*-ZERO DIVISORS AND *-PRIME IDEALS

Usama A. Aburawash and Khadija B. Sola
Department of Mathematics, Faculty of Science
Alexandria University, Alexandria, Egypt aburawash@sci.alex.edu.eg

Abstract

Throughout this note we introduce the concept of ${ }^{*}$-zero divisors in rings with involution and its correlation with the concept of zero divisors in rings without involution. Moreover, some related definitions; such as *-completely prime ideals and rings and *-cancellation laws are introduced. Nevertheless, we characterize ${ }^{*}$-prime and ${ }^{*}$-completely prime ideals using *-zero divisors.

By a ring we mean an associative ring. A ring A is said to be an involution ring if on A there is defined a unary operation (called involution) $*$ subject to the identities $a^{* *}=a,(a+b)^{*}=a^{*}+b^{*}$ and $(a b)^{*}=b^{*} a^{*}$, for all $a, b \in A$. In other words, the involution is an anti-isomorphism of order 2 on A. For a commutative ring A, it is evident that the identity mapping of A onto A is an involution on A (see [1]-[4]) . Considering the category of involution rings, all morphisms (and also embeddings) must preserve involution. So we are looking here for a paricular concept for zero divisors that works in the category of involution rings.

If the ideal I of A is closed under involution; that is $I^{(*)}=\left\{a^{*} \in A \mid a \in I\right\} \subseteq I$, then it is called a *-ideal of A and will be denoted by $I \triangleleft^{*} A$.

We start by defining *-zero divisors for an involution ring A.
Definition 1 A nonzero element $a \in A$ is said to be a ${ }^{*}$-zero divisor if there exists a nonzero element $b \in A$ such that $a b=0$ and $a^{*} b=0$.

Remark 2 If we start by defining left *-zero divisor as in definition 1 , we get $b^{*} a^{*}=0$ and $b^{*} a=0$ which mean that a is a right *-zero divisor, too. By reversing the roles, a right *-zero divisor is also a left *-zero divisor. Thus we have only the concept of ${ }^{*}$-zero divisor, as one expects in the category of involution rings.

Key words: zero divisors, involution, ${ }^{*}$-cancellation, ${ }^{*}$-completely prime ideal 2000 AMS Mathematics Subject Classification: 16W10, 16U10, 16U30.

Clearly, a *-zero divisor is a zero divisor, but the converse is not always true as it is obvious from the following example.

Example 3 Consider the diret sum $R=A \oplus A^{o p}$, where A is an integral domain and $A^{o p}$ is its opposite domain. R is an involution ring under the exchange involution given by $(a, b)^{*}=(b, a)$ for all $(a, b) \in R$. For any $0 \neq a \in A$, the element $(a, 0)$ of R is a zero divisor since $(a, 0)(0, b)=0=$ $(0, b)(a, 0)$ for every $0 \neq b \in A$. Because neither a nor b are zero divisors, from $(0, a)(0, b) \neq(0,0)$, we conclude that $(a, 0)$ is not a ${ }^{*}$-zero divisor.

In particular, if a is a symmetric $\left(a^{*}=a\right)$ or a skew symmetric $\left(a^{*}=-a\right)$ element, then a is a zero divisor if and only if it is a ${ }^{*}$-zero divisor. Moreover, we can construct symmetric or skew symmetric *-zero devisors from given ${ }^{*}$ zero devisors as in the following result.

Proposition 4 Let A be an involution ring and $a \in A$. If a is a ${ }^{*}$-zero divisor, then there exists a (nonzero) symmetric or skew symmetric *-zero divisor in A.

Proof If a is a symmetric or skew symmetric element, then we are done. If a is not symmetric, then $a-a^{*} \neq 0$ is a skew symmetric element in A such that $\left(a-a^{*}\right) b=a b-a^{*} b=0$ and $\left(a-a^{*}\right)^{*} b=\left(a^{*}-a\right) b=a^{*} b-a b=0$, with an appropriately chosen $b \in A$.

Nevertheless, the next example shows that there are zero divisors which are *-zero divisors.

Example 5 In the involution ring of all 3×3 matrices over the integers Z with the transpose as involution, the element $a=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ is both zero and ${ }^{*}$-zero divisor. In fact the matrix $b=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ satisfies $a b=b a=0$ and $a b=a^{*} b=0$.

Definition 6 A commutative involution ring without *-zero divisors is said to be a ${ }^{\text {-integral domain. }}$

Since a commutative involution ring is an integral domain if it has no zero divisors, so it has also no ${ }^{*}$-zero divisors and consequently it is a ${ }^{*}$-integral domain. Moreover, each involution division ring is a ${ }^{*}$-integral domain.

Next, we define the *-cancellation law to work with *-zero divisors as follows.
Definition 7 We say that The *-cancellation law holds in an involution ring A if $a b=a c$ and $a^{*} b=a^{*} c$ imply $b=c$, for any $0 \neq a \in A$.

Again, if one defines left ${ }^{*}$-cancellation law to be hold in A as in Definition 7 , we can easily show that the right ${ }^{*}$-cancellation law holds also in A. Therefore, we have only the *-cancellation law as one expects.

It is obvious that if the left (right) cancellation law holds in an involution ring A, then the ${ }^{*}$-cancellation law holds in A, too.

Remind that an ideal P of a ring A is called a completely prime ideal if $a b \in P$ implies $a \in P$ or $b \in P$ for all $a, b \in A$ (see for instance[5]).

Now, we give the involutive version of this definition.
Definition 8 An ideal P of an involution ring A is called a *-completely prime ideal if $a b \in P$ and $a^{*} b \in P$ imply $a \in P$ or $b \in P$ for all $a, b \in A$. The ring A is said to be a ${ }^{*}$-completely prime ring if the zero ideal is a *-completely prime ideal.

It is evident that in an involution ring A, a completely prime ideal is ${ }^{*}$ completely prime, too.

From the definition, it follows that the ring A is $*_{-}$completely prime if and only if it has no ${ }^{*}$-zero divisors. We remind also that a ring A is completely prime if and only if it has no zero divisors. By this remark, a completely prime involution ring A is also *-completely prime, since A has no zero divisors implies that A has no ${ }^{*}$-zero divisors.

Following [3], an ideal P of an involution ring A is called a*-prime ideal if $J K \subseteq P$ implies $J \subseteq P$ or $K \subseteq P$, for any $J, K \triangleleft^{*} A$. An involution ring A is a ${ }^{*}$-prime ring if the zero ideal is a *-prime ideal. By the way, Birkenmeier and Groenewald gave in [3] the following equivalents for ${ }^{*}$-primeness of ideals.

Proposition 9 ([3], Proposition 5.4) Let A be an involution ring and $P \triangleleft^{*} A$. Then the following conditions are equivalent:
(i) P is a *-prime ${ }^{*}$-ideal of A.
(ii) If $a, b \in A$ such that $a A b \subseteq P$ and $a^{*} A b \subseteq P$, then $a \in P$ or $b \in P$.
(iii) If $I \triangleleft A$ and $K \triangleleft^{*} A$ such that $I K \subseteq P$, then $I \subseteq P$ or $K \subseteq P$.

We start our results by a classical one which gives the relation between the *-cancellation law and ${ }^{*}$-zero divisors.

Proposition 10 Let A be an involution ring. Then the *-cancellation law holds in A if and only if A has no *-zero divisors.

Proof Suppose that the *-cancellation law hold in A. If $0 \neq a \in A$ is such that $a b=0, a^{*} b=0$, then $b=0$ follows and consequently A has no ${ }^{*}$-zero divisors. Conversely, let A have no ${ }^{*}$-zero divisors. For $0 \neq a \in A$, if $a b=a c$ and $a^{*} b=a^{*} c$, then $a(b-c)=0$ and $a^{*}(b-c)=0$ which forces $b-c=0$. Thus $b=c$ and the ${ }^{*}$-cancellation law holds in A.

For ${ }^{*}$-prime rings without nonzero nilpotent elements, we claim that they have no ${ }^{*}$-zero divisors.

Proposition 11 If A is a^{*}-prime ring having no nonzero nilpotent elements, then A has no ${ }^{*}$-zero divisors.

Proof Let $0 \neq a, b \in A$ be such that $a b=0, a^{*} b=0$. Then $(b a)^{2}=b(a b) a=0$. Since A has no nonzero nilpotent elements, it follows that $b a=0$. Thus for all $x \in A$, we have $(a x b)^{2}=a x(b a) x b=0$, whence $a x b=0$ and consequently $a A b=0$. Similarly, we get $a^{*} A b=0$. Because A is ${ }^{*}$-prime, we deduce from Proposition 9 that $b=0$, from which A has no ${ }^{*}$-zero divisors.

From the definitions, it is easy to check that a *-completely pirme *-ideal of A is also a *-prime *-ideal. The converse is true only in particular cases; for instance if A possesses identity. For commutative involution rings, we have the following equivalences.

Theorem 12 Let A be a commutative ring with involution and $P \triangleleft^{*} A$. Then the following conditions are equivalent:
(i) P is a *-prime *-ideal.
(ii) P is a^{*}-completely prime ${ }^{*}$-ideal.
(iii) The factor ring A / P is a^{*}-integral domain.

Proof (i) \rightarrow (ii). Let $a, b \in A$ such that $a b \in P$ and $a^{*} b \in P$. Then $a A b \subseteq P$ and $a^{*} A b \subseteq P$. Hence, by Proposition $9, a \in P$ or $b \in P$ and consequently P is a ${ }^{*}$-completely prime ${ }^{*}$-ideal.
(ii) \rightarrow (iii). A / P is commutative because A is commutative. Since P is a ${ }^{*}$ completely prime ${ }^{*}$-ideal, then $a b \in P$ and $a^{*} b \in P$ imply $a \in P$ or $b \in P$ for all $a, b \in A$. In other words, $(a+P)(b+P)=P$ and $(a+P)^{*}(b+P)=P$ imply $a+P=P$ or $b+P=P$, whence A / P is a *-integral domain.
(iii) \rightarrow (i). Suppose that $a A b \subseteq P$ and $a^{*} A b \subseteq P$. By the commutativity of A, we get $(a b) b \in P,(a b)^{*} b \in P$ and $\left(a^{*} b\right) b \in P,\left(a^{*} b\right)^{*} b \in P$. Since A / P has no *-zero divisors, it follwos that $a b \in P$ or $b \in P$ and $a^{*} b \in P$ or $b \in P$. If $b \notin P$, then $a b \in P$ and $a^{*} b \in P$, from which $a \in P$. Thus P is a *-prime *-ideal, by Proposition 9.

Proposition 13 For a commutative ring A with involution, the following are true:
(i) The set $K=\left\{\right.$ all ${ }^{*}$-zero divisors of $\left.A\right\} \cup\{0\}$ is a *- ideal of A.
(ii) The factor ring A / K is a *-integral domain.

Proof (i) Let $a, b \in K$ and $r \in A$, then there exist $c, d \in A$ such that $a c=a^{*} c=0$ and $b d=b^{*} d=0$. Hence $(a-b) c d=0,(a-b)^{*} c d=\left(a^{*}-b^{*}\right) c d=0$ and $r a c=0,(r a)^{*} c=0$. Thus $a-b, r a \in K$. Moreover $a^{*} \in K$, since $a^{*} c=a^{* *} c=a c=0$.
(ii) Since A / K is commutative and has no ${ }^{*}$-zero divisors, it is a ${ }^{*}$-integral domain.

The following proposition gives a necessary condition for an element in the center of a ${ }^{*}$-ideal to be in the center of the ring.

Proposition 14 Let N be a^{*}-ideal of an involution ring A and $c \in C(N)$; the center of N. If c is not a^{*}-zero divisor, then $c \in C(A)$.

Proof $C(N)=\{n \in N \mid n x=x n$, for all $x \in N\}$ is a ${ }^{*}$-subring of A, since for $n \in C(N), x \in N$, we have $n x^{*}=x^{*} n$. Hence $n^{*} x=x n^{*}$ and $n^{*} \in C(N)$. Now for any $y \in A$, we have $c y, y c, c^{*}, c^{*} y, y c^{*} \in N$. Hence

$$
c(c y-y c)=c(c y)-c y c=c y c-c y c=o
$$

and
$c^{*}(c y-y c)=c^{*}(c y)-c^{*} y c=\left(c^{*} c\right) y-c^{*} y c=c\left(c^{*} y\right)-c^{*} y c=c^{*} y c-c^{*} y c=0$.
But c is not a ${ }^{*}$-zero divisor, whence $c y-y c=0$ and $c \in C(A)$ follows.
Finally, since an involution ring without zero divisors having no ${ }^{*}$-zero divisors, we have the following immediate result from Proposition 3 in [1].

Proposition 15 Every involution ring A without zero divisors is embeddable as a *-ideal (up to isomorphism)into one and only one involution ring $\overline{A^{1}}$ with identity and without ${ }^{*}$-zero divisors such that $\overline{A^{1}}$ is a minimal ${ }^{*}$-extension of A possessing identity.

References

[1] U. A. Aburawash, On embedding of involution rings, Math. Pannonica, 82, (1997), 245-250.
[2] U. A. Aburawash, On involution rings, East-West J.Math., 2(2)(2000), 109-126.
[3] G. F. Birkenmeier and N. J. Groenewald, Prime ideals in rings with involution, Quaestiones in Mathematicae, 20 (1997), 591-603.
[4] I. N. Herstein, "Rings with Involution", Univ. Chicago Press, 1976.
[5] A. Kertész, "Lectures on Artinian Rings", Akad. Kiadó, Budapest, 1987.

