INVERTIBLE MATRICES OVER SEMIFIELDS

R.I. Sararnrakskul*, S. Sombatboriboon ${ }^{\ddagger}$ and P. Lertwichitsilp ${ }^{\dagger}$
Department of Mathematics, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand e-mail: * ruangvarin@gmail.com
${ }^{\ddagger}$ Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
${ }^{\dagger}$ Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand e-mail: 1patch2@hotmail.com

Abstract

A semifield is a commutative semiring $(S,+, \cdot)$ with zero 0 and identity 1 such that ($S \backslash\{0\}, \cdot$) is a group. Then every field is a semifield. It is known that a square matrix A over a field F is an invertible matrix over F if and only if $\operatorname{det} A \neq 0$. In this paper, invertible matrices over a semifield which is not a field are characterized. It is shown that if S is a semifield which is not a field, then a square matrix A over S is an invertible matrix over S if and only if every row and every column of A contains exactly one nonzero element.

1 Introduction

A semiring is a triple $(S,+, \cdot)$ such that $(S,+)$ and (S, \cdot) are semigroups and for all $x, y, z \in S, x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$. A semiring $(S,+, \cdot)$ is called additively [multiplicatively] commutative if $x+y=y+x$ $[x \cdot y=y \cdot x]$ for all $x, y \in S$. We call $(S,+, \cdot)$ commutative if it is both additively and multiplicatively commutative. An element $0 \in S$ is called a zero

Key words: Semifield, invertible matrix
2000 AMS Mathematics Subject Classification: 16Y60, 15A09
of a semiring $(S,+, \cdot)$ if $x+0=0+x=x$ and $x \cdot 0=0 \cdot x=0$ for all $x \in S$ and by an identity of $(S,+, \cdot)$ we mean an element $1 \in S$ such that $x \cdot 1=1 \cdot x=x$ for all $x \in S$. Note that a zero and an identity of a semiring are unique.

If a semiring $(S,+, \cdot)$ has a zero 0 [an identity 1], we say that an element $x \in S$ is additively [multiplicatively] invertible over S if there exists an element $y \in S$ such that $x+y=y+x=0[x \cdot y=y \cdot x=1]$. Note that such a y is unique and may be written as $-x\left[x^{-1}\right]$. Observe that if x is additively invertible, then for all $a \in S, a x+a(-x)=a(x-x)=a 0=0, a(-x)+a x=a(-x+x)=a 0=0$, $x a+(-x) a=(x-x) a=0 a=0$ and $(-x) a+x a=(-x+x) a=0 a=0$. Thus $-a x=a(-x)$ and $-x a=(-x) a$. Since \cdot is distributive over + in a semiring $(S,+, \cdot)$, the following fact holds.

Proposition 1.1. Let S be a additively commutative semiring with zero 0. If x_{1}, \ldots, x_{k} are additively invertible over S, then $\sum_{i=1}^{k} a_{i} x_{i}$ and $\sum_{i=1}^{k} x_{i} a_{i}$ are additively invertible over S for all $a_{1}, \ldots, a_{k} \in S$. Moreover, $-\sum_{i=1}^{k} a_{i} x_{i}=$ $\sum_{i=1}^{k} a_{i}\left(-x_{i}\right)$ and $-\sum_{i=1}^{k} x_{i} a_{i}=\sum_{i=1}^{k}\left(-x_{i}\right) a_{i}$.
Proof Let x_{1}, \ldots, x_{k} be additively invertible in S and $a_{1}, \ldots, a_{k} \in S$. Then $\sum_{i=1}^{k} a_{i}\left(-x_{i}\right), \sum_{i=1}^{k}\left(-x_{i}\right) a_{i} \in S$. Since S is additively commutative,

$$
\begin{aligned}
& \sum_{i=1}^{k} a_{i} x_{i}+\sum_{i=1}^{k} a_{i}\left(-x_{i}\right)=\sum_{i=1}^{k}\left(a_{i} x_{i}+a_{i}\left(-x_{i}\right)\right)=\sum_{i=1}^{k} a_{i}\left(x_{i}-x_{i}\right)=\sum_{i=1}^{k} a_{i} 0=0 \\
& \sum_{i=1}^{k} x_{i} a_{i}+\sum_{i=1}^{k}\left(-x_{i}\right) a_{i}=\sum_{i=1}^{k}\left(x_{i} a_{i}+\left(-x_{i}\right) a_{i}\right)=\sum_{i=1}^{k}\left(x_{i}-x_{i}\right) a_{i}=\sum_{i=1}^{k} 0 a_{i}=0
\end{aligned}
$$

Hence the lemma is proved.
A commutative semiring $(S,+, \cdot)$ with zero 0 and identity 1 is called a semifield if $(S \backslash\{0\}, \cdot)$ is a group. Then every field is a semifield. It is clearly seen that the following fact holds in any semifield.
Proposition 1.2. If S is a semifield, then for all $x, y \in S, x y=0$ implies $x=0$ or $y=0$.

Let \mathbb{R} be the set of real numbers, \mathbb{Q} the set of rational numbers, $\mathbb{R}^{+}=$ $\{x \in \mathbb{R} \mid x>0\}, \mathbb{R}_{0}^{+}=\mathbb{R}^{+} \cup\{0\}, \mathbb{Q}^{+}=\{x \in \mathbb{Q} \mid x>0\}$ and $\mathbb{Q}_{0}^{+}=\mathbb{Q}^{+} \cup\{0\}$. Then $\left(\mathbb{R}_{0}^{+},+, \cdot\right)$ and $\left(\mathbb{Q}_{0}^{+},+, \cdot\right)$ are semifields which are not fields.

For an $n \times n$ matrix A over a semiring S and $i, j \in\{1, \ldots, n\}$, let $A_{i j}$ be the entry of A in the $i \underline{\underline{t h}}$ row and $j \underline{t h}$ column. Let A^{t} denote the transpose of A, that is, $A_{i j}^{t}=A_{j i}$ for all $i, j \in\{1, \ldots, n\}$. Then $\left(A^{t}\right)^{t}=A$ and $(A+B)^{t}=A^{t}+B^{t}$ for all $n \times n$ matrices A, B over S. We have that for all $n \times n$ matrices A, B over a commutative semiring $S,(A B)^{t}=B^{t} A^{t}$.

Let $S=(S,+, \cdot)$ be a commutative semiring with zero 0 and identity 1 . An $n \times n$ matrix A over S is called invertible over S if there is an $n \times n$ matrix B over S such that $A B=B A=I_{n}$ where I_{n} is the identity $n \times n$ matrix over S. Note that such a B is unique.

It is well-known that a square matrix A over a field F is invertible if and only if $\operatorname{det} A \neq 0$. A generalization of this result can be found in [1, page 160] as follows: A square matrix A over a commutative $\operatorname{ring} R$ with identity 1 is invertible over R if and only if $\operatorname{det} A$ is a multiplicatively invertible in R, that is, there exists an element $r \in R$ such that $(\operatorname{det} A) r=r(\operatorname{det} A)=1$. Characterizations of invertible matrices over some kinds of semirings can be found in [2] and [4].

The above examples of semifields which are not fields have the property that 0 is the only additively invertible element, that is, for $x, y \in S, x+y=0$ implies $x=y=0$. In fact, this property is generally true.

Proposition 1.3. ([5]) If S is a semifield which is not a field, then 0 is the only additively invertible element of S.

The purpose of this paper is to show that a square matrix A over a semifield S which is not a field is invertible over S if and only if every row and every column of A contains exactly one nonzero element.

2 Main Result

First, we give some necessary conditions for a square matrix over a commutative semiring S with zero and identity to be invertible over S.

Proposition 2.1. Let S be a commutative semiring with zero 0 and identity 1 and A an $n \times n$ matrix over S. If A is invertible over S, then for all $i, j, k \in$ $\{1, \ldots, n\}, j \neq k, A_{i j} A_{i k}$ and $A_{j i} A_{k i}$ are additively invertible.

Proof Let B be an $n \times n$ matrix over S such that $A B=B A=I_{n}$. Then for all distinct $p, q \in\{1, \ldots, n\},(A B)_{p q}=0=(B A)_{p q}$, so

$$
\sum_{l=1}^{n} A_{p l} B_{l q}=\sum_{l=1}^{n} B_{p l} A_{l q}=0
$$

This shows that
for all $l, p, q \in\{1, \ldots n\}$ with $p \neq q, A_{p l} B_{l q}$ and $B_{p l} A_{l q}$ are additively invertible in S.

Next, let $i, j, k \in\{1, \ldots, n\}$ be such that $j \neq k$. Then

$$
\begin{align*}
A_{i j} A_{i k} & =\left(A_{i j} A_{i k}\right)(A B)_{i i}=A_{i j} A_{i k}\left(\sum_{l=1}^{n} A_{i l} B_{l i}\right) \\
& =A_{i j} A_{i k} A_{i k} B_{k i}+\sum_{\substack{l=1 \\
l \neq k}}^{n} A_{i j} A_{i k} A_{i l} B_{l i} \\
& =A_{i k}^{2}\left(B_{k i} A_{i j}\right)+\sum_{\substack{l=1 \\
l \neq k}}^{n} A_{i j} A_{i l}\left(B_{l i} A_{i k}\right) \tag{2}\\
A_{j i} A_{k i} & =(B A)_{i i} A_{j i} A_{k i}=\left(\sum_{l=1}^{n} B_{i l} A_{l i}\right) A_{j i} A_{k i} \\
& =\sum_{\substack{l=1 \\
l \neq j}}^{n} B_{i l} A_{l i} A_{j i} A_{k i}+B_{i j} A_{j i} A_{j i} A_{k i} \\
& =\sum_{\substack{l=1 \\
l \neq j}}^{n} A_{k i} A_{l i}\left(A_{j i} B_{i l}\right)+A_{j i}^{2}\left(A_{k i} B_{i j}\right) . \tag{3}
\end{align*}
$$

From (1), (2), (3) and Proposition 1.1, we deduce that $A_{i j} A_{i k}$ and $A_{j i} A_{k i}$ are both additively invertible in S.

Example 1. Define \oplus on $[0,1]$ by

$$
x \oplus y=\max \{x, y\} \text { for all } x, y \in[0,1]
$$

Then $([0,1], \oplus, \cdot)$ is clearly a commutative semiring with zero 0 and identity 1 . Moreover, 0 is the only additively invertible element of $([0,1], \oplus, \cdot)$. Let A be an $n \times n$ matrix whose entries are in $[0,1]$. Assume that A is invertible over $([0,1], \oplus, \cdot)$. Then $A B=B A=I_{n}$ for some $n \times n$ matrix B over $[0,1]$. Thus A and B contain neither a zero row nor a zero column. Since 0 is the only additively invertible in $([0,1], \oplus, \cdot)$, by Proposition 2.1 , every row and every column of A and B contain exactly one nonzero element. Since for $x, y \in[0,1], x y=1$ implies $x=y=1$, we deduce that a nonzero element of A and B in each row and each column must be 1 .

If A is an $n \times n$ matrix over $[0,1]$ of this form, then A is invertible over
$([0,1], \oplus, \cdot)$. In fact, this is true for such an A in any commutative semiring with zero 0 and identity 1 that $A A^{t}=A^{t} A=I_{n}$. Since for $i, j \in\{1, \ldots, n\}$,

$$
\begin{aligned}
& \left(A A^{t}\right)_{i j}=\sum_{l=1}^{n} A_{i l} A_{l j}^{t}=\sum_{l=1}^{n} A_{i l} A_{j l}= \begin{cases}0 & \text { if } i \neq j, \\
1 & \text { if } i=j\end{cases} \\
& \left(A^{t} A\right)_{i j}=\sum_{l=1}^{n} A_{i l}^{t} A_{l j}=\sum_{l=1}^{n} A_{l i} A_{l j}= \begin{cases}0 & \text { if } i \neq j, \\
1 & \text { if } i=j,\end{cases}
\end{aligned}
$$

it follows that $A A^{t}=A^{t} A=I_{n}$.

Theorem 2.2. Let S be a semifield which is not a field and A an $n \times n$ matrix over S. Then A is invertible over S if and only if every row and every column of A contains exactly one nonzero element.
Proof It is evident if $n=1$. Assume that $n>1$ and A is invertible over S.
Let B be an $n \times n$ matrix over S such that $A B=B A=I_{n}$. Note that every row and every column must contain at least one nonzero element. To show that every row of A has exactly one nonzero element, suppose on the contrary that there are $p, q, q^{\prime} \in\{1, \ldots, n\}$ such that $q \neq q^{\prime}, A_{p q} \neq 0$ and $A_{p q^{\prime}} \neq 0$. Let $j \in\{1, \ldots, n\}$ be such that $j \neq p$. Then

$$
0=\left(I_{n}\right)_{p j}=(A B)_{p j}=\sum_{l=1}^{n} A_{p l} B_{l j}
$$

By Proposition 1.3, $A_{p l} B_{l j}=0$ for all $l \in\{1, \ldots, n\}$. In particular, $A_{p q} B_{q j}=0$. Since $A_{p q} \neq 0$, by Proposition $1.2, B_{q j}=0$. This shows that

$$
\begin{equation*}
B_{q j}=0 \text { for all } j \in\{1, \ldots, n\} \text { with } j \neq p \tag{1}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
1=\left(I_{n}\right)_{q q}=(B A)_{q q}=\sum_{l=1}^{n} B_{q l} A_{l q} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\left(I_{n}\right)_{q q^{\prime}}=(B A)_{q q^{\prime}}=\sum_{l=1}^{n} B_{q l} A_{l q^{\prime}} \tag{3}
\end{equation*}
$$

Then (1) and (2) yield $B_{q p} A_{p q}=1$. Also, from Proposition 1.3 and (3), we have $B_{q p} A_{p q^{\prime}}=0$. Hence

$$
A_{p q^{\prime}}=1 A_{p q^{\prime}}=\left(B_{q p} A_{p q}\right) A_{p q^{\prime}}=A_{p q}\left(B_{q p} A_{p q^{\prime}}\right)=A_{p q} 0=0
$$

which is a contradiction. Hence every row contains exactly one nonzero element.
Since $A^{t} B^{t}=(B A)^{t}=(A B)^{t}=B^{t} A^{t}=\left(I_{n}\right)^{t}=I_{n}$, from the above proof, we have that every row of A^{t} contains exactly one nonzero element. Hence every column of A contains exactly one nonzero element.

Conversely, assume that every row and every column contains exactly one nonzero element of S. Then

$$
\begin{gather*}
\text { for each } i \in\{1, \ldots, n\}, \text { there is a unique } k_{i} \in\{1, \ldots, n\} \\
\text { such that } A_{i k_{i}} \neq 0 \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
\text { for all distinct } i, j \text { in }\{1, \ldots, n\}, k_{i} \neq k_{j} . \tag{5}
\end{equation*}
$$

Define an $n \times n$ matrix B over S by

$$
B_{i j}= \begin{cases}A_{j i}^{-1} & \text { if } A_{j i} \neq 0 \tag{6}\\ 0 & \text { otherwise }\end{cases}
$$

Let $i, j \in\{1, \ldots, n\}$ be given. Then it follows from (4) and (6) that $(A B)_{i j}=$ $\sum_{l=1}^{n} A_{i l} B_{l j}=A_{i k_{i}} B_{k_{i} j}$, or
$(A B)_{i j}=\left\{\begin{array}{ll}A_{i k_{i}} A_{j k_{i}}^{-1} & \text { if } A_{j k_{i}} \neq 0, \\ 0 & \text { if } A_{j k_{i}}=0,\end{array}=\left\{\begin{array}{ll}A_{i k_{i}} A_{i k_{i}}^{-1} & \text { if } i=j, \\ 0 & \text { if } i \neq j,\end{array}=\left\{\begin{array}{ll}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j,\end{array}=\left(I_{n}\right)_{i j}\right.\right.\right.$.
From (4) and (5), we have $\left\{k_{1}, \ldots, k_{n}\right\}=\{1, \ldots, n\}$. It follows that $i=k_{s}$ and $j=k_{t}$ for some $s, t \in\{1, \ldots, n\}$, thus it follows from (4) and (6) that $(B A)_{i j}=(B A)_{k_{s} k_{t}}=\sum_{l=1}^{n} B_{k_{s} l} A_{l k_{t}}=B_{k_{s} t} A_{t k_{t}}$ or
$(B A)_{i j}=\left\{\begin{array}{ll}A_{t k_{s}}^{-1} A_{t k_{t}} & \text { if } A_{t k_{s}} \neq 0, \\ 0 & \text { if } A_{t k_{s}}=0,\end{array}=\left\{\begin{array}{ll}A_{t k_{t}}^{-1} A_{t k_{t}} & \text { if } k_{s}=k_{t}, \\ 0 & \text { if } k_{s} \neq k_{t},\end{array}=\left\{\begin{array}{ll}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j,\end{array}=\right.\right.\right.$ $\left(I_{n}\right)_{i j}$. This shows that $A B=B A=I_{n}$. Hence A is invertible over S, proving our Theorem.

We note here that Reutenauer and Straubing [3] have shown that if A and B are $n \times n$ matrices over any commutative semiring with zero and identity, then $A B=I_{n}$ implies $B A=I_{n}$. However, its given proof is quite complicated.

Example 2. Let $n>1$ and

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
0 & 0 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Since $\operatorname{det} A=1, A$ is invertible over the field $\mathbb{R}[\mathbb{Q}]$. However, by Theorem 2.2, A is not invertible over the semifield $\left(\mathbb{R}_{0}^{+},+, \cdot\right)\left[\left(\mathbb{Q}_{0}^{+},+, \cdot\right)\right]$. If

$$
B=\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & n \\
n-1 & 0 & 0 & \cdots & 0 & 0 \\
0 & n-2 & 0 & \cdots & 0 & 0 \\
0 & 0 & n-3 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

then B is invertible over the semifield $\left(\mathbb{R}_{0}^{+},+, \cdot\right)\left[\left(\mathbb{Q}_{0}^{+},+, \cdot\right)\right]$, so B is invertible over the field $(\mathbb{R},+, \cdot)[(\mathbb{Q},+, \cdot)]$.

References

[1] K. Hoffman and R. Kunze, "Linear Algebra", Prentice-Hall, New Jersey, $2 \underline{n d}$ ed. (1971).
[2] J. B. Kim, Inverses of Boolean matrices, Bull. Institute Math. Acad. Sinica, 12(2) (1984), 125-128.
[3] C. Reutenauer and H. Straubing, Inversion of matrices over a commutative semiring, J. Algebra, 88 (1984), 350-360.
[4] D. E. Rutherford, Inverses of Boolean matrices, Proc. Glasgow Math. Assoc., 6(2) (1963), 49-53.
[5] P. Sinutoke, "On the Theory of Semifields", Master Thesis, Chulalongkorn University (1980).

