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Abstract

In our recent papers [2, 3] we have proposed a modified logarithmic-
quadratic method for solving monotone generalized variational inequal-
ities and quasimonotone multivalued variational inequalities on polyhe-
dral. The method is based on the special logarithmic quadratic function
which replaces the usual quadratic. In this paper we combine this re-
sult with the outer approximation method to obtain a new interior ap-
proximation algorithm for solving pseudomonone variational inequalities
satisfying a certain Lipschitz condition on a closed convex set. Next, to
avoid the Lipschitz condition we combine this technique with linesearch
technique to obtain a convergent algorithm for pseudomonone variational
inequalities.
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1 Introduction

Classical variational inequalities, denoted by (VIP), are to find a vector z* € C
such that
(F(z*),z—xz*) >0 Vz € C,

where C' is a nonempty closed convex subset of R™ and F' is a continuous map-
ping from R” into itself. Problems (VIP) include nonlinear complementarity
problems (shortly (NCP), when C' = R’) and system of nonlinear equations
(when C' = R"™). Throughout this paper we assume that C' is bounded, that
F(z) is continuous, pseudomonone on C and the solution set of (V' IP), denoted
by S*, is nonempty. Variational inequalities have many important applications
in economics, operation researches and nonlinear analysis, and have been stud-
ied by many researchers (see [5, 11, 12, 13, 14, 15, 18, 24]).

First, let us recall the well known concepts that will be used in the sequel
(see [19, 20]).

Definition 1.1. Let C CR" and F : C — R™. The function F is said to be
(a) pseudomonotone on C if for each x,y € C the inequality

(F(y),x—y) >0

implies
(F(x),x —y) > 0.

(b) Lipschitz on C with constant L (shortly L— Lipschitz) if for each x,y € C
|1F(z) = F(y)ll < Ll|z —yl|.

Among powerful approaches to (NCP) is the logarithmic-quadratic prox-
imal method (shortly (LQ)) presented originally by Auslender et al. in Ref.
[7, 8, 9] under that the operator is monotone on C' := R}, which is starting

with any point 2% € C and Ay > \ > 0, iteratively updates 2**1 conforming
the following problem:
0 € MF(2) + Vady(z, 2%),
where .
do(z,y) =Y _vio(y; ')
i=1
and
L(t—1)? t—logt—1) ift>0
b(t) = 5( )+ u( 0g ) i ' (1.1)
400 otherwise,

with v > p > 0. Then the term d, forces the iteratives {z**1} to stay in the
interior of C.



Coupling the LQ Regularization Method and... 51

In our recently papers [1, 2, 3, 4], we have proposed a new type of proximal
interior method for solving (VIP) and equilibrium problems (shortly (EQ))
on polyhedral C := {z € R"| Az < b}, where A is an p X n matrix, b € R?
through replacing function dg(x,y) by D(x,y) which is defined as D(z,y) =
d(l(x),l(y)), where

ll(x):b1—<a1,$> 121,2, . D,
T

l(x) = (ll(x)a l2(x)a T alp(x)) )

and

1 2 n 2/ x; x; x4 3
Ly — 4+ Z(Lilog®i — &4 1) ifx >0,
d(xay) - 2|| y|| 1;:‘/ (yl gyl vi ) (12)

400 otherwise,

with p € (0, 1).
Applying to (VIP), in this paper we consider function D(x,y) for every
z,y €Ty Yk=0,1,---, where T} is a polyhedral sequence defined by

T, ={xeR" b;—ax>0i=1,2,--- ,n+k},

a; (i =1,2,---,n+ k) are the rows of matrix Ag,l;(z) = b; — {a;,z) i =
1,2,, - ,n+kand l(x) = (I1(x),l2(x), -, ik (x))T. Forgiven z¥7 € T}, (j =
0,1,---), we denote by V,D(x,z*7) the gradient of D(.,z*7) at 2. Then we
have

. . I(x)
kgy_ AT TNy ,
VoD(z,z%7) = A (I(z) — (") + p Xy ; log l(xkvj))’

where

Xk’j = diag(ll(xk7j), e aln—i-k(xk’j))a
I(x) (1 li(x) | M)

B B N Y o) R B o)

2 An interior proximal algorithm
To solve the generalized variational inequalities:
Find z* € C such that (F(z™),z — ") + p(x) — p(z*) > 0 Vo € C,
where C' C R™ is a polyhedral defined C' := {x € R"| Az < b},p:C — R is

convex, F': C' — R™ and the matrix A := (a;j)pxn such that rankA = n, the
LQ regularization algorithm is described in our paper (see [2]) as the following.
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Algorithm 2.1. Step 0. Choose 2° € C,k := 0, a positive sequence {cy}
such that ¢, — ¢ >0 as k — +oo.
Step 1. Solve the strongly convex program:

min{(F(z*),y — 2% + o(y) + émy,xm yeC} (2.1)

to obtain the unique solution y*.

If y* = xF, then terminate: z* is a solution to problems (VIP).

Otherwise go to Step 2.

Step 2. Find x*1 which is the unique solution to the strongly convex program.:

min{(F(s),y — ) + o(y) + émy,x’m yecy.

Step 3. Set k:=k+ 1, and return to Step 1.
The following lemma establishes convergence of the algorithm.

Lemma 2.2. ([2], Theorem 2.7) Suppose that the function F is pseudomonone
and L—Lipschitz on C. Choose €, i and sequence {c} such that

—e—cpl|ATY? 1 —€—ciL?
3 ’ 5

1
0<¢€0<p<min{ } Vk=1,2,--,

where A = (a;j)nxn is a submatriz of A such that rank A=n and

1A= sup ||A7"z]].

[lz[|=1

Then

(i) If Algorithm 2.1 terminates at Step 1, then x* is a solution to (VIP).
(ii) If the algorithm does not terminate, then the sequence {x*} converges to a
solution to problems (VIP).

Note that auxiliary problems in Algorithm 2.1 can be solved efficiently by
using available softwares.

When K is not polyhedral, we suggest approximating C' by polyhedral con-
vex sets. Polyhedral outer approximation methods of a convex set are based
upon the fact that any nonempty closed convex set can be approximated by
polyhedral convex sets. This technique has been widely used in convex pro-
gramming and variational inequalities (see [16, 23]). In this section, we embed
upper results in a polyhedral outer approximation procedure in order to solve
problems (VIP). To this end, we suppose, as usual, that the closed convex set
C is given as

Ci={z e R"| g;(x) <0,j € J},
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where J is a finite index set and the functions g; (j € J) are convex and
subdifferentiable on R™. By taking g(z) := mangj(x), we can write C' = {z €
VIS

R™| g(z) < 0}. Suppose now that Slater’s condition is satisfied, i.e., that there
exists v° such that g(v%) < 0.

For getting the convergence of the polyhedral approximation algorithm de-
scribed below, we need the following result.

Lemma 2.3. (/23] Theorem 6.1, p.180) Let C C R", {27} C R"\ C be
a bounded sequence, and v° € intC, y € [0, 2]\ intC, p’ € dg(y’) and
0 < a; <g(y') such that aj—g(y?) — 0 as j — +oo. If, for every j, the affine
functions 1j(z) :== (p/,x — /) + a; satisfy

Li(z?) >0, L't <0, ljz)<0 Vzel,
then every accumulation point of the sequence {x*} belongs to C.

Now we are in a position to describe the polyhedral approximation algo-
rithm.

Algorithm 2.4. Initialization. Choose a box Ty = {x € R"| Agz < bo}
containing bounded set C, where Ay is indentity matriz, vector by € R™.
Iteration (Outer Iteration) k=0,1,---

Step 0. Pick u*° =z* € T), and j =0.

Step 1. (Inner iteration)

Solve the strongly conver quadratic program

y*7 = argmin{ (F (u*7),y — uF7) + C—D(y,uk”)l y € Tx}.
k

If y*J = uFJ, then go to Step 2.
Otherwise, solve the strongly convex quadratic program

. . . | .
yFIt = argmin{ (F (y*7),y — y*7) + aD(y,uk’J)l y € Tx},

j =7+ 1 and return to Step 1.

Step 2. xFtl .= ykJ.

If %+ € C, then stop.

If 2*+1 ¢ C, then construct a hyperplane I,y such that

lkt1(z) <0 Yo € O, ljp1(zh) > 0.

Set
Tiq1 := {x S Tk| lk+1(x) < 0}.

Increase k by 1 and go to Iteration k.
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Convergence of Algorithm 2.4 is ensured by the following theorem.

Theorem 2.5. Suppose that the function F is pseudomonone and L— Lipschitz
on C. We choose €, i and the sequence cx > 0 such that

€ — el |4, 1|2 1—e—ckf/z} Vk— 0.1 -

1
0<¢€0<p<min{ 3 , 3

where polyhedral Ty, := {x € R"| Az < by}, [|AY] = sup ||A; || and
[lz][=1

Li = L||A, || Then,

(i) If % € C, then x* is a solution to problems (VIP).

(ii) If the algorithm does not terminate, then the sequence {x*} converges to a

solution to problems (VIP).

Proof. (i) We suppose z* € C, Lemma 2.3 shows that z* is a solution to
the following variational inequality problems, denoted by (VIPy):
Find a vector T € T}, such that

(F(z),z—Z) >0 Vz € Tj.

From C C T}, and 2* € C is a solution to (VIPy), it follows that z* is a solution
to problems(VIP).
(i) Since z*¥ € Ty for all k = 0,1,--- and the sequence {T}} satisfies all of
assumptions of Lemma 2.3, outer proximal method shows that the sequence
{2*} must converge to z* € C and

Lhy2Ih 22T, 2---2C

3

where x* belongs to T} for all k =0,1,---. Then z* is a solution to problems
(VIP).
The proof is complete. U

3 The interior-outer proximal linesearch method

Convergence of Algorithm 2.4 requires that the function F' satisfies the Lip-
schitz condition on C. This condition depends on positive constant L and
in cases, it is unknown or difficult to approximate. So in this section, in or-
der to avoid this assumption, we combine the interior proximal method, the
outer proximal method and the linesearch technique. The interior-linesearch
technique has been used widely in descent method for solving variational in-
equalities (VIP) on C := R (see [13, 18]).

In case C'is a polyhedral, we construct iteratively a sequence converging to a
solution to (VIP) without assumping Lipschitz continuity of F. The sequence
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{y*} is described in Algorithm 2.1, the iterate x* is defined as the following
Amijo-type linesearch technique:
Find A, € (0,1) as the smallest number such that

1
(F((1 = M) + M), % — ) + gD(y",x") <0.
k
Set
2k = (1- )\k)xk + )\kyk,
Mo (F(29), 28 — )
A= MIFERE
oF = Po(ak — 6, F(2)).

O := 7

The convergent of the sequence {z*} is defined as the following.

Lemma 3.1. ([2], Theorem 3.5) Suppose that the sequences vy, € (0,2) such
that liminf v, (2 — v,) > 0, ¢, — € as k — oo, and function F is pseudomono-
tone on C. Then,

(i) If x% = y*, then x* is a solution to problems (VIP).

(ii) if % # y* for all k = 0,1, ---, then the iterate x* converges to x* which is
a solution to problems (VIP).

Now we are in a position to consider C' which is a convex subset of R™. We
embed Amijo-type linesearch technique in a polyhedral outer approximation
procedure in order to solve problems (VIP). From C is bounded, there exists
a box contained C, denoted by Ty. The method can now be described in detail
as follows:

Algorithm 3.2. Initialization. Choose a box Ty = {x € R"| Agz < bo}
containing bounded set C, where Ay is indentity matriz, vector by € R™.
Iteration (Outer Iteration) k=0,1,---

Step 0. Pick v*0 = zF € T}, and j = 0.

Step 1. (Inner iteration)

Solve the strongly conver quadratic program

Y = argmin{(F(uk’J), y— uk’J> + o D(y, u’“)| y €Ty}
k,j

If y*J = uFJ, then go to Step 2.
Otherwise, Find A, ; € (0,1) as the smallest number such that

(F((L= M)t + A gg9), g — ah9) + 52D ) <0, (3.1)

2Ck7j
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Set

2R0 = (1= A j)uFd 4+ Ny,
ooy MAUFER) 59— )
T U= M )IEGEEIP

aF I = Po(ahd — 6y, jF(259)).

j:=7+1 and return Step 1.

Step 2. zFt! .= ykJ,

If %1 € C, then stop.

If 2%+1 ¢ C, then construct a hyperplane Iy, 1 such that

lkt1(z) <0 Yo € O, ljp1(zh) > 0.

Set
Tiq1 := {x S Tk| lk+1(x) < 0}.

Increase k by 1 and go to Iteration k.
Recall that Po(x) denotes the projection of x on C.

Remark 3.3. The smallest number A\, € (0,1) of Aglgorithm 3.2 can be
replaced by the following: With 8 € (0,1), we find n as the smallest natural
number such that

, . , 1 -
(F(B" T + (1= ")y"7), g™ =) + o——D(y*, u) < 0.

then set A\ ; :==1— B".

Convergence of the sequence {z*} defined by Algorithm 3.2 is ensured by
the following theorem.

Theorem 3.4. Suppose that the sequences v, € (0,2),cx; —¢>0 ask,j—
00, and function F satisfies the following conditions:

(a) liminf (2 — ) > 0.

(b) f is pseudomonotone on C.

Then, if x* € C then ¥ is a solution to problems (VIP) and if Algorithm 3.2
doesn’t terminate then the sequence {x*} converges to x* which is a solution
to problems (VIP).

Proof. In [1] we have showed that there always exists A\x; € (0,1) as the
smallest number which satisfies ( 3.1).

We suppose z**! € C, Lemma 3.1 shows that z** is a solution to problems
(VIPy). It means that

(F(z*), . — 28 >0 Vo e Ty, (3.2)
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Otherwise outer approximation method shows that C' C T),. Combine this and
3.2, we have
(F(z*), 2z — 2" >0 vz e C.

It shows that ¥+ is a solution to problems (VIP).

Now we are in a position to prove that the sequence {z*} converges to z*
which is a solution to problems (VIP), if Algorithm 3.2 doesn’t terminate.
Using Lemma 3.1, we have z**1 is a solution to (VIPy). Algorithm 3.2 also
shows that the sequence {z*} must converge to z* € C' and

Ty2T 2---2T,2---2C.

By the continuity of F', we have z* as a solution to problems (VIP). The proof
is complete. ([

References

[1] Anh P. N., An LQ regularization method for solving pseudomonotone
equilibrium problems on polyhedral, Vietnam Journal of Mathematica, 36
(2008), 209-228.

[2] Anh P. N., An interior prozimal method for solving monotone generalized
variational inequalities, East-West J. of Mathematics, 10 (2008), pp. 81-
100.

[3] Anh P. N., An interior proximal method for solving pseudomonotone non-
lipschitzian multivalued variational inequalities, Nonlinear Analysis Fo-
rum, 14 (2009), pp. 27-42.

[4] Anh P. N., and Muu L. D., Coupling the Banach contraction mapping
principle and the prozimal point algorithm for solving monotone varia-
tional inequalities, Acta Mathematica Vietnamica, 29 (2004) 119-133.

[5] Anh P. N., Muu L. D., and Strodiot J. J., Generalized Projection Method
for Non-Lipschitz Multivalued Monotone Variational Inequalities, Acta
Mathematica Vietnamica, (2009), 67-79.

[6] Anh P.N., Muu L.D., Nguyen V. H., and Strodiot J. J., On the Contraction
and Nonezpensiveness Properties of the Marginal Mappings in Generalized
Variational Inequalities Involving Co-coercive Operators, In Generalized
Convexity and Monotonicity, Edited by A. Eberhard, N. Hadjisavvas and
D.T. Luc Springer , Chap. 5, (2005) 89-111.

[7] Aubin J.P., and Ekeland I., “Applied Nonlinear Analysis”, Wiley, New
York (1984).

[8] Auslender A., and Teboulle M., Interior projection-like methods for mono-
tone variational inequalities, Mathematical Programming, 104 (2005) 39-
68.



58

[9]

PuaMm NGcoc ANH AND NGUYEN Duc HIEN

Auslender A., Teboulle M., and Bentiba S., A logarithmic-quadratic prozi-
mal method for variational inequalities, J. of Computational Optimization
and Applications, 12 (1999) 31-40.

Auslender A., Teboulle M., and Bentiba S., Iterior prozimal and multi-
plier methods based on second order homogeneous kernels, Mathematical
Operation Research, 24 (1999) 646-668.

Blum E., and Oettli W., From optimization and variational inequality to
equilibrium problems, The Mathematics Student, 63 (1994) 127-149.

Cohen G., Auziliary problem principle and decomposition of optimization
problems, J. of Optimization Theory and Applications, 32 (1980) 277-305.

Facchinei F., and Pang J.S., Finite-Dimensional Variational Inequalities
and Complementary Problems, Springer-Verlag, NewYork (2003).

Fang S.C., Petersen P.L., Generalized Variational Inequalities, J. of Opti-
mization Theory and Applications, 38 (1982) 363-383.

Farouq N. El., Pseudomonotone variational inequalities: convergence of
auziliary problem method, J. of Optimization Theory and Applications,
111 (2001) 305- 325.

Fukushima M., Equivalent Differentiable Optimization Problems and De-
scent Methods for Asymmetric Variational Inequality Problems, Mathe-
matical Programming, 53 (1992) 99-110.

Han D., A modified alternating direction method for variational inequality
problems, Applied Mathematics Optimization, 45 (2002) 63-74.

Konnov 1. V., Combined Relaxation Methods for Variational Inequalities,
Springer-Verlag, Berlin (2000).

Noor M. A., Iterative schemes for quasimonotone mized variational in-
equalities, STAM J. Optimization, 50 (2001) 29-44.

Rockafellar R. T., “Convex Analysis”, Princeton University Press (1970).
Rockafellar R. T., Monotone operators and the proximal point algorithm,
STAM J. Control Optimization, 14 (1976) 877-898.

Taji K., Fukushima M., and Ibaraki T., A globally convergent Newton
method for solving strongly monotone variational inequalities, Mathemat-
ical Programming, 58 (1993) 369-383.

Tuy H., “Convex Analysis and Global Optimization”, Kluwer Academic
Publishers, Dordrecht, Holland, 1998.

Zhu D. L., and Marcotte. P., Co-coercivity and its role in the convergence

of iterative schemes for solving variational inequalities, STAM J. Optimiza-
tion, 6 (1996) 714-726.



