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Abstract

We give a brief history of transcendental number theory, including
Schanuel’s conjecture (S). Assuming (S), we prove that if z and w are
complex numbers, not 0 or 1, with z w and w z algebraic, then z and w
are either both rational or both transcendental. A corollary is that if
(S) is true, then we can find transcendental positive real numbers x, y,
and s �= t such that the three numbers x y �= y x and s t = t s are all
integers. Another application (possibly known) is that (S) implies the
transcendence of the numbers
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We also prove that if (S) holds and α α z

= z, where α �= 0 is algebraic
and z is irrational, then z is transcendental.

1 Introduction: a brief “transcendental” his-
tory

Recall that a complex number α is algebraic if there exists a nonzero polynomial
P ∈ Q[x] such that P (α) = 0. (In that case, the smallest degree of such
a polynomial is called the degree of α.) If no such polynomial exists, α is

Key words: Schanuel’s conjecture, transcendence, algebraic independence.
2000 AMS Mathematics Subject Classification: Primary 11J81

75



76 Schanuel’s conjecture and algebraic power z w and w z ...

transcendental. The algebraic numbers form a field Q, the algebraic closure of
the rationals Q.

Euler was probably the first person to define transcendental numbers in the
modern sense (see [6]). But transcendental number theory really began in 1844
with Liouville’s proof [12] that if an algebraic number α has degree n > 1, then
there exists a constant C > 0 such that |α−p/q| > Cq−n, for all p/q ∈ Q\{0}.
Using this result, Liouville gave the first explicit examples of transcendental
numbers, e.g., Liouville’s number

∑
n≥0 10−n!.

How large is the set of transcendental numbers? In the 1870s, with his
countability arguments, Cantor surprised the mathematical world by proving
that almost all complex numbers are transcendental. This motivated the search
for such numbers.

In 1872 Hermite [7] proved that e is transcendental, and in 1884 Lindemann
[11] extended Hermite’s method to prove that π is also transcendental. In fact,
Lindemann proved a more general result.

Theorem 1 (Hermite-Lindemann). The number eα is transcendental for
any nonzero algebraic number α.

As a consequence, the numbers e
√

2 and e i are transcendental (i =
√−1),

as are log 2 and π, since elog 2 = 2 and eπi = −1 are algebraic. Moreover, the
transcendence of π resolved the ancient Greek problem of the quadrature of the
circle: using straightedge and compass, it is not possible to construct a square
and a circle with the same area.

At the 1900 International Congress of Mathematicians in Paris, as the sev-
enth in his famous list of 23 problems, Hilbert gave a big push to transcendental
number theory with his question on the arithmetic nature of the power α β of
two algebraic numbers α and β. In 1934 Gelfond and Schneider, independently,
completely solved the problem (see [1, p. 9]).

Theorem 2 (Gelfond-Schneider). Assume α and β are algebraic numbers,
with α �= 0 or 1, and β irrational. Then α β is transcendental.

In particular, 2
√

2, (−1)
√

2, and eπ = i−2i are all transcendental.
Generalizing the notion of an algebraic number, the complex numbers α1, . . . , αn

are algebraically dependent if there exists a nonzero polynomial P ∈ Q[x1, . . . , xn]
such that P (α1, . . . , αn) = 0. Otherwise, α1, . . . , αn are algebraically indepen-
dent; in particular, they are all transcendental. (More generally, given a subfield
K of the complex numbers C, one defines algebraic (in)dependence over K by
replacing Q with K.)

A major open problem in transcendental number theory is a conjecture of
Schanuel which was stated in the 1960s in a course at Yale given by Lang [9,
pp. 30–31].



Diego Marques and Jonathan Sondow 77

Conjecture 1 (Schanuel’s conjecture (S)). If α1, . . . , αn ∈ C are linearly
independent over Q, then there are at least n algebraically independent numbers
among α1, . . . , αn, eα1, . . . , eαn.

For example, assume (S) and take α1 = 1 and α2 = πi. Then at least two
of the numbers 1, πi, e, −1 are algebraically independent. Since 1 and −1 are
algebraic, πi and e are algebraically independent. It follows, as πi and π are
algebraically dependent, that π and e are also algebraically independent. In
particular, π + e and πe are transcendental. (These conclusions are all open
problems if (S) is not assumed.)

2 Statement and applications of the main result

The Gelfond-Schneider Theorem determines the arithmetic nature of z w when
z and w are both algebraic (because z w is algebraic if w is rational). However,
if at least one of the numbers z and w is transcendental, anything is possible
(see Table 1).

z w zw

2 algebraic log 3/ log 2 transcendental 3 algebraic
2 algebraic i log 3/ log 2 transcendental 3 i transcendental
e i transcendental π transcendental -1 algebraic
e transcendental π transcendental eπ transcendental

2
√

2 transcendental
√

2 algebraic 4 algebraic
2
√

2 transcendental i
√

2 algebraic 4 i transcendental

Table 1: Possibilities for zw when z or w is transcendental.

In his Master’s thesis, the first author asked a version of the following
question.

Question 1. If z and w are transcendental, must at least one of the numbers
z w and w z also be transcendental?

If the answer were yes, then in particular z z would be transcendental when-
ever z is. That would agree with the expected (but still unproved) transcen-
dence of the numbers e e, π π, and (log 2) log 2.

In fact, though, the answer to Question 1 in the case z = w is no. That
was shown by us in [15, Proposition 2.2], where the Gelfond-Schneider Theorem
was used to prove the following.

Proposition 1. Given a ∈ [e−1/e,∞), let t ∈ R+ satisfy t t = a. If either
(i). a ∈ Q \ {nn : n ∈ N}, or
(ii). an ∈ Q \ Q for all n ∈ N,

then t is transcendental.
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For instance, the numbers t > 0 and t1 > 0 which satisfy t t = 2 and
t t1
1 = 1 +

√
2 are both transcendental.

Proposition 1 case (ii) was generalized by the first author [13, Lemma and
proof of Proposition] and was extended further by him and Jensen [8, proof of
Theorem 7].

Now consider Question 1 in the case z �= w. To study the further subcase
when zw = wz, we recall a classical result (related to a problem posed in 1728
by D. Bernoulli [2, p. 262]). For a proof, see [15, Lemma 3.2].

Lemma 1. Given r ∈ R+, there exist positive real numbers s < t with s t =
t s = r if and only if r > e e = 15.15426 . . .. In that case, s and t are uniquely
determined, and 1 < s < e < t.

Again using the Gelfond-Schneider Theorem, we proved the following [15,
Proposition 3.1 and Corollary 3.5].

Proposition 2. Assume the numbers r, s, and t are as in Lemma 1. If either
(i). 16 �= r ∈ N, or
(ii). rn ∈ Q \ Q for all n ∈ N,

then at least one of the numbers s and t is transcendental.

In [15, Conjecture 3.7] we made the following prediction.

Conjecture 2. A stronger conclusion holds in Proposition 2, namely, that
s and t are both transcendental.

Let us describe the difficulty in proving Conjecture 2. To study the arith-
metic nature of the power of two complex numbers, we can use the Gelfond-
Schneider Theorem. However, it only applies in the case of algebraic numbers.
The nature of αβ, when one or both of the numbers α and β is transcendental,
is in general unknown. The sole result in this direction is due to Caveny [3].
He proved that if α is a T - or U -number and β is a U -number (as defined also
in [14, Chapter 10, Section 7H]), then αβ is transcendental. For our problem,
Caveny’s theorem is not useful, because it seems harder to prove that a complex
number is a T -number than to prove it is transcendental.

In Section 4, we give a conditional proof of Conjecture 2. In fact, our main
result is the following more general one, in which z w is not necessarily equal
to w z.

Theorem 3. Assume Schanuel’s conjecture (S) and let z and w be complex
numbers, not 0 or 1. If z w and w z are algebraic, then z and w are either both
rational or both transcendental. In particular, if (S) is true, then Conjecture 2
is also true.

Here is an application.

Corollary 1. Assuming (S), we can find transcendental positive real numbers
x, y, and s �= t such that the three numbers x y �= y x and s t = t s are integers.
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Proof. Define f(X) = X 2 1/X

. Then f(2) < 3 < f(3), and so by continuity we
can choose x ∈ (2, 3) with f(x) = 3. Set y = 2 1/ x. From the equalities x y = 3
and y x = 2, we deduce that x and y cannot both be rational. If (S) is true,
then by Theorem 3 both x and y are transcendental.

By Lemma 1, we can find s �= t in R+ such that st = ts = 17. If (S) is true,
then Proposition 2 and Theorem 3 imply that s and t are both transcendental.
�

Summarizing, the answer to Question 1 is unconditionally no in the case
z = w, and is conditionally no in the case z �= w both when zw �= wz and when
zw = wz.

Here is another consequence of Theorem 3.

Corollary 2. Assume (S) and let α, β, γ be nonzero complex numbers, with
α �= 1 and β γ �= 1. Suppose that at least one of α and β γ is irrational, and at
least one is algebraic. If β γ α is also algebraic, then α β γ

is transcendental.

Proof. Set z = α and w = β γ . Since w z = β γ α is algebraic, Theorem 3 implies
that z w = α β γ

must be transcendental. �
The following examples of Corollary 2 may be known, but we have not

found them in the literature.

Example 1. Conjecture (S) implies the transcendence of the numbers
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, (2.1)

because each of them is of the form α β γ

, where α ∈ Q \ Q and β γ �= 1 and
β γ α ∈ Q.

We now give another application of Schanuel’s Conjecture. Notice first that,
by the Gelfand-Schneider Theorem, if α z = z, where α �= 0 is algebraic and z is
irrational, then z is transcendental. (For instance, from the example t t = 2
for Proposition 1, we get (1/2) z = z, where z = 1/t �∈ Q.) The following
statement is stronger, since α z = z implies α α z

= z, but not conversely
(see [15, Section 4]).

Conjecture 3. Let α �= 0 and z be complex numbers, with α algebraic and
z irrational. If α α z

= z, then z is transcendental.

Theorem 4. If (S) is true, then Conjecture 3 is also true.

Theorem 4 yields a conditional proof of [15, Conjecture 4.6], because the
latter is a consequence of Conjecture 3.

The proofs of Theorems 3 and 4 are given in Section 4.
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3 Preliminaries on Schanuel’s conjecture (S)

Here are two more consequences of (S) if it is true. (They, too, are open
problems if (S) is not assumed.)

• The numbers e, eπ , ee, ei, π, πe, ππ, πi, 2π, 2e, 2i, logπ, log 2, log 3, log log 2,

(log 2)log 3, and 2
√

2 are algebraically independent. In particular, they are
all transcendental. (The proof in [14, Conjecture (S7), p. 326], like our
proof of Theorem 3, invokes (S) four times.)

• The numbers e, ee, eee

, . . . are algebraically independent. (Take α1 = 1
and α2 = e and proceed by induction.)

Also, (S) implies generalizations of many important theorems in transcen-
dental number theory. We mention two. Proofs of them and of several other
classical consequences of (S), together with an elegant exposition of it, can be
found in [14, Chapter 10, Section 7G]. See also [5].

• (Generalization of the Hermite-Lindemann Theorem) If α is a nonzero
algebraic number and (S) is true, then

ee ···
eα

is transcendental.

• (Generalization of the Gelfond-Schneider Theorem) If (S) is true and
α and β are algebraic numbers, with α �= 0 or 1, and β irrational, then
α β and log α are algebraically independent.

In addition, (S) implies the algebraic independence of certain numbers over
fields different from Q:

• Set E = ∪∞
n=0En, where E0 = Q and En = En−1({eα : α ∈ En−1}), for

n ≥ 1. If (S) is true, then the numbers

π, log π, log logπ, log log logπ, . . .

are algebraically independent over E. (For the proof, see [4].)

We now recall some definitions.
Given field extensions C ⊃ L ⊃ K, a subset B of L is a transcendence

basis of L over K if the elements of B are algebraically independent over K
and if furthermore L is an algebraic extension of the field K(B) (the field
obtained from K by adjoining the elements of B). One can show that every field
extension L/K has a transcendence basis B ⊂ L, and that all transcendence
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bases have the same cardinality |B|. This cardinality is the transcendence
degree of the extension, and is denoted trdegKL or trdeg(L/K).

With this definition, (S) can be restated: If α1, . . . , αn are linearly inde-
pendent over Q, then

trdegQQ(α1, . . . , αn, eα1, . . . , eαn) ≥ n.

Here are some facts about transcendence degree that we shall use in the next
section. (For proofs, see [10, Chapter VIII].) Let X and Y be finite subsets of
C.

(i). If X ⊂ Q, then trdegQQ(X ∪ Y ) = trdegQQ(Y ). (Algebraic numbers do
not contribute to the transcendence degree.)

(ii). If X ⊂ Y , then trdegQQ(X ∪ Y ) = trdegQQ(Y ). (Only distinct numbers
can contribute to the transcendence degree.)

(iii). If trdegQQ(Y ) = |Y |, then Y is an algebraically independent set.

(iv). We have trdegQQ(X) = trdeg
Q

Q(X). (It makes no difference to say that
a set is algebraically independent over Q or over Q.)

Recall also that a set of nonzero complex numbers is multiplicatively inde-
pendent if for any finite subset {x1, . . . , xm} the relation xa1

1 · · ·xam
m = 1, with

integer exponents a1, . . . , am, implies a1 = · · · = am = 0. Otherwise, the set
is multiplicatively dependent. For example, the set of prime numbers is mul-
tiplicatively independent (by the Fundamental Theorem of Arithmetic). Any
algebraically independent set is also multiplicatively independent.

Remark 1. It is a simple matter to show that x1, . . . , xm are multiplicatively
independent if and only if log x1, . . . , logxm are linearly independent over Q.
It follows easily that (S) can be restated: If α1, . . . , αn are multiplicatively
independent, then

trdegQQ(α1, . . . , αn, logα1, . . . , logαn) ≥ n.

This is the form of (S) we shall use in the proof of Theorem 3.

4 Proofs of Theorems 3 and 4

Proof of Theorem 3. Assume that z and w are not equal to 0 or 1, and that

α := zw, β := wz

are algebraic. By the Gelfond-Schneider Theorem, to prove Theorem 3 it suf-
fices to show that if w is transcendental, then so is z. Suppose on the contrary
that z is algebraic. Since z �= 0 or 1, and w �= 0, taking logarithms gives

w =
logα

log z
, log w =

log β

z
. (4.1)
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We first show that α, z, logα, logz are multiplicatively independent.
Since logα/ log z = w is transcendental, α and z are multiplicatively inde-

pendent. Then (S) implies trdegQQ(α, z, logα, log z) ≥ 2. Hence, as α and z
are algebraic, log α and log z are algebraically independent (see facts (i) and
(iii)). It follows that any solution (a, b, c, d) ∈ Z4 to the equation

αazb(log α)c(log z)d = 1

has c = d = 0 (see (iv)). Then a = 0, as a �= 0 implies w = logα/ log z =
−b/a ∈ Q, a contradiction. Hence zb = 1. Now z �= 1 implies b = 0. Thus
a = b = c = d = 0, and so the numbers α, z, logα, log z are multiplicatively
independent.

Again by (S),

trdegQQ(α, z, logα, log z, logα, logz, log logα, log log z) ≥ 4,

and as α and z are algebraic, logα, log z, log logα, log log z are algebraically
independent (see (i), (ii), and (iii)).

We now prove that α, β, z are multiplicatively independent. Assume αaβbzc = 1,
where (a, b, c) ∈ Z3. If b �= 0, then taking logarithms gives log β ∈ Q(log α, log z).
But that implies, since taking logarithms in the first equality in (4.1) and sub-
stituting the second yields the relation

z−1 log β = log logα − log log z, (4.2)

that log logα−log log z ∈ Q(z, log α, log z), contradicting the algebraic indepen-
dence of logα, log z, log log α, log log z. Thus b = 0. Now a = c = 0, because
α and z are multiplicatively independent. Hence α, β, z are multiplicatively
independent.

Then by (S)

trdegQQ(α, β, z, logα, logβ, log z) ≥ 3,

and so, as α, β, z are algebraic, logα, logβ, log z are algebraically independent.
It follows that any solution (a, b, c, d, f, g) ∈ Z6 to the equation

αaβbzc(logα)d(log β)f (log z)g = 1

has d = f = g = 0. Then a = b = c = 0, because α, β, z are multiplicatively
independent. We conclude that α, β, z, logα, logβ, log z are multiplicatively
independent. Now (S) implies

trdegQQ(α, β, z, logα, logβ, log z, logα, logβ, log z, log logα, log logβ, log log z) ≥ 6.

Hence, as α, β, z are algebraic, logα, logβ, log z, log logα, log log β, log log z are
algebraically independent. But that contradicts the relation (4.2). Therefore,
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z is transcendental. This completes the proof of Theorem 3.

Proof of Theorem 4. Suppose on the contrary that (S) holds, and that α �= 0
and z �∈ Q are both algebraic, and α α z

= z. Then α �= 1, and so, by the
Gelfond-Schneider Theorem, α z �∈ Q. If a + bz + c α z = 0, where (a, b, c) ∈ Z3,
then a + bz ∈ Q and α z �∈ Q imply c = 0. Now z �∈ Q gives a = b = 0. Thus
1, z, α z are linearly independent over Q. Multiplying them by log α �= 0, we
get that log α, z log α, α z log α are also linearly independent over Q. Hence by
(S)

τ := trdegQQ

(
logα, z logα, α z logα, α, α z, α α z

)
≥ 3.

But since α ∈ Q and α α z

= z ∈ Q, it follows that τ = trdegQQ(logα, α z) ≤ 2
(see facts (i), (ii), and (iv)), a contradiction. This proves the theorem.
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