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Abstract

In our recent papers [2, 3] we have proposed a modified logarithmic-
quadratic method for solving monotone generalized variational inequal-
ities and quasimonotone multivalued variational inequalities on polyhe-
dral. The method is based on the special logarithmic quadratic function
which replaces the usual quadratic. In this paper we combine this re-
sult with the outer approximation method to obtain a new interior ap-
proximation algorithm for solving pseudomonone variational inequalities
satisfying a certain Lipschitz condition on a closed convex set. Next, to
avoid the Lipschitz condition we combine this technique with linesearch
technique to obtain a convergent algorithm for pseudomonone variational
inequalities.
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1 Introduction

Classical variational inequalities, denoted by (V IP ), are to find a vector x∗ ∈ C
such that

〈F (x∗), x − x∗〉 ≥ 0 ∀x ∈ C,

where C is a nonempty closed convex subset of R
n and F is a continuous map-

ping from R
n into itself. Problems (V IP ) include nonlinear complementarity

problems (shortly (NCP ), when C = R
n
+) and system of nonlinear equations

(when C = R
n). Throughout this paper we assume that C is bounded, that

F (x) is continuous, pseudomonone on C and the solution set of (V IP ), denoted
by S∗, is nonempty. Variational inequalities have many important applications
in economics, operation researches and nonlinear analysis, and have been stud-
ied by many researchers (see [5, 11, 12, 13, 14, 15, 18, 24]).

First, let us recall the well known concepts that will be used in the sequel
(see [19, 20]).

Definition 1.1. Let C ⊆ R
n and F : C → R

n. The function F is said to be
(a) pseudomonotone on C if for each x, y ∈ C the inequality

〈F (y), x − y〉 ≥ 0

implies
〈F (x), x − y〉 ≥ 0.

(b) Lipschitz on C with constant L (shortly L−Lipschitz) if for each x, y ∈ C

||F (x)− F (y)|| ≤ L||x− y||.
Among powerful approaches to (NCP ) is the logarithmic-quadratic prox-

imal method (shortly (LQ)) presented originally by Auslender et al. in Ref.
[7, 8, 9] under that the operator is monotone on C := R

n
+, which is starting

with any point x0 ∈ C and λk ≥ λ > 0, iteratively updates xk+1 conforming
the following problem:

0 ∈ λkF (x) + ∇xdφ(x, xk),

where

dφ(x, y) =
n∑

i=1

y2
i φ(y−1

i xi)

and

φ(t) =

{
ν
2
(t − 1)2 + μ(t − logt − 1) if t > 0

+∞ otherwise,
(1.1)

with ν > μ > 0. Then the term dφ forces the iteratives {xk+1} to stay in the
interior of C.
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In our recently papers [1, 2, 3, 4], we have proposed a new type of proximal
interior method for solving (V IP ) and equilibrium problems (shortly (EQ))
on polyhedral C := {x ∈ R

n| Ax ≤ b}, where A is an p × n matrix, b ∈ R
p

through replacing function dφ(x, y) by D(x, y) which is defined as D(x, y) =
d(l(x), l(y)), where

li(x) = bi − 〈ai, x〉 i = 1, 2, · · · , p,

l(x) =
(
l1(x), l2(x), · · · , lp(x)

)T
,

and

d(x, y) =

⎧⎨
⎩

1
2 ||x− y||2 + μ

n∑
i=1

y2
i (xi

yi
logxi

yi
− xi

yi
+ 1) if x > 0,

+∞ otherwise,
(1.2)

with μ ∈ (0, 1).
Applying to (V IP ), in this paper we consider function D(x, y) for every

x, y ∈ Tk ∀k = 0, 1, · · · , where Tk is a polyhedral sequence defined by

Tk = {x ∈ R
n| bi − aix ≥ 0 i = 1, 2, · · · , n + k},

ai (i = 1, 2, · · · , n + k) are the rows of matrix Ak, li(x) = bi − 〈ai, x〉 i =
1, 2, , · · · , n+k and l(x) = (l1(x), l2(x), · · · , ln+k(x))T . For given xk,j ∈ Tk (j =
0, 1, · · ·), we denote by ∇xD(x, xk,j) the gradient of D(., xk,j) at x. Then we
have

∇xD(x, xk,j) = −AT
k

(
l(x) − l(xk,j) + μXk,j log

l(x)
l(xk,j)

)
,

where

Xk,j = diag
(
l1(xk,j), · · · , ln+k(xk,j)

)
,

log
l(x)

l(xk,j)
=

(
log

l1(x)
l1(xk,j)

, · · · , log
ln+k(x)

ln+k(xk,j)

)
.

2 An interior proximal algorithm

To solve the generalized variational inequalities:

Find x∗ ∈ C such that 〈F (x∗), x− x∗〉 + ϕ(x) − ϕ(x∗) ≥ 0 ∀x ∈ C,

where C ⊂ R
n is a polyhedral defined C := {x ∈ R

n| Ax ≤ b}, ϕ : C → R is
convex, F : C → R

n and the matrix A := (aij)p×n such that rankA = n, the
LQ regularization algorithm is described in our paper (see [2]) as the following.
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Algorithm 2.1. Step 0. Choose x0 ∈ C, k := 0, a positive sequence {ck}
such that ck → c > 0 as k → +∞.
Step 1. Solve the strongly convex program:

min{〈F (xk), y − xk〉 + ϕ(y) +
1
ck

D(y, xk)| y ∈ C} (2.1)

to obtain the unique solution yk.
If yk = xk, then terminate: xk is a solution to problems (V IP ).
Otherwise go to Step 2.
Step 2. Find xk+1 which is the unique solution to the strongly convex program:

min{〈F (yk), y − yk〉 + ϕ(y) +
1
ck

D(y, xk)| y ∈ C}.

Step 3. Set k := k + 1, and return to Step 1.

The following lemma establishes convergence of the algorithm.

Lemma 2.2. ([2], Theorem 2.7) Suppose that the function F is pseudomonone
and L−Lipschitz on C. Choose ε, μ and sequence {ck} such that

0 < ε, 0 < μ < min{1 − ε − ck||Ā−1||2
3

,
1 − ε − ckL̄2

5
} ∀k = 1, 2, · · · ,

where Ā := (aij)n×n is a submatrix of A such that rank Ā=n and

||Ā−1|| = sup
||x||=1

||Ā−1x||.

Then
(i) If Algorithm 2.1 terminates at Step 1, then xk is a solution to (V IP ).
(ii) If the algorithm does not terminate, then the sequence {xk} converges to a
solution to problems (V IP ).

Note that auxiliary problems in Algorithm 2.1 can be solved efficiently by
using available softwares.

When K is not polyhedral, we suggest approximating C by polyhedral con-
vex sets. Polyhedral outer approximation methods of a convex set are based
upon the fact that any nonempty closed convex set can be approximated by
polyhedral convex sets. This technique has been widely used in convex pro-
gramming and variational inequalities (see [16, 23]). In this section, we embed
upper results in a polyhedral outer approximation procedure in order to solve
problems (V IP ). To this end, we suppose, as usual, that the closed convex set
C is given as

C := {x ∈ R
n| gj(x) ≤ 0, j ∈ J},
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where J is a finite index set and the functions gj (j ∈ J) are convex and
subdifferentiable on R

n. By taking g(x) := max
j∈J

gj(x), we can write C = {x ∈
R

n| g(x) ≤ 0}. Suppose now that Slater’s condition is satisfied, i.e., that there
exists v0 such that g(v0) < 0.

For getting the convergence of the polyhedral approximation algorithm de-
scribed below, we need the following result.

Lemma 2.3. ([23] Theorem 6.1, p.180) Let C ⊆ R
n, {xj} ⊂ R

n \ C be
a bounded sequence, and v0 ∈ intC, yj ∈ [v0, xj] \ int C, pj ∈ ∂g(yj ) and
0 ≤ αj ≤ g(yj ) such that αj −g(yj ) → 0 as j → +∞. If, for every j, the affine
functions lj(x) := 〈pj, x− yj〉 + αj satisfy

lj(xj) > 0, lj(xj+1) ≤ 0, lj(x) ≤ 0 ∀x ∈ C,

then every accumulation point of the sequence {xk} belongs to C.

Now we are in a position to describe the polyhedral approximation algo-
rithm.

Algorithm 2.4. Initialization. Choose a box T0 := {x ∈ R
n| A0x ≤ b0}

containing bounded set C, where A0 is indentity matrix, vector b0 ∈ R
n.

Iteration (Outer Iteration) k = 0, 1, · · ·
Step 0. Pick uk,0 = xk ∈ Tk and j = 0.
Step 1. (Inner iteration)
Solve the strongly convex quadratic program

yk,j = argmin{〈F (uk,j), y − uk,j〉 +
1
ck

D(y, uk,j)| y ∈ Tk}.

If yk,j = uk,j, then go to Step 2.
Otherwise, solve the strongly convex quadratic program

yk,j+1 = argmin{〈F (yk,j), y − yk,j〉 +
1
ck

D(y, uk,j)| y ∈ Tk},

j := j + 1 and return to Step 1.
Step 2. xk+1 := uk,j.
If xk+1 ∈ C, then stop.
If xk+1 /∈ C, then construct a hyperplane lk+1 such that

lk+1(x) ≤ 0 ∀x ∈ C, lk+1(xk+1) > 0.

Set
Tk+1 := {x ∈ Tk| lk+1(x) ≤ 0}.

Increase k by 1 and go to Iteration k.
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Convergence of Algorithm 2.4 is ensured by the following theorem.

Theorem 2.5. Suppose that the function F is pseudomonone and L−Lipschitz
on C. We choose ε, μ and the sequence ck > 0 such that

0 < ε, 0 < μ < min{1 − ε − ck||Ā−1
k ||2

3
,
1 − ε − ckL̄2

k

5
} ∀k = 0, 1, · · · ,

where polyhedral Tk := {x ∈ R
n| Akx ≤ bk}, ||Ā−1

k || = sup
||x||=1

||Ā−1
k x|| and

L̄k = L||Āk
−1||. Then,

(i) If xk ∈ C, then xk is a solution to problems (V IP ).
(ii) If the algorithm does not terminate, then the sequence {xk} converges to a
solution to problems (V IP ).

Proof. (i) We suppose xk ∈ C, Lemma 2.3 shows that xk is a solution to
the following variational inequality problems, denoted by (V IPk):

Find a vector x̄ ∈ Tk such that

〈F (x̄), x − x̄〉 ≥ 0 ∀x ∈ Tk.

From C ⊆ Tk and xk ∈ C is a solution to (V IPk), it follows that xk is a solution
to problems(V IP ).
(ii) Since xk ∈ Tk for all k = 0, 1, · · · and the sequence {Tk} satisfies all of
assumptions of Lemma 2.3, outer proximal method shows that the sequence
{xk} must converge to x∗ ∈ C and

T0 ⊇ T1 ⊇ · · · ⊇ Tk ⊇ · · · ⊇ C,

where x∗ belongs to Tk for all k = 0, 1, · · · . Then x∗ is a solution to problems
(V IP ).
The proof is complete. �

3 The interior-outer proximal linesearch method

Convergence of Algorithm 2.4 requires that the function F satisfies the Lip-
schitz condition on C. This condition depends on positive constant L and
in cases, it is unknown or difficult to approximate. So in this section, in or-
der to avoid this assumption, we combine the interior proximal method, the
outer proximal method and the linesearch technique. The interior-linesearch
technique has been used widely in descent method for solving variational in-
equalities (V IP ) on C := R

n
+ (see [13, 18]).

In case C is a polyhedral, we construct iteratively a sequence converging to a
solution to (V IP ) without assumping Lipschitz continuity of F . The sequence
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{yk} is described in Algorithm 2.1, the iterate xk is defined as the following
Amijo-type linesearch technique:

Find λk ∈ (0, 1) as the smallest number such that

〈F ((1− λk)xk + λkyk), yk − xk〉 +
1

2ck
D(yk , xk) ≤ 0.

Set

zk := (1 − λk)xk + λkyk,

δk := γk
λk〈F (zk), zk − yk〉
(1 − λk)||F (zk)||2 ,

xk+1 := PC(xk − δkF (zk)).

The convergent of the sequence {xk} is defined as the following.

Lemma 3.1. ([2], Theorem 3.5) Suppose that the sequences γk ∈ (0, 2) such
that lim inf γk(2 − γk) > 0, ck → c̄ as k → ∞, and function F is pseudomono-
tone on C. Then,
(i) If xk = yk, then xk is a solution to problems (V IP ).
(ii) if xk �= yk for all k = 0, 1, · · ·, then the iterate xk converges to x∗ which is
a solution to problems (V IP ).

Now we are in a position to consider C which is a convex subset of R
n. We

embed Amijo-type linesearch technique in a polyhedral outer approximation
procedure in order to solve problems (V IP ). From C is bounded, there exists
a box contained C, denoted by T0. The method can now be described in detail
as follows:

Algorithm 3.2. Initialization. Choose a box T0 := {x ∈ R
n| A0x ≤ b0}

containing bounded set C, where A0 is indentity matrix, vector b0 ∈ R
n.

Iteration (Outer Iteration) k = 0, 1, · · ·
Step 0. Pick uk,0 = xk ∈ Tk and j = 0.
Step 1. (Inner iteration)
Solve the strongly convex quadratic program

yk,j = argmin{〈F (uk,j), y − uk,j〉 +
1

ck,j
D(y, uk,j)| y ∈ Tk}.

If yk,j = uk,j, then go to Step 2.
Otherwise, Find λk,j ∈ (0, 1) as the smallest number such that

〈F ((1 − λk,j)uk,j + λk,jy
k,j), yk,j − uk,j〉 +

1
2ck,j

D(yk,j , uk,j) ≤ 0. (3.1)



56 Pham Ngoc Anh and Nguyen Duc Hien

Set

zk,j := (1 − λk,j)uk,j + λk,jy
k,j ,

δk,j := γk,j
λk,j〈F (zk,j), zk,j − yk,j〉

(1 − λk,j)||F (zk,j)||2 ,

xk+1,j := PC(xk,j − δk,jF (zk,j)).

j := j + 1 and return Step 1.
Step 2. xk+1 := uk,j.
If xk+1 ∈ C, then stop.
If xk+1 /∈ C, then construct a hyperplane lk+1 such that

lk+1(x) ≤ 0 ∀x ∈ C, lk+1(xk+1) > 0.

Set
Tk+1 := {x ∈ Tk| lk+1(x) ≤ 0}.

Increase k by 1 and go to Iteration k.

Recall that PC(x) denotes the projection of x on C.

Remark 3.3. The smallest number λk ∈ (0, 1) of Aglgorithm 3.2 can be
replaced by the following: With β ∈ (0, 1), we find n as the smallest natural
number such that

〈F (βnuk,j + (1 − βn)yk,j), yk,j − uk,j〉 +
1

2ck,j
D(yk,j , uk,j) ≤ 0.

then set λk,j := 1 − βn.

Convergence of the sequence {xk} defined by Algorithm 3.2 is ensured by
the following theorem.

Theorem 3.4. Suppose that the sequences γk ∈ (0, 2), ck,j → c̄ > 0 as k, j →
∞, and function F satisfies the following conditions:
(a) lim inf γk(2 − γk) > 0.
(b) f is pseudomonotone on C.
Then, if xk ∈ C then xk is a solution to problems (V IP ) and if Algorithm 3.2
doesn’t terminate then the sequence {xk} converges to x∗ which is a solution
to problems (V IP ).

Proof. In [1] we have showed that there always exists λk,j ∈ (0, 1) as the
smallest number which satisfies ( 3.1).

We suppose xk+1 ∈ C, Lemma 3.1 shows that xk+1 is a solution to problems
(V IPk). It means that

〈F (xk+1), x − xk+1〉 ≥ 0 ∀x ∈ Tk. (3.2)
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Otherwise outer approximation method shows that C ⊆ Tk. Combine this and
3.2, we have

〈F (xk+1), x − xk+1〉 ≥ 0 ∀x ∈ C.

It shows that xk+1 is a solution to problems (V IP ).
Now we are in a position to prove that the sequence {xk} converges to x∗

which is a solution to problems (V IP ), if Algorithm 3.2 doesn’t terminate.
Using Lemma 3.1, we have xk+1 is a solution to (V IPk). Algorithm 3.2 also
shows that the sequence {xk} must converge to x∗ ∈ C and

T0 ⊇ T1 ⊇ · · · ⊇ Tk ⊇ · · · ⊇ C.

By the continuity of F , we have x∗ as a solution to problems (V IP ). The proof
is complete. �
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