
a group algebra kG of a group G then G(kG) = G.

It is easy to check that an group-like elements of of the dual Hopf algebra
H∗ are just algebra homomorphisms H → k. In what follows we shall denote
by G the group G(H∗) of group-like elements of H∗.

An associative algebra A with a unit element is a left H-module algebra if
A is a left H-module and

h · (ab) =
∑

h

(
h(1) · a

) (
h(2) · b

)
, h · 1 = ε(h)1

for h ∈ H and a, b ∈ A. Here we use notation (1). Similarly one can define a
right H-module algebra.

If A is a left H-module algebra then each group-like element acts ac an alge-
bra automorphism of A. If H is a universal enveloping algebra of a Lie algebra
L then A is a left H-module algebra if and only if there is a representation of
L by derivations of the algebra A.
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If an associative algebra A is a left (right) H-module algebra then we also
say that there a left (right) action of H on A, or H measures A.

There are left and right actions of the dual Hopf algebra H∗ on the algebra
H which are denoted by H∗ ⇀ H, H ↼ H∗. These actions are defined as
follows: if f ∈ H∗, x ∈ H then in notations of (1) we have

f ⇀ x =
∑

x

x(1)〈f, x(2)〉, x ↼ f =
∑

x

〈f, x(1)〉x(2) (2)

In particular if g ∈ G(H∗) then g ⇀ x, x ↼ g are algebra automorphisms of
H .

If H is a Hopf algebra then tensor product of any two left H-modules P, Q
is again H-module. Namely, if h ∈ H is from (1) and p ∈ P, q ∈ Q, then

h · (p ⊗ q) =
∑

h

(
h(1) · p

) ⊗ (
h(2) · q

) ∈ P ⊗ Q.

It means that the category HM of left H-modules is a tensor category with
associative tensor product.

3. Direct decompositions and categories of mod-

ules

We shall consider the case when Hopf algebra H is a semisimple finite dimen-
sional algebra over an algebraically closed field k. It is assumed that either
char k = 0 or char k > dimH . Consider the set of its irreducible modules.
Modules of dimension 1 are in one-to-one correspondence with algebra homo-
morphism H → k. Thus we have one-dimensional H-modules Eg, g ∈ G,
assigned to elements g of the group G of group-like elements of G∗. More pre-
cise if x ∈ Eg then hx = 〈h, g〉x for any h ∈ H . The number of 1-dimensional
non-isomorphic H-modules Eg, g ∈ G, is equal to the order of G.

Denote by M1, . . . , Mn be irreducible H-modules of dimensions greater than
1. We shall assume that 1 < d1 = dimM1 < · · · < dn = dim Mn.

Since the basic field k is algebraically closed H as a k-algebra has a semisim-
ple decomposition

H = (⊕g∈Gkeg) ⊕ Mat(d1, k)⊕ · · · ⊕ Mat(dn, k),

1 < d1 < · · · < dn.

(3)

where {eg | g ∈ G} is a system of central orthogonal idempotents in H .
Throughout the rest of the paper we shall fix decomposition (3)

The number of 1-dimensional non-isomorphic H-modules Eg, g ∈ G, is
equal to the order of G.
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The problem of a classification of Hopf algebra H with direct decomposition
(3) means that it is necessary to find an explicit form of a comultiplication Δ,
of a counit ε and of an antipode S. In the next section we shall expose result
on forms of Δ, ε, S. These results are based on a structure of a tensor category
of H-modules.

Theorem 3.1 [V. A. Artamonov] If g ∈ G and i = 1, . . . , n then there are
H-module isomorphisms

Eg ⊗ Mi 	 Mi ⊗ Eg 	 Mi,

Mi ⊗ Mj 	 δij (⊕g∈GEg) ⊕
(⊕n

t=1m
t
ijMt

)
,

mt
ij = dimk HomH (Mi ⊗ Mj , Mt) � 0.

In particular didj = δij |G|+ ∑
t mt

ijdt and |G| � d2
1.

The multiplicities mt
ij satisfy the equations

ms
ij = mi

js, δijδls|G|+
n∑

t=1

mt
ijm

l
ts = δjsδli|G|+

n∑
t=1

mt
jsm

l
it

for all i, j, s, l = 1, . . . , n. In particular ms
ij = mi

js = mj
si and

δijδls|G|+
n∑

t=1

mj
tim

l
ts = δjsδli|G|+

n∑
t=1

mj
stm

l
it (4)

If i, j, p = 1, . . . , n, then mp
ij � dmin(i,j,p). Each H-module Mi is equipped

with a non-degenerate (skew-)symmetric bilinear function [x, y] such that

[hx, y] = [x, S(h)y]

for all h ∈ H and for all x, y ∈ M .

4. Classification theorem

We shall use some significant elements in tensor square of a full matrix algebra.
Denote by Rq the element

Rq =
1
dq

dq∑
i,j=1

Eij ⊗ Eji ∈ Mat(dq, k)⊗2. (5)

Here Eij ∈ Mat(dq, k) stands for matrix unit. Up to a scalar multiple element
R such that such that (A ⊗ B)Rq = Rq(B ⊗ A) for all A, B ∈ Mat(dq, k).

Each matrix constituent Mat(dq , k) in (3) is stable under the antipode S.
Moreover S2 = 1. By Noether-Skolem theorem there exist a (skew-)symmetric
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matrix Uq ∈ GL(dq, k) such that S(x) = Uq
txU−1

q for all x ∈ Mat(dq, k). Here
tx is the transpose of a matrix x.

It can be also shown that S(eg) = eg−1 for any central idempotent eg from
(3). So the form of the antipode is defined.

The next theorem present the form of a comultiplication Δ and a counit ε
in H .

Theorem 4.1 [V. A. Artamonov] Let g ∈ G and x ∈ Mat(dr, k) where
r = 1, . . . , n. Put Δq = (1 ⊗ S)Rq . Then

ε(eg) = δ1,g, ε(x) = 0

and

Δ(eg) =
∑
f∈G

ef ⊗ ef−1g +
∑

t=1,...,n

(1 ⊗ (g ⇀ ))Δt,

Δ(x) =
∑
g∈G

[(g ⇀ x) ⊗ eg + eg ⊗ (x ↼ g)] +
n∑

i,j=1

Δr
ij(x),

where Δr
ij(x) ∈ Mat(di, k)⊗ Mat(dj, k).

Theorem 4.2 [V. A. Artamonov] Let H be a semisimple Hopf algebra with
semisimple decomposition (3).

Suppose that there exists a matrix constituent Mat(di, k) which is a Hopf
ideal in H. Then n = 1.

Now we shall get more information of actions (2) of elements g ∈ G. As it
was mentioned above g ⇀, ↼ g are algebra automorphisms of H . It follows im-
mediately that each matrix component Mat(di, k) is stable under these actions.
There exists a projective representation Φi : G → PGL(di, k) = PGL(Mi)
such that g ⇀ x = Φi(g)xΦi(g)−1 for all x ∈ Mat(di, k). Moreover elements
Φi(g), S (Φi(v)) commute in PGL(Mi). We can always assume that Φi(1) is
the identity matrix and Φi

(
g−1

)
= Φi(g)−1 for all g ∈ G. It is easy to check

that the trace trΦi(g) = δg1di for any g ∈ G.
According to Shur’s theory [4, Chapter 7, §53] there exists a group G∗ with

a central normal subgroup N 	 H2(G, k∗) such that G∗/N 	 G and projective
representations of G are induced by a linear representation of G∗. If the group
G is Abelian then G∗ is nilpotent and therefor its irreducible representation
are monomial [4, Chapter 7, §52]. Using this theory we can prove

Theorem 4.4 [V. A. Artamonov] Suppose that the group G is nilpotent.
Taking an isomorphic copy of each matrix component in (3) we can assume
that matrices Φi(g), S (Φi(g)) are monomial for any i and any g ∈ G.

Recall that a matrix is monomial if in each row it contain only one non-
zero element. Each monomial matrix is a product of a diagonal matrix and a
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permutation matrix, which is obtained from identity matrix by a permutation
of rows.

Theorem 4.3 [V. A. Artamonov] Suppose that Φi induces an irreducible
projective representation of the group G on Mi. Then i = 1, the order of G is
equal to d2

1 and Δt
11 = 0 for all t = 1, . . . , n. In particular J = ⊕j�2 Mat(dj, k)

is a Hopf ideal in H and H/J is the Hopf algebra from Theorem 5.1 — 5.3.

5. The case n = 1.

Hopf algebras with n = 1 in the decomposition (3) were considered by several
authors. For simplicity we put d1 = d. If the order of G has maximal possible
value d2 then the group G is Abelian. In the paper [12] Hopf algebra H is
classified in terms of bicharacters of the group G using monoidal category HM.

If d = 2 then by [12] there exist up to equivalence four classes of semisimple
Hopf algebras H of dimension 8, namely group algebras of Abelian groups of
order 8, group algebras of dihedral group D4 and of quaternions Q8, and G. Kac
Hopf algebra H generated by elements x, y, z with defining relations

x2 = y2 = 1, xy = yx, zx = yz, zy = xz,

z2 =
1
2
(1 + x + y − xy),

ε(z) = 1, S(z) = z−1,

Δ(z) =
1
2

((1 + y) ⊗ 1 + (1 − y) ⊗ x) (z ⊗ z),

and x, y are group-like elements.
In the paper [13] there is given an explicit form of H if the order of G is d2

and either d is odd or the group G is an elementary Abelian 2-group.
Interesting results were obtained in [8]. Let H be a semisimple Hopf algebra

of dimension 2p2, where p is an odd integer. Then either H has a semisimple
decomposition (3) with n = 1, d = p and |G| = p2 or H is its dual and H has
a semisimple decomposition with 2p one-dimensional components and p(p−1)

2
components isomorphic ro Mat(2, k).

Theorem 5.1 [V. A. Artamonov, 2009] Let H be from (3) with n = 1 and
G = G(H∗). The order of G is divisible by d and is a divisor of d2.

The order of G is equal to d2 if and only if Δ1
11 = 0 in Theorem 4.1.

Under these restrictions any two Hopf algebras of the same dimensions 2d2 are
deformations of each other.

Recall that a Hopf algebra H ′ with a comultiplication Δ′, counit ε′ and an
antipode S′ is a deformation of H if H ′ = H as an algebra and there exists an
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invertible element

J =
∑

Ji ⊗ J ′
i ∈ H ⊗ H, Ji, J

′
i ∈ H,

such that[∑
i

(Δ(Ji) ⊗ J ′
i

]
(J ⊗ 1) =

[∑
i

Ji ⊗ Δ(J ′
i)

]
(1 ⊗ J) ∈ H⊗3,

∑
i

ε(Ji)J ′
i =

∑
i

Jiε(J ′
i) = 1 ∈ H.

Moreover ε′ = ε and

Δ′(h) = J−1Δ(h)J ∈ H ⊗ H, h ∈ H,

S′(h) = v−1S(h)v ∈ H, h ∈ H, v =
∑

i

S(Ji)J ′
i ∈ H.

Theorem 5.2 [Artamonov V.A., I.A. Chubarov, R. Mukhatov, 2007-2009]
Let H be from (3), n = 1 and G = G(H∗). The projective representation Φi

from § is faithful and irreducible representation . In particular G = A1×A2 for
some Abelian groups A1 	 A2 of order d. Moreover let N be the full preimage
of A1 in the Shur group G∗. Then there exists a one dimensional kN -module
M ′ in M1 and an isomorphism of kG∗-modules M1 	 kG∗ ⊗kN M ′. In other
terms Φ is induced by 1-dimensional representation of N .

Consider a converse situation.

Theorem 5.3 [Artamonov V.A., I.A. Chubarov, R. Mukhatov, 2007-2009]
Suppose that an algebra H has semisimple decomposition (3) with n = 1 and
G = A × A is an Abelian group, |A| = d. Take an irreducible projective
faithful representation Φ of degree n as in Theorem 5.2. Define left g ⇀ x as
Φi(g)xΦi(g)−1. Put S(eg) = eg−1 for any g ∈ G.

Then there exists a (skew-)symmetric matrix U ∈ GL(d, k) with the follow-
ing properties. The algebra H with

(i) a counit ε(eg) = δg1 , ε (Mat(d, k)) = 0;

(ii) with an antipode S(eg) = eg−1 , S(x) = U txU−1;

(iii) with right action x ↼ g = S(Ag)xS(Ag)−1;

(iv) with comuliplication

Δ(eg) =
∑
f∈G

ef ⊗ ef−1g +
∑

α,β=1,...,n

S (Eαβ) ⊗ (g ⇀ Eβα) ,

Δ(x) =
∑
g∈G

[(g ⇀ x) ⊗ eg + eg ⊗ (x ↼ g)]
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is a Hopf algebra. Here x ∈ Mat(d, k), g ∈ G.
Note that semisimple Hopf algebras of dimension 2p2 for an odd prime p in

the same case as in Theorem 5.3 were also classified in [8] in different terms. All
semisimple Hopf algebras of dimension 2p2 for an odd prime p were classified
in [N0]. All Hopf algebra of dimension 2p2 for an odd prime p were classified
in [7]. In this Theorem 5.3 we expand these results of an arbitrary n using the
language of projective representations of the group G.

Theorem 5.4 [1] Let H be from Theorem 5.3. An element

w =
∑
g∈G

χg,weg + Zw ∈ H,

with χg,w ∈ k, Zw ∈ Mat(d, k) is a group-like element from H if and only if
the following conditions are satisfied:

1) χgh,w = χg,wχh,w for all g, h ∈ G which means that χ∗,w is a character of
G;

2) g ⇀ Zw = χg,wZw = Zw ↼ g for every g ∈ G.

3) ZwU tZw = U .

Theorem 5.5 [Puninsky E., 2009] Under the assumption of Theorem 5.3
the order of G(H) is equal to 2d, provided d is an odd prime. The group G(H)
is Abelian.

Let H has decomposition (3) with arbitrary n. Each space Mat(di, k) is
equipped with a non-degenerate bilinear form

〈A, B〉 = tr (A · S(B)) = tr(A · Ui
tBU−1

i ) (6)

where S is the antipode. We shall identify the dual space of full matrix algebra
with itself via the form (6).

Proposition 5.6 [2] Let g ∈ G and X, Y ∈ Mat(di, k). The form (6) is
symmetric and

〈X, Y ↼ g〉 = 〈g ⇀ X, Y 〉
It means that the operators g ⇀, ↼ g are adjoint with respect to the symmetric
bilinear form (6).

Corollary 5.7 [2] Let H be from Theorem 5.2. If w, w′ ∈ G(H) in Theorem
5.4 and K = {w ∈ G(H) | χw,g = 1 ∀g ∈ G}. If w /∈ w′K then 〈Zw, Z′

w〉 = 0.
Moreover 〈Zw, Zw〉 = d1.

Denote by a ∗ b the convolution multiplication in H∗. Note that ε is the
unit element in H∗ which is equal to 1 ∈ G.
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Proposition 5.8 [2] Suppose that H is from Theorem 5.2. If g, h ∈ G and
X, Y ∈ Mat(d1, k)∗ then

g ∗ h = gh, g ∗ X = g ⇀ X, X ∗ g = X ↼ g,

X ∗ Y =
1
d1

∑
g∈G

〈Y ↼ g−1, X〉g.

Corollary 5.9 [2] Let H be from Theorem 5.2. Then H∗ is a Z2-graded
algebra with the grading H∗ = H∗

0 ⊕H∗
1 , where H∗

0 = kG and H∗
1 = Mat(d1, k).

Theorem 5.10 [2] Let H be from Theorem 5.2 and d > 2. Then H∗ is not
isomorphic to any Hopf algebra belonging to the class of Hopf algebras from
Theorem 5.2.

Previous results are based on

Theorem 5.11 [5] Let G be a finite Abelian group of and let k be an al-
gebraically closed field such that char k does not divide the order of G. The
group G admits a faithful irreducible projective representations of dimension
d over k if and only G is a direct product of two isomorphic groups of order
d. Dimensions of any irreducible projective representations of the group G are
equal either to d or to 1.

Theorem 5.12 [6] A finite abelian group G of order d2 has decomposi-
tion G 	 A × A if and only if it admits a non-degenerate bilinear symmetric
form. Any irreducible projective representation of G of degree d is obtained
from another one by an automorphism of G.

Theorem 5.13 [2] Let G be a finite group whose order is coprime with
char k. A projective representation Ω : G → PGL(d, k) such that

Ω(g−1) = Ω(g)−1, Ω(E) = E,

is irreducible if and only if

Rn =
1
|G|

∑
g∈G

Ω(g−1) ⊗ Ω(g)

where Rn is from (5).
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