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Abstract

The convolution with a weight-function for the Fourier sine integral
transform is formulated and its properties are studied. A Titchmarch
type theorem, non-existence of the unit element of the convolution are
proved. The application to solve some particular cases of the Toeplitz
plus Hankel integral equations is outlined.

1 Introduction

The convolutions for integral transforms were studied at the beginning of 20 th
century, at first the convolution for the Fourier transform (see, e.g. [17]), for
the Fourier cosine transform, for the Laplace transform (see [16, 17]) and the
references therein for the Mellin transform [15] and after that the convolution
for the Hilbert transform [15, 17], the Hankel transform [8], the Kontorovich -
Lebedev transform [8], the Stieltjes transform [15] after-wards.

Key words: convolution, Fourier sine, Fourier cosine, Fourier transform, integral equation,
factorization.
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In 1967, V. A. Kakichev [8] proposed a constructive method for defining
the convolution with a weight-function which is more general than the convo-
lution. And as by-products, convolutions of many integral transforms such as
the Meijer, Hankel, Fourier sine, Sommerfeld were found [9]. For instance, the
convolution with the weight-function γ(y) = sin y of the functions f and g for
the Fourier sine integral transform (Fs) was studied in [8], [11]

(f
γ∗ g)(x) =

1
2
√

2π

+∞∫
0

+∞∫
0

[
e−|x+u−v| sign (x+ u− v) + e−|x−u+v| sign (x− u+ v)

− e−(x+u+v) − e−|x−u−v| sign (x− u− v)
]
f(u)g(v)dudv, x > 0.

The convolutions for many integral transforms have numerous applications in
several contexts of sciences and mathematics [3, 4, 6, 7, 16, 17, 20]. Specially,
studying convolutions may shed light on how to solve the integral equation
with the Toeplitz plus Hankel kernel [18]

f(x) +

+∞∫
0

[k1(x+ u) + k2(x− u)]f(u)du = g(x), (1.1)

in closed form. The general case of this integral equation is still open.
In this paper we introduce another convolution with the weight - function

γ(y) =
y

1 + y2
for the Fourier sine transform. We obtain some properties for

the new convolution. Also we will show that there does not exist the unit
element for the calculus of this convolution as well as there is not aliquote of
zero. In applications, we apply this notion to solve some special cases of the
Toeplitz plus Hankel integral equations.

2 The convolution with a weight-function for

the Fourier sine integral transform

Definition 1. The convolution with the weight-function γ(y) =
y

1 + y2
of two

functions f, g for the Fourier sine integral transform is defined by

(f
γ∗ g)(x) =

1
2
√

2π

+∞∫
0

+∞∫
0

[
e−|x+u−v|sign (x+ u− v) + e−|x−u+v|sign (x− u+ v)

− e−(x+u+v) − e−|x−u−v| sign (x− u− v)
]
f(u)g(v)dudv, x > 0.

(2.1)
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Theorem 1. Let f, g ∈ L(R+), then their convolution with the weight-function
γ(y) =

y

1 + y2
for the Fourier sine integral transform (2.1) belongs to L(R+)

and the following factorization property holds

Fs(f
γ∗ g)(y) =

y

1 + y2
(Fsf)(y)(Fsg)(y), ∀y > 0. (2.2)

Here, the Fourier sine integral transform is defined by [16]

(Fsf)(y) =

√
2
π

+∞∫
0

f(x) sin(yx)dx, y ∈ R+.

Proof We have
∣∣e−|x+u−v| sign (x+ u− v)

∣∣ =
1

e|x+u−v| � 1, ∀x, u, v ∈ R+.

Similarly, we get
∣∣e−|x−u+v| sign (x− u+ v)

∣∣ � 1, ∀x, u, v ∈ R+,∣∣e−|x+u+v|∣∣ � 1, ∀x, u, v ∈ R+,∣∣e−|x−u−v| sign (x− u− v)
∣∣ � 1, ∀x, u, v ∈ R+.

Hence, we have

∣∣(f γ∗ g)(x)
∣∣ �

√
2
π

+∞∫
0

+∞∫
0

|f(u)| |g(v)|dudv < +∞.

It shows that the convolution (2.2) is well defined in L(R+). Moreover, from
(2.1) we obtain

+∞∫
0

∣∣(f γ∗ g)(x)
∣∣dx � 1

2
√

2π

+∞∫
0

+∞∫
0

+∞∫
0

{
e−|x+u−v| + e−|x−u+v|

+ e−(x+u+v) + e−|x−u−v|}|f(u)| |g(v)|dudvdx.
On the other hand, with the substitution x+ u− v = t, we have

+∞∫
0

dx

e|x+u−v| =

+∞∫
u−v

dt

e|t|
=

0∫
u−v

dt

e−t
+

+∞∫
0

dt

et

= et
∣∣∣0
u−v

− e−t
∣∣∣+∞

0

= 2 − eu−v < 2, ∀u, v > 0.
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Similarly

+∞∫
0

dx

e|x−u+v| < 2, ∀u, v > 0,

+∞∫
0

dx

ex+u+v
< 2, ∀u, v > 0,

+∞∫
0

dx

e|x−u−v| < 2, ∀u, v > 0.

Hence

1
2
√

2π

+∞∫
0

+∞∫
0

+∞∫
0

{
e−|x+u−v|+e−|x−u+v|+ e−(x+u+v)+e−|x−u−v|}|f(u)||g(v)|dudvdx

< 2

√
2
π

+∞∫
0

+∞∫
0

|f(u)| |g(v)|dudv < +∞.

So (f∗g)(x) ∈ L(R+). We now prove the factorization property (2.2). Applying
formula (2.2.15, page 65) in [2] we obtain

√
2
π

+∞∫
0

y

1 + y2
sin(yx) sin(yu) sin(yv)dy

=
1

2
√

2π

+∞∫
0

y

1 + y2

[
sin y(x + u− v)+sin y(x − u+ v)−sin y(x + u+ v)

− sin y(x − u− v)
]
dy

=
1

2
√

2π

+∞∫
0

y

1 + y2

[
sign (x+ u− v) sin y|x + u− v|

+ sign (x− u+ v) sin y|x− u+ v| − sin y(x + u+ v)

+ sign (x− u− v) sin y|x− u− v|]dy
=

√
2π
8

[
e−(x+u−v) sign (x+ u− v) + e−(x−u+v) sign (x− u+ v)

− e−(x+u+v) − e−(x−u−v) sign (x− u− v)
]
.
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From that, we have

y

1 + y2
sin(yu) sin(yv) =

√
2
π

+∞∫
0

sin(yx)
√

2π
8

[
e−|x+u−v| sign (x+ u− v)

+ e−|x−u+v| sign (x− u+ v) − e−(x+u+v) − e−|x−u−v| sign (x− u− v)
]
dx.

Hence

y

1 + y2
(Fsf)(y)(Fsg)(y) =

2
π

+∞∫
0

+∞∫
0

y

1 + y2
sin(yu) sin(yv)f(u)g(v)dudv

=
1
2π

+∞∫
0

+∞∫
0

{ +∞∫
0

sin yx
[(
e−|x+u−v| sign (x+ u− v)

+ e−|x−u+v| sign (x− u+ v) − e−(x+u+v)

− e−|x−u−v| sign (x− u− v)
)]
dx

}
dudv

=

√
2
π

+∞∫
0

sin yx
{ 1

2
√

2π

+∞∫
0

+∞∫
0

[
e−|x+u−v| sign (x+ u− v)

+ e−|x−u+v| sign (x− u+ v) − e−(x+u+v)

− e−|x−u−v| sign (x− u− v)
]
f(u)g(v)dudv

}
dx

= Fs(f
γ∗ g)(y).

The proof is complete. �

Proposition 2.1. In the space of functions belonging to L(R+), the convo-
lution with a weight-function for the Fourier sine integral transform (2.1) is
commutative, associative and distributive.

Proof We prove that the convolution (2.1) is associative, i.e.,

(f
γ∗ g) γ∗ h = f

γ∗ (g
γ∗ h).

Indeed,

Fs

(
f

γ∗ h)(y) =
y

1 + y2
Fs(f

γ∗ g)(y)(Fsh)(y)

=
y

1 + y2
(Fsf)(y)

y

1 + y2
(Fsg)(y)(Fsh)(y)

=
y

1 + y2
(Fsf)(y)Fs(g

γ∗ h)(y)

=Fs

(
f

γ∗ (g
γ∗ h)

)
(y), ∀y > 0.
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It implies that
(f

γ∗ g) γ∗ h = f
γ∗ (g

γ∗ h).

The commutative, distributive properties are similarly proved. �

Definition 2. The norm in the space L(R+) is defined by

‖f‖L(R+) = 2

√
2
π

+∞∫
0

∣∣f(x)
∣∣dx. (2.3)

Proposition 2.2. If f and g are functions belonging to L(R+), then the fol-
lowing inequality holds

∥∥(f
γ∗ g)∥∥

L(R+)
� ‖f‖L(R+) ‖g‖L(R+). (2.4)

Proof From the proof of Theorem 1 we get

+∞∫
0

∣∣(f γ∗ g)(x)
∣∣dx � 2

√
2
π

+∞∫
0

|f(u)|du
+∞∫
0

|g(v)|dv.

Hence

2

√
2
π

+∞∫
0

∣∣(f γ∗ g)(x)
∣∣dx � 2

√
2
π

+∞∫
0

|f(u)|du2

√
2
π

+∞∫
0

|g(v)|dv.

Thus ∥∥(f
γ∗ g)∥∥

L(R+)
� ‖f‖L(R+) ‖g‖L(R+).

The proof is complete. �

Theorem 2. In the space of functions in L(R+) there does not exist the unit
element for the convolution operation (2.1).

Proof From Proposition 2.2 we have

∥∥f γ∗ g∥∥
L(R+)

� ‖f‖L(R+)‖g‖L(R+).

The remaining properties of the ring is clear. The commutative property of the
ring can be easily obtained from Proposition 2.2. Now, we prove this normed
ring no having the unit element. Suppose that there exists the unit element
e of the convolution operation in the space of functions in L(R+), it means
(e

γ∗ g) = (g
γ∗ e) = g, for any function g belonging to L(R+). Then we have

Fs(e
γ∗ g)(y) = (Fsg)(y), ∀y > 0.
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Hence
y

1 + y2
(Fse)(y)(Fsg)(y) = (Fsg)(y), ∀y > 0.

The last is equivalent to the equality

(Fsg)(y)
[ y

1 + y2
(Fse)(y) − 1

]
= 0, ∀y > 0,

for any function g(y) belongs to L(R+).
It is posibility to choose g so that (Fsg)(y) �= 0, ∀y > 0, therefore

y

1 + y2
(Fse)(y) − 1 = 0, ∀y > 0. (2.5)

If y > 0 and tends to 0, then
y

1 + y2
tends to 0. On the other hand, since

e ∈ L(R+), it follows that
y

1 + y2
(Fse)(y) → 0 as y → 0. This is a contradiction

to formula (2.5). Therefore, this normed ring does not have the unit element.
The theorem is proved. � Let L(R+, e

x) be denoted the space of functions f
such that

+∞∫
0

ex|f(x)|dx < +∞.

Theorem 3 (A Titchmarch type theorem). Let f, g ∈ L(R+, e
x). If (f

γ∗
g)(x) ≡ 0, then either f(x) ≡ 0 or g(x) ≡ 0.

Proof Under the hypothesis (f
γ∗ g)(y) ≡ 0, ∀x > 0, it follows that Fs(f

γ∗
g)(y) = 0, ∀y > 0. Due to Theorem 1 we have

y

1 + y2
(Fsf)(y)(Fsg)(y) = 0, ∀y > 0. (2.6)

Since ∣∣∣ dn

dyn

(
sin(yx)f(x)

)∣∣∣ =
∣∣∣f(x)xn sin

(
yx +

nπ

2

)∣∣∣
�

∣∣f(x)xn
∣∣ =

∣∣e−xxnexf(x)
∣∣ = |e−xxn| . |exf(x)| � C|exf(x)|,

for x large enough, due to Weierstrass criterion, the integral
+∞∫
0

dn

dyn

[
sin(yx)f(x)

]
dx

uniformly converges on R+. Therefore, based on the differentiability of integrals
depending on parameter, we conclude that (Fsf)(y) is analytic for y > 0.
Similarly, (Fsg)(y) analytic for y > 0. So from (2.6) we have (Fsf)(y) =
0, ∀y > 0 or (Fsg)(y) = 0, ∀y > 0. If follows that either f(x) = 0, ∀x > 0 or
g(x) = 0 ∀x > 0.

The theorem is proved. �
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3 Application to solving integral equations

Consider the integral equation

f(x) + λ
1

2
√

2π

+∞∫
0

f(u)ψ(x, u)du = h(x), x > 0. (3.1)

Here

ψ(x, u) =

+∞∫
0

[
e−|x+u−v| sign (x+ u− v) + e−|x−u+v| sign (x− u+ v)

− e−(x+u+v) − e−|x−u−v| sign (x− u− v)
]
g(v)dv,

and λ ∈ R, g and h are functions in L(R+), f is the unknown function.

Theorem 4. With the condition

1 +
λy

1 + y2
(Fsg)(y) �= 0, ∀y > 0

there exists a unique solution in L(R+) of (3.1) which is defined by

f(x) = h(x) − λ(h
γ∗ ϕ)(x).

Here, ϕ(x) ∈ L(R+) and it is defined by

(Fsϕ)(y) =
(Fsg)(y)

1 + λy
1+y2 (Fsg)(y)

.

Proof The equation (3.1) can be rewritten in the from

f(x) + λ(f
γ∗ g)(x) = h(x).

Suppose that equation (3.1) exists solution f ∈ (R+). Due to Theorem 1, we
have

(Fsf)(y) + λ
y

1 + y2
(Fsf)(y).(Fsg)(y) = (Fsh)(y), ∀y > 0,

Since

(Fsf)(y)
[
1 +

λy

1 + y2
(Fsg)(y)

]
= (Fsh)(y), ∀y > 0.

Therefore
(Fsf)(y) = (Fsh)(y)

1
1 + λy

1+y2 (Fsg)(y)
.
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Due to Wiener-Levy’s theorem [1, 14] there exists a function ϕ ∈ L(R+) such
that

(Fsϕ)(y) =
(Fsg)(y)

1 + λy
1+y2 (Fsg)(y)

.

It follows that

(Fsf)(y) = (Fsh)(y)
[
1 − λy

1 + y2
(Fsϕ)(y)

]
= (Fsh)(y) − λFs(h

γ∗ ϕ)(y).

Hence
f(x) = h(x) − λ(h

γ∗ ϕ)(x).

By Theorem 1, f ∈ L(R+). We can easily check that f(x) = h(x)−λFs(h
γ∗ϕ)(x)

is the unique solution of equation (3.1) in L(R+). The theorem is proved. �

remark 1. Theorem 4 shows that the Toeplitz plus Hankel integral equation
(1.1) with

k1(t) =
1

2
√

2π

+∞∫
0

[e−|t−v| sign (t − v) − e−(t+v)]g(v)dv,

k2(t) =
1

2
√

2π

+∞∫
0

[e−|t+v| sign (t+ v) − e−|t−v| sign (t − v)]g(v)dv,

has a unique solution in L1(R+) which is defined by

f(x) = h(x) − λ(h
γ∗ ϕ)(x).

For solving the new class of integral equations we will used the following known
generalized convolutions.
The generalized convolution for the Fourier sine and cosine transforms is of the
form [15]

(f ∗
1
g)(x) =

1√
2π

+∞∫
0

f(u)[g(|x− u|)− g(x+ u)]du. (3.2)

This convolution satisfies the following factorization property

Fs(f ∗
1
g)(y) = (Fsf)(y)(Fcg)(y). (3.3)

The generalized convolution for the Fourier cosine and sine integral transforms
is defined by [13]

(f ∗
2
g)(x) =

1√
2π

+∞∫
0

f(u)[g(|x− u|) sign (x− u) + g(x+ u)]du, (3.4)
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for which the following factorization equality holds

Fc(f ∗
2
g)(y) = (Fsf)(y)(Fsg)(y). (3.5)

We now consider the integral equation

f(x) + λ1

+∞∫
0

f(u)θ1(x, u)du+ λ2

+∞∫
0

f(u)θ2(x, u)du = h(x), x > 0. (3.6)

Here

θ1(x, u) =
1

2
√

2π

+∞∫
0

[
e−|x+u−v| sign (x+ u− v) + e−|x−u+v| sign (x− u+ v)

− e−(x+u+v) − e−|x−u−v| sign (x− u− v)
]
g(v)dv,

θ2(x, u) =
1√
2π

[k(|x− u|)− k(x+ u)],

and λ1, λ2 ∈ R, g, k and h are given functions of L(R+), f is unknown function.

Theorem 5. With the condition

1 + λ1Fs

(π√π
2
√

2
e−x

)
(y)(Fsg)(y) + λ2(Fck)(y) �= 0, ∀y > 0,

there exist a unique solution in L(R+) of (3.6) which is defined by

f(x) = h(x) − (h ∗
1
l)(x).

Proof The equation (3.6) can be rewriten in the form

f(x) + λ1
y

1 + y2
(Fsf)(y)(Fsg)(y) + λ2(Fsf)(y)(Fck)(y) = (Fsh)(y).

Due to Theorem 1 and the factorization equalities (3.3), (3.5) we have

(Fsf)(y) +
y

1 + y2
(Fsf)(y)(Fsg)(y) + λ2(Fsf)(y)(Fck)(y) = (Fsh)(y).

By the formula (2.2.15, p. 65) in [5] we obtain

y

1 + y2
= Fs

(π√π
2
√

2
e−x

)
(y).

It follows that

(Fsf)(y)[1 + λ1Fs

(π√π
2
√

2
e−x

)
(y)(Fsg)(y) + λ2(Fck)(y) = (Fsh)(y).
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Since 1 + λ1Fs

(
π
√

π

2
√

2
e−x

)
(y)(Fsg)(y) + λ2(Fck)(y) �= 0, ∀y > 0, we have

(Fsf)(y) =(Fsh)(y)
(
1 −

λ1Fs

(
π
√

π

2
√

2
e−x

)
(y)(Fsg)(y) + λ2(Fck)(y)

1 + λ1Fs

(
π
√

π

2
√

2
e−x

)
(y)(Fsg)(y) + λ2(Fck)(y)

)

=(Fsh)(y)
(
1 −

λ1Fc(π
√

π

2
√

2
e−x ∗

2
g)(y) + λ2(Fck)(y)

1 + λ1Fc(π
√

π

2
√

2
e−x ∗

2
g)(y) + λ2(Fck)(y)

)

Due to the Wiener-Levi’s Theorem [1, 14], there exists a function l ∈ L1(R+)
such that

(Fcl)(y) =
λ1Fc(

π
√

π

2
√

2
e−x ∗

2
g)(y) + λ2(Fck)(y)

1 + λ1Fc(
π
√

π

2
√

2
e−x ∗

2
g)(y) + λ2(Fck)(y)

.

It follows that

(Fsf)(y) =(Fsh)(y)[1 − (Fcl)(y)]
=(Fsh)(y) − Fs(h ∗

1
l)(y).

Hence

f(x) = h(x) − (h ∗
1
l)(x).

¿From h, l ∈ L(R+), we have (h∗
1
l)(x) ∈ L(R+), and therefore f ∈ L(R+). One

can easily check the f(x) = h(x)− (h ∗
1
l)(x) ∈ L(R+) is the unique solution of

the equation (3.6).
The theorem is proved. �

remark 2. The equation (3.6) is a particular case of the Toeplitz plus Hankel
integral equation (1.1) with

k1(t) =
λ1

2
√

2π

+∞∫
0

[e−|t−v| sign (t − v) − e−(t+v)]g(v)dv − λ2

2
√

2π
k(t),

k2(t) =
1

2
√

2π

+∞∫
0

[e−|t+v| sign (t+ v) − e−|t−v| sign (t − v)]g(v)dv +
λ2

2
√

2π
k(|t|).
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Finally, consider the system of integral equations

f(x) + λ1

+∞∫
0

g(u)ψ1(x, u)du =p(x)

λ2

+∞∫
0

f(u)ψ2(x, u)du+ g(x) =q(x), x > 0.

(3.7)

Here,

ψ1(x, u) =
1

2
√

2π

+∞∫
0

[
e−|x+u−v| sign (x+ u− v) + e−|x−u+v| sign (x− u+ v)

− e−(x+u+v) − e−|x−u−v| sign (x− u− v)
]
h(v)dv,

ψ2(x, u) =
1√
2π

[k(|x− u|)− k(x+ u)],

and λ1, λ2 ∈ R, k, h, p, q are given functions in L(R+); f, g are unknown func-
tions.

Theorem 6. With the condition 1 − λ1λ2Fc

(
k ∗

Fc

(π
√

π

2
√

2
e−x ∗

2
h
))

(y) �= 0, for

all y > 0, there exists the unique solution in L(R+) of (3.7), which is defined
by

f(x)=p(x)−λ1

(
q ∗

1

(π√π
2
√

2
e−x ∗

2
h
))

(x)−(p ∗
1
l)(x)−λ1

(
q ∗

1

(π√π
2
√

2
e−x ∗

2
h
)
∗
1
l

)
(x)

g(x) =q(x) − λ2(p ∗
1
k)(x) + (q ∗

1
l)(x) − λ2

(
(p ∗

1
k) ∗

1
l)(x), x > 0.

Here, l ∈ L(R+) and is defined by

(Fcl)(y) =
λ1λ2Fc

(
k ∗

Fc

(π
√

π

2
√

2
e−x ∗

2
h
))

(y)

1 − λ1λ2Fc

(
k ∗

Fc

(π
√

π

2
√

2
e−x ∗

2
h
))

(y)
.

Proof The system (3.7) can be rewriten in the form

f(x) + λ1(h
γ∗ g)(x) = p(x), x > 0,

λ2(f ∗
1
k)(x) + g(x) = q(x), x > 0.

¿From Theorem 1 and the factorization equality (3.3) we get

(Fsf)(y) + λ1
y

1 + y2
(Fsh)(y)(Fsg)(y) = (Fsp)(y),

λ2(Fsf)(y)(Fck)(y) = (Fsg)(y) = (Fsq)(y), y > 0.
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On the other hand, since
y

1 + y2
= Fs

(π√π
2
√

2
e−x

)
(y), we obtain

(Fsf)(y) + λ1Fc

(π√π
2
√

2
e−x ∗

2
h
)
(y)(Fsg)(y) = (Fsp)(y), y > 0

λ2(Fsf)(y)(Fck)(y) = (Fsg)(y) = (Fsq)(y), y > 0.

Since

Δ =

∣∣∣∣∣∣
1 λ1Fc

(π√π
2
√

2
e−x ∗

2
h
)
(y)

λ2(Fck)(y) 1

∣∣∣∣∣∣
= 1 − λ1λ2Fc

(
k ∗

Fc

(π√π
2
√

2
e−x ∗

2
h
))

(y) �= 0,

we see that

1
Δ

= 1 +
λ1λ2Fc

(
k ∗

Fc

(π
√

π

2
√

2
e−x ∗

2
h
))

(y)

1 − λ1λ2Fc

(
k ∗

Fc

(π
√

π

2
√

2
e−x ∗

2
h
))

(y)
,

is well defined.
Due to Wiener-Levy’s theorem [1], there exists a continuous function l ∈

L(R+) such that

(Fcl)(y) =
λ1λ2Fc

(
k ∗

Fc

(π
√

π

2
√

2
e−x ∗

2
h
))

(y)

1 − λ1λ2Fc

(
k ∗

Fc

(π
√

π

2
√

2
e−x ∗

2
h
))

(y)
.

It follows
1
Δ

= 1 + (Fcl)(y).

Now we have

(Fsf)(y) = (1 + (Fcl)(y))

∣∣∣∣∣∣
(Fsp)(y) λ1Fc

(π√π
2
√

2
e−x ∗

2
h
)
(y)

(Fsq)(y) 1

∣∣∣∣∣∣
=(1 + (Fcl)(y))

(
(Fsp)(y) − λ1Fs

(
q ∗

1

(π√π
2
√

2
e−x ∗

2
h
))

(y)
)

=(Fsp)(y) − λ1Fs

(
q ∗

1

(π√π
2
√

2
e−x ∗

2
h
))

(y) + Fs(p ∗
1
l)(y)

− λ1Fs

((
q ∗

1

(π√π
2
√

2
e−x ∗

2
h
)) ∗

1
l
)
(y).

Hence

f(x)=p(x)−λ1

(
q ∗

1

(π√π
2
√

2
e−x ∗

2
h
))

(x)−(p∗
1
l)(x)−λ1

(
q ∗

1

(π√π
2
√

2
e−x ∗

2
h
)
∗
1
l

)
(x).
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On the other hand,

(Fsg)(y) =(1 + (Fcl)(y))
∣∣∣∣ 1 (Fsp)(y)
λ2(Fck)(y) (Fsq)(y)

∣∣∣∣
=(1 + (Fcl)(y))

(
(Fsq)(y) − λ2Fs(p ∗

1
k)(y)

)
=(Fsq)(y) − λ2Fs(p ∗

1
k)(y) + Fs(q ∗

1
l)(y) − λ2Fs((p ∗

1
k) ∗

1
l)(y).

Hence

g(x) = q(x) − λ2(p ∗
1
k)(x) + (q ∗

1
l)(x) − λ2

(
(p ∗

1
k) ∗

1
l)(x), x > 0.

From the hypothesis, we have (p ∗
1
l)(x),

(
q ∗

1

(
π
√

π

2
√

2
e−x ∗

2
h
))

(x),(
q ∗

1

(
π
√

π

2
√

2
e−x ∗

2
h
)
∗
1
l
)

(x) ∈ L(R+). Therefore, f ∈ L(R+).

Similarly, we have g ∈ L(R+). The theorem has been proved. �
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