ON 2-PRIMAL SKEW POLYNOMIAL RINGS

V. K. Bhat
School of Mathematics, SMVD University, P/o SMVD University, Katra, J and K, India-182320
e-mail: vijaykumarbhat2000@yahoo.com

Abstract

In this article, we discuss minimal prime ideals of a Noetherian ring R. We recall $\sigma(*)$ property on a ring R, where σ is an automorphism of R (i.e. $a \sigma(a) \in P(R)$ implies $a \in P(R)$ for $a \in R$, where $\mathrm{P}(\mathrm{R})$ is the prime radical of R$)$. We ultimately show that if R is a Noetherian ring satisfying this property, then $R[x ; \sigma]$ is a 2 -primal ring.

Introduction

A ring R always means an associative ring with identity. The field of rational numbers and the set of natural numbers are denoted by \mathbb{Q} and \mathbb{N} respectively. The set of prime ideals of R is denoted by $\operatorname{Spec}(R)$. The sets of minimal prime ideals of R is denoted by Min. $\operatorname{Spec}(\mathrm{R})$. Prime radical and the set of nilpotent elements of R are denoted by $\mathrm{P}(\mathrm{R})$ and $\mathrm{N}(\mathrm{R})$ respectively. Let R be a ring and σ be an automorphism of R . Let I be an ideal of R such that $\sigma^{m}(I)=I$ for some $m \in \mathbb{N}$. We denote $\cap_{i=1}^{m} \sigma^{i}(I)$ by I^{0}. Let I and J be any two ideals of a ring R . Then $I \subset J$ means that I is strictly contained in J .

This article concerns the study of skew polynomial rings in terms of 2primal rings. 2-primal rings have been studied in recent years and are being treated by authors for different structures. In [14], Greg Marks discusses the 2-primal property of $R[x ; \sigma ; \delta]$, where R is a local ring, σ is an automorphism of R and δ is a σ-derivation of R . Minimal prime ideals of 2 -primal rings have been discussed by Kim and Kwak in [10]. 2-primal near rings have been discussed by Argac and Groenewald in [2]. Recall that a ring R is 2-primal if and only if $N(R)=P(R)$ if and only if the prime radical is a completely semiprime ideal.

Key words: Minimal prime, 2-primal, prime radical, nil radical, automorphism. 2000 AMS Mathematics Subject Classification: Primary 16-XX,; Secondary 16N40, 16P40, 16 S32.

An ideal I of a ring R is called completely semiprime if $a^{2} \in I$ implies $a \in I$ for $a \in R$. We also note that a reduced is 2 -primal and a commutative ring is also 2 -primal. For further details on 2 -primal rings, we refer the reader to [7, 9, 11, 16].

Before proving the main result, we find a relation between the minimal prime ideals of R and those of the skew polynomial ring $R[x ; \sigma]$, where R is a Noetherian ring and σ is an automorphism of R . This is proved in Theorem 2. Recall that $R[x ; \sigma]$ is the usual polynomial ring with coefficients in R , in which multiplication is subject to the relation $a x=x \sigma(a)$ for all $a \in R$. We take any $f(x) \in R[x ; \sigma]$ to be of the form $f(x)=\sum_{i=0}^{n} x^{i} a_{i}$. We denote $R[x ; \sigma]$ by S . Ore-extensions including skew-polynomial rings and differential operator rings have been of interest to many authors. For example $[1,3,4,5,8,10,12,13]$. Recall that in [12], a ring R is called σ-rigid if there exists an endomorphism of R with the property that $a \sigma(a)=0$ implies $\mathrm{a}=0$ for $a \in R$. In [13], Kwak defines a $\sigma(*)$-ring R to be a ring in which $a \sigma(a) \in P(R)$ implies $a \in P(R)$ for $a \in R$ and establishes a relation between a 2-primal ring and a $\sigma(*)$-ring. The property is also extended to the skew-polynomial ring $R[x ; \sigma]$.

We consider the above property when σ is an automorphism of R and ultimately investigate the 2-primal property of $R[x ; \sigma]$ when R is a Noetherian ring and prove the following:
(1) Let R be a Noetherian ring. Then R is a $\sigma(*)$-ring if and only if for each minimal prime U of $\mathrm{R}, \sigma(U)=U$ and U is completely prime ideal of R .
(2) Let R be a Noetherian $\sigma(*)$-ring. Then $R[x ; \sigma]$ is 2-primal.

These results are proved in Theorems 5 and 7, respectively.

Skew polynomial rings

We begin with the following definition:
Definition 1 Let R be a ring, σ an automorphism of R . Then R is said to be a $\sigma(*)$-ring if $a \sigma(a) \in P(R)$ implies $a \in P(R)$.

Recall that an ideal I of a ring R is called σ-invariant if $\sigma(I)=I$. Also I is called completely prime if $a b \in I$ implies $a \in I$ or $b \in I$ for $a, b \in R$.

We also note that if R is a Noetherian ring, then $\operatorname{Min} \operatorname{Spec}(\mathrm{R})$ is finite (Theorem (2.4) of [6]) and for any automorphism σ of R and for any $U \in$ $\operatorname{Min} . \operatorname{Spec}(R)$, we have $\sigma^{i}(U) \in \operatorname{Min} . \operatorname{Spec}(R)$ for all $i \in \mathbb{N}$, therefore, it follows that there exists some $m \in N$ such that $\sigma^{m}(U)=U$ for all $U \in \operatorname{Min} \cdot \operatorname{Spec}(R)$. As mentioned earlier we denote $\cap_{i=0}^{m} \sigma^{i}(U)$ by U^{0}.

We recall that an ideal J of a ring is called a σ-prime ideal of R if J is σ invariant and for any σ-invariant ideals K and L with $K L \subseteq J$, we have $K \subseteq J$ or $L \subseteq J$. With this we have the following:

Theorem 2Let R be a Noetherian ring and σ an automorphism of R. Then:
(1) If $P \in \operatorname{Min} . \operatorname{Spec}(S)$, then $P=(P \cap R) S$ and there exists $U \in \operatorname{Min} \cdot \operatorname{Spec}(R)$ such that $P \cap R=U^{0}$.
(2) If $U \in \operatorname{Min} \cdot \operatorname{Spec}(R)$, then $U^{0} S \in \operatorname{Min} \cdot \operatorname{Spec}(S)$.

Proof. (1) Let $P \in \operatorname{Min} . \operatorname{Spec}(S)$. Then $x \notin P$, as it is not a zero-divisor, therefore $P \cap R$ is a σ-prime ideal of R and $(P \cap R) S$ is a prime ideal of S by Lemma (10.6.4)(ii, iii) and Proposition (10.6.12) of [15]. Hence $P=(P \cap R) S$. Now $(P \cap R) S$ is prime, so it the intersection $\cap_{i=1}^{n} U_{i}$ of the primes that are minimal over it and these form a single orbit under σ. Therefore $P \cap R=U_{i}^{0}$ for each i. Let B be a minimal prime ideal of R with $B \subseteq U_{i}$. Then B^{0} is σ-prime and $B^{0} \subseteq U_{i}^{0}=P \cap R$. Therefore $B^{0} S$ is a prime ideal contained in $P=(P \cap R) S$. So $B^{0} S=(P \cap R) S$ and, hence $B^{0}=P \cap R$.
(2) Let $U \in \operatorname{Min} \cdot \operatorname{Spec}(R)$. Then U^{0} is σ-prime and $U^{0} S$ is a prime ideal of S by Proposition (10.6.12) of [15]. Now it must contain a minimal prime ideal P of S (Proposition (2.3) of [6]). Now by paragraph (1) above $P=(P \cap R) S$ and $P \cap R=B^{0}$ for some $B \in \operatorname{Min} . \operatorname{Spec}(R)$. Therefore $B^{0} S \subseteq U^{0} S$ and $B^{0} \subseteq U^{0}$. So $\sigma^{i}(B) \subseteq U$ for some i and therefore $\sigma^{i}(B)=U$ by the minimality of U. Hence $B^{0}=U^{0}$ and $U^{0} S=P$ is minimal.

Proposition 3 Let R be a ring and σ an automorphism of R. Then R is a $\sigma(*)$-ring implies R is 2-primal.

Proof. Let $a \in R$ be such that $a^{2} \in P(R)$. Then

$$
a \sigma(a) \sigma(a \sigma(a))=a \sigma(a) \sigma(a) \sigma^{2}(a) \in \sigma(P(R))=P(R)
$$

Therefore $a \sigma(a) \in P(R)$ and hence $a \in P(R)$.
Proposition 4 Let R be a $\sigma(*)$-ring and $U \in \operatorname{Min} . \operatorname{Spec}(R)$ be such that $\sigma(U)=$ U. Then $U S=U[x ; \sigma]$ is a completely prime ideal of $S=R[x ; \sigma]$.

Proof. R is 2-primal by Proposition 3 and further more U is completely prime by Proposition (1.11) of Shin [16]. Now we note that σ can be extended to an automorphism $\bar{\sigma}$ of R / U. Now it is well known that $S / U S \simeq(R / U)[x ; \bar{\sigma}]$ and hence $U S$ is a completely prime ideal of S .

We now give a necessary and sufficient condition for a Noetherian ring to be a $\sigma(*)$-ring in the following Theorem:

Theorem 5 Let R be a Noetherian ring. Then R is a $\sigma(*)$-ring if and only if for each minimal prime U of $R, \sigma(U)=U$ and U is completely prime ideal of R.

Proof. Let R be a Noetherian ring such that for each minimal prime U of $\mathrm{R}, \sigma(U)=U$ and U is completely prime ideal of R . Let $a \in R$ be such that $a \sigma(a) \in P(R)=\cap_{i=1}^{n} U_{i}$, where U_{i} are the minimal primes of R. Now for each i, $a \in U_{i}$ or $\sigma(a) \in U_{i}$ and U_{i} is completely prime. Now $\sigma(a) \in U_{i}=\sigma\left(U_{i}\right)$ implies that $a \in U_{i}$. Therefore $a \in P(R)$. Hence R is a $\sigma(*)$-ring.

Conversely, suppose that R is a $\sigma(*)$-ring and let $U=U_{1}$ be a minimal prime ideal of R. Now by Proposition 3, $\mathrm{P}(\mathrm{R})$ is completely semiprime. Let $U_{2}, U_{3}, \ldots, U_{n}$ be the other minimal primes of R. Suppose that $\sigma(U) \neq U$. Then $\sigma(U)$ is also a minimal prime ideal of R . Renumber so that $\sigma(U)=U_{n}$. Let $a \in \cap_{i=1}^{n-1} U_{i}$. Then $\sigma(a) \in U_{n}$, and so $a \sigma(a) \in \cap_{i=1}^{n} U_{i}=P(R)$. Therefore $a \in P(R)$, and thus $\cap_{i=1}^{n-1} U_{i} \subseteq U_{n}$, which implies that $U_{i} \subseteq U_{n}$ for some $i \neq n$, which is impossible. Hence $\sigma(U)=U$.

Now suppose that $U=U_{1}$ is not completely prime. Then there exist $a, b \in$ $R \backslash U$ with $a b \in U$. Let c be any element of $b\left(U_{2} \cap U_{3} \cap \ldots \cap U_{n}\right) a$. Then $c^{2} \in \cap_{i=1}^{n} U_{i}=P(R)$. So $c \in P(R)$ and, thus $b\left(U_{2} \cap U_{3} \cap \ldots \cap U_{n}\right) a \subseteq U$. Therefore $b R\left(U_{2} \cap U_{3} \cap \ldots \cap U_{n}\right) R a \subseteq U$ and, as U is prime, $a \in U, U_{i} \subseteq U$ for some $i \neq 1$ or $b \in U$. None of these can occur, so U is completely prime.

We now prove the following Theorem, which is crucial in proving Theorem (??).

Theorem 6 Let R be a Noetherian $\sigma(*)$-ring, σ an automorphism of R. Then $R[x ; \sigma]$ is 2-primal if and only if $P(R)[x ; \sigma]=P(R[x ; \sigma])$.

Proof. Let $R[x ; \sigma]$ be 2 -primal. Now by Proposition $4 P(R[x ; \sigma]) \subseteq P(R)[x, \sigma]$. Let $f(x)=\sum_{j=0}^{n} x^{j} a_{j} \in P(R)[x ; \sigma]$. Now R is a 2 -primal subring of $R[x ; \sigma]$ by Proposition 3, which implies that a_{j} is nilpotent and thus $a_{j} \in N(R[x ; \sigma])=$ $P(R[x ; \sigma])$, and so we have $x^{j} a_{j} \in P(R[x ; \sigma])$ for each $\mathrm{j}, 0 \leq j \leq n$, which implies that $f(x) \in P(R[x ; \sigma])$. Hence $P(R)[x ; \sigma]=P(R[x ; \sigma])$.

Conversely suppose $P(R)[x ; \sigma]=P(R[x ; \sigma])$. We will show that $R[x ; \sigma]$ is 2-primal. Let $g(x)=\sum_{i=0}^{n} x^{i} b_{i} \in R[x ; \sigma], b_{n} \neq 0$, be such that $(g(x))^{2} \in$ $P(R[x ; \sigma])=P(R)[x ; \sigma]$. We will show that $g(x) \in P(R[x ; \sigma])$. Now leading coefficient $\sigma^{2 n-1}\left(b_{n}\right) b_{n} \in P(R) \subseteq P$, for all $P \in \operatorname{Min.Spec}(R)$. Now $\sigma(P)=P$ and P is completely prime by Proposition (1.11) of [16]. Therefore we have $b_{n} \in P$, for all $P \in \operatorname{Min} . \operatorname{Spec}(R)$; i.e. $b_{n} \in P(R)$. Now since $\sigma(P)=P$ for all $P \in \operatorname{Min} . \operatorname{Spec}(R)$, we get $\left(\sum_{i=0}^{n-1} x^{i} b_{i}\right)^{2} \in P(R[x ; \sigma])=P(R)[x ; \sigma]$ and as above we get $b_{n-1} \in P(R)$. With the same process in a finite number of steps we get $b_{i} \in P(R)$ for all i, $0 \leq i \leq n$. Thus we have $(g(x)) \in P(R)[x ; \sigma]$; i.e. $(g(x)) \in P(R[x ; \sigma])$. Therefore $P(R[x ; \sigma])$ is completely semiprime. Hence $R[x ; \sigma]$ is 2-primal.

Theorem 7 Let R be a Noetherian $\sigma(*)$-ring. Then $R[x ; \sigma]$ is 2 -primal.
Proof. We use Theorem 2 to get that $P(R)[x ; \sigma]=P(R[x ; \sigma])$, and now the result is obvious by using Theorem 6 .

The following example shows that if R is a Noetherian ring, then $R[x ; \sigma]$ need not be 2-primal.

Eample 8 Let $R=\mathbb{Q} \bigoplus \mathbb{Q}$ with $\sigma(a, b)=(b, a)$. Then the only σ-invariant ideals of R are 0 and R and, so R is σ-prime, $R[x ; \sigma]$ is prime and $P(R[x ; \sigma])=0$. But $(x(1,0))^{2}=0$. Therefore $R[x ; \sigma]$ is not 2 -primal.

The following example shows that if R is a Noetherian ring, then $R[x]$ need not be 2-primal.

Example 9 Let $R=M_{2}(\mathbb{Q})$, the set of 2×2 matrices over \mathbb{Q}. Then $R[x]$ is a prime ring with non-zero nilpotent elements and, so can not be 2-primal.

From these examples we conclude that if R is a Noetherian ring (even commutative and even a \mathbb{Q}-algebra), then $R[x ; \sigma ; \delta]$ need not be two primal, where σ is an automorphism of R and δ is a σ-derivation of R .

The above discussion leads to the further investigation:
Question If R is a 2 -primal ring, is $R[x ; \sigma ; \delta] 2$-primal (even if R is commutative, σ is the identity map or δ is the zero map, or the special case when R is Noetherian)?

References

[1] S. Annin, Associated primes over skew polynomial rings, Comm. Algebra, 30 (2002), 2511-2528.
[2] N. Argac and N. J. Groenewald, A generalization of 2-primal near rings, Questiones Mathematicae, 27(4) (2004), 397-413.
[3] V. K. Bhat, A note on Krull dimension of skew polynomial rings, Lobachevskii J. Math., Vol. 22 (2006), 3-6.
[4] V. K. Bhat, Polynomial Rings over Pseudovaluation Rings, 2007 (2007), Article ID 20138, 6 pages
[5] W. D. Blair and L. W. Small, Embedding differential and skew-polynomial rings into artinain rings, Proc. Amer. Math. Soc., 109(4) (1990), 881-886.
[6] K. R. Goodearl and R. B. Warfield Jr, "An introduction to noncommutative Noetherian rings", Cambridge Uni. Press, 1989.
[7] C. Y. Hong and T. K. Kwak, On minimal strongly prime ideals, Comm. Algebra, Vol. 28(10) (2000), 4868-4878.
[8] C. Y. Hong, N. K. Kim and T. K. Kwak, Ore-extensions of baer and p.p.-rings, J. Pure and Applied Algebra, 151(3) (2000), 215-226.
[9] C. Y. Hong, N. K. Kim, T. K. Kwak and Y. Lee, On weak -regularity of rings whose prime ideals are maximal, J. Pure and Applied Algebra, 146 (2000), 35-44.
[10] A. V. Jategaonkar, Skew-Polynomial rings over order in artinian rings, J. Algebra, 21 (1972), 51-59.
[11] N. K. Kim and T. K. Kwak, Minimal prime ideals in 2-primal rings, Math. Japonica, 50(3) (1999), 415-420.
[12] J. Krempa, Some examples of reduced rings, Algebra Colloq., 3(4) (1996), 289-300.
[13] T. K. Kwak, Prime radicals of skew-polynomial rings, Int. J. of Mathematical Sciences, 2(2) (2003), 219-227.
[14] G. Marks, On 2-primal Ore extensions, Comm. Algebra, 29 (5) (2001), 2113-2123.
[15] J. C. McConnell and J. C. Robson, "Noncommutative Noetherian Rings", Wiley 1987; revised edition: American Math. Society 2001.
[16] G. Y. Shin, Prime ideals and sheaf representations of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184 (1973), 43-60.

